JPS62143011A - Lens system for short range photographing - Google Patents

Lens system for short range photographing

Info

Publication number
JPS62143011A
JPS62143011A JP27092286A JP27092286A JPS62143011A JP S62143011 A JPS62143011 A JP S62143011A JP 27092286 A JP27092286 A JP 27092286A JP 27092286 A JP27092286 A JP 27092286A JP S62143011 A JPS62143011 A JP S62143011A
Authority
JP
Japan
Prior art keywords
lens
front group
groups
group
short range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27092286A
Other languages
Japanese (ja)
Other versions
JPH0252244B2 (en
Inventor
Yoshinori Hamanishi
濱西 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP27092286A priority Critical patent/JPS62143011A/en
Publication of JPS62143011A publication Critical patent/JPS62143011A/en
Publication of JPH0252244B2 publication Critical patent/JPH0252244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To improve the image forming performance by a simple lens constitution by increasing a spatial interval of the front group and the rear group for satisfying a specified condition and moving both the groups to an object side, in case of focusing to a short range object from an infinity object. CONSTITUTION:The titled lens system is provided with a front group G1 and a rear group G2 having a positive refractive power, respectively, and a diaphragm provided between both the groups, and by increasing a spatial interval between both the groups, in which the diaphragm has been placed, and moving together both the groups to an object side, focusing to a short range object from an infinity can be executed. Focal length of both the groups are formed so as to satisfy conditions of expressions I, II. The diaphragm is constituted so as to be movable on the optical axis with one of the front group and the rear group in unison. Also, an average break rate N1 of a lens for constituting the front group is formed so as to satisfy a condition of an expression III. Moreover, radiuses of curvature r1, r2 of faces of an object side and an image side of a positive lens of the nearest position to the object side in the front group are formed so as to satisfy a condition of an expression IV, respectively. In this way, an image forming performance can be improved for photographing extending from a short range to an infinity object by a lens of a simple constitution.

Description

【発明の詳細な説明】 本発明は無限遠で1ら極めて至近距離までの物体を撮影
することのできる近距離撮影用レンズ系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a close-range photographing lens system capable of photographing objects from an infinite distance to an extremely close distance.

従来、マイクロレンズまたはマイクロレンズと呼ばれる
近距離撮影用レンズは、種々実用に供きれているが、未
だ十分なものではなかった。これらのレンズは比較的近
距離にある物体に対して最良の性能が得られるよう設計
されてはいるものの撮影倍率が大きくなるに従って結像
性能が劣化することは避けられなかつ几。この定め、撮
影倍率が等倍となるような近距離の物体に対して、優れ
た結俄性能を維持する定めには収差補正用の専用アタッ
チメントレンズをレンズ本体に装着しなけれ#″l′な
らな2)%つた。まt従来のもののFナンバーはせいぜ
い3.5程度で常用レンズとしては明るさの点f))ら
いっても物足りないものであった。
2. Description of the Related Art Hitherto, various close-range photography lenses called microlenses or microlenses have been put into practical use, but they have not yet been sufficiently developed. Although these lenses are designed to provide the best performance for objects at relatively close distances, it is inevitable that the imaging performance will deteriorate as the magnification increases. According to this rule, in order to maintain excellent focusing performance for objects at close distances where the photographing magnification is 1x, a special attachment lens for aberration correction must be attached to the lens body. 2) The F number of the conventional lens was around 3.5 at most, which was unsatisfactory even in terms of brightness as a regular lens.

不発明の目的は大口径であって、しがも無限遠がら極め
て近距離の物体までの撮影領域において、常に優れ定結
像性能を有する近距離撮影用レンズを提供することにあ
る。
The object of the invention is to provide a lens for close-range photography, which has a large aperture and always has excellent constant imaging performance in the photographing range from infinite distance to extremely close objects.

本発明の近距離撮影用レンズは、正の屈折力を有する前
群と、同じく正の屈折力を有する後群と、両群の間に設
けられた絞りとからなり、無限遠物体から近距離物体へ
の合焦に際して、両群の空気間隔を増大させつつ両群を
共に物体側へ移動させるごとく構成されている。
The close-range photography lens of the present invention is composed of a front group having a positive refractive power, a rear group also having a positive refractive power, and a diaphragm provided between both groups, and is capable of shooting short distances from an object at infinity. When focusing on an object, both groups are moved toward the object while increasing the air gap between the two groups.

本発明は、いわゆる間隔修正の採用により、正の2群か
らなるレンズ系の近距離撮影状態での新たな収差補正の
手法を確立したものである。本発明では近距離撮影時に
両群の空気間隔、即ちいわゆる絞り間隔が大きくなる九
め、絞りが後群と一体に設けられる場合には、入射瞳が
物体からエリ遠くへ移動しレンズ系へ入射する光束の光
軸となす角度が小さくなるので収差補正が容易となる。
The present invention establishes a new method of correcting aberrations in a close-range photographing state of a lens system consisting of two positive groups by employing so-called interval correction. In the present invention, when shooting at close range, the air gap between both groups, that is, the so-called diaphragm gap, increases. If the diaphragm is provided integrally with the rear group, the entrance pupil moves far away from the object and enters the lens system. Since the angle between the light beam and the optical axis becomes smaller, aberration correction becomes easier.

ま几、絞りが前群と一体に設けられる場合には、射出瞳
が像から遠ざ力)す、レンズ系を出射する光束の角度が
小ざくなり、この場合でも収差補正が容易である。この
ため前後各群の屈折力配分、すなわち、みかけの明るさ
の配分を適当にバランスさせることにより、複雑なレン
ズ系とせずに至近距離時の収差悪化を少くすることがで
きる。絞りを挾んだ正の屈折力を有する2つのレンズ群
からなるレンズ系としては、ガウス型のものが典型的で
あるが、このようなタイプのレンズ系を大口径比化する
とともに十分長いバックフォーカスを得ようとする場合
には、前群の屈折力が後群の屈折力より著しく弱くなる
傾向にある。大口径比化する場合には各レンズが厚くな
り、バックフォーカスが短くなってしまう。このため無
限遠物体の撮影状態で十分なバックフォーカスを得る友
めには、前群の屈折力を弱めなければならない。このこ
とは物体から出−72+元束が前群であまり収斂されな
いことを意味し、物体が近距離にあるほど前群からの射
出光は発散することになる。この光束は後群で受は継が
れることとなり、後群の屈折力及び明るさの増大が要求
されるが、諸収差を良好に補正し得るととぐ*a!する
ことは非常に難しい。この之め、従来のこの種の大口径
比レンズよりも前群の屈折力を強め、可能な限り前群の
負担を大きくしておくことが必要である。このようにす
れば至近距離において後群での収差補正の負担が軽減さ
れることとなり、至近距離の場合でも物体から出た光束
を前群で収斂光束になる状態で使用することができる。
When the aperture is provided integrally with the front group, the exit pupil is moved away from the image, and the angle of the light beam exiting the lens system becomes small, making it easy to correct aberrations even in this case. Therefore, by appropriately balancing the distribution of refractive power between the front and rear groups, that is, the distribution of apparent brightness, it is possible to reduce aberration deterioration at close range without creating a complicated lens system. A Gaussian type lens system is typical as a lens system consisting of two lens groups with positive refractive power sandwiching an aperture, but this type of lens system has a large aperture ratio and a sufficiently long back lens. When trying to obtain focus, the refractive power of the front group tends to be significantly weaker than the refractive power of the rear group. When increasing the aperture ratio, each lens becomes thicker and the back focus becomes shorter. Therefore, in order to obtain sufficient back focus when photographing objects at infinity, the refractive power of the front group must be weakened. This means that the −72+ element flux emitted from the object is not converged much in the front group, and the closer the object is, the more the light emitted from the front group diverges. This light flux is passed on to the rear group, which requires an increase in refractive power and brightness, but it is possible to satisfactorily correct various aberrations*a! very difficult to do. For this reason, it is necessary to make the refractive power of the front group stronger than that of conventional large aperture ratio lenses of this type, and to increase the load on the front group as much as possible. In this way, the burden of aberration correction on the rear group is reduced at close range, and even at close range, the light beam emitted from the object can be used as a convergent light beam in the front group.

しかし、前群の屈折力が強くなり過ぎると前群での収差
補正が困難になるので、最至近距離で物体からの光束が
わずかながら発散光束となって前群を射出する程度に留
めることが望ましいO 以上のごとき本発明によるレンズ系の特性からして、以
下の1うな条件金満tすことが望ましい。
However, if the refractive power of the front group becomes too strong, it becomes difficult to correct aberrations in the front group, so it is possible to keep the light beam from the object at the closest distance to a slightly divergent beam that exits the front group. Desirable O Considering the characteristics of the lens system according to the present invention as described above, it is desirable that the following condition is satisfied.

1.6〈戸(2,4(1) f。1.6〈door(2,4(1) f.

1.5(−(礼5(2) ここでfrri全系の合成焦点距離、fl s J’2
はそれぞれ前群と後群の焦点距離を表わす。
1.5(-(Rei5(2)) Here, the composite focal length of the entire frri system, fl s J'2
represent the focal lengths of the front group and the rear group, respectively.

(1)式の条件は前群に対する屈折力の適切な配分を現
記するものである。この条件の下限を超えると、前群の
屈折力が強くなりすぎて無限遠撮影状態においてバック
フォーカスを十分長くすることが難しくなるとともに、
無限遠物体の撮影状態と至近距離物体の撮影状態での球
面収差の変動が著しくなる。この補正の友めには前群を
複雑な構成とせざるを得ない。他方、上限を超えると後
群への屈折力の負担が相対的に強くなりすき′るtめ、
至近距離での球面収差が著しく発生し補正が難しくなる
。後群の屈折力を強めることは前述し九ごとく大口径比
化するためには有効であるが、至近距離物体に対しては
不利であり、本発明のごとき高い撮影倍率を得るレンズ
系としては上記の範囲に定めることが望ましい。
The condition of equation (1) describes the appropriate distribution of refractive power to the front group. If the lower limit of this condition is exceeded, the refractive power of the front group will become too strong and it will be difficult to make the back focus sufficiently long in infinity shooting conditions.
The variation in spherical aberration becomes significant between the shooting state of an object at infinity and the state of shooting a close-range object. In order to achieve this correction, the front group must have a complicated structure. On the other hand, if the upper limit is exceeded, the burden of refractive power on the rear group becomes relatively strong.
Spherical aberration occurs significantly at close range and becomes difficult to correct. Increasing the refractive power of the rear group is effective for increasing the aperture ratio as described above, but it is disadvantageous for objects at close range, and it is not suitable for a lens system that achieves high imaging magnification such as the present invention. It is desirable to set it within the above range.

(2)式の条件は、前群と後群それぞれの焦点距離の比
、即ち屈折力の配分を定めるもので、(1)式の条件と
ともに、明るくしかも至近距離を短くし高い撮影倍率を
得る之めのものである。またこの条件は(1)式の条件
とによって、前後両群の間隔を現記するものである。下
限を超えると前群の屈折力が強くなりすぎて前群での諸
収差量が増大する。この補正のために前群のレンズ枚数
を増加し厚レンズ化することができるが、前群の像側主
点がレンズ内部にくい込む几め前後両群が最も接近する
無限遠物体の撮影時に両群のレンズが干渉することとな
り、十分な絞り空間を設けることが難しくなってしまう
。上限を超えると無限遠の撮影状態ではかなり明るくし
ても良好に収差補正が可能であるが、至近距離の撮影状
態では諸収差の発生が著しく艮好な補正を維持できなく
なる。
The condition of equation (2) determines the ratio of the focal lengths of the front group and the rear group, that is, the distribution of refractive power. Together with the condition of equation (1), it provides brightness, a short close-up distance, and a high imaging magnification. That's what it is. Also, this condition expresses the distance between the front and rear groups based on the condition of equation (1). If the lower limit is exceeded, the refractive power of the front group becomes too strong and the amount of various aberrations in the front group increases. To compensate for this, it is possible to increase the number of lenses in the front group and make the lens thicker, but the image-side principal point of the front group is embedded inside the lens. The lenses in the group will interfere with each other, making it difficult to provide sufficient aperture space. If the upper limit is exceeded, aberrations can be corrected satisfactorily in infinity photography conditions even if the lens is fairly bright, but in close-up photography conditions, various aberrations occur and good correction cannot be maintained.

以上のごとき前群と後群とからなるflり成において、
具体的にはいわゆる変形ガウスタイプのレンズ系を基本
構成として採用した。すなわち、゛第1実施例の光学系
断面図全示す第1図のごとく、前群Gxvi−物体側か
ら順に第1正レンズL1、物体側に凸面を同は之正メニ
スカスレンズh1同じく物体側に凸面全回は几負メニス
カスレンズL、とで構成し、後群へを負レンズと正レン
ズとの貼合せからなり物体側に凹面を同は友メニスカス
レンズL4と第2の正レンズL8とで構成し几。このよ
うなレンズ構成において、絞り間隔を何ら変えることな
く至近距離物体の撮影を行なう従来の方式においては、
球面収差が補正過剰となり、非点隔差も大きく像面湾曲
が著しくなるとともに、過大なコマ収差も発生していた
のであるが、本発明による絞り間隔の変化を行なうこと
により、これらの悪化する収差をきわめて良好に補正す
ることができる。
In the FL configuration consisting of the front group and the rear group as described above,
Specifically, a so-called modified Gauss type lens system was adopted as the basic configuration. That is, as shown in FIG. 1, which shows the entire cross-sectional view of the optical system of the first embodiment, the front group Gxvi includes, in order from the object side, the first positive lens L1, the positive meniscus lens h1 having a convex surface on the object side, and the positive meniscus lens h1, which also has a convex surface on the object side. The convex surface is composed of a negative meniscus lens L, and the rear group is composed of a negative lens and a positive lens, and the concave surface on the object side is composed of a companion meniscus lens L4 and a second positive lens L8. Configure it. In the conventional method of photographing objects at close range without changing the aperture interval in such a lens configuration,
Spherical aberrations were overcorrected, astigmatism was large, field curvature became significant, and excessive coma aberration also occurred, but by changing the aperture spacing according to the present invention, these worsening aberrations can be reduced. can be corrected very well.

ま几この工うな構成は、前群へと後群へそれぞれで色消
しの条件を満足しているため、絞り間隔を変えて各群を
大巾に移動させても色収差による像の劣化が少ない。こ
の之め、比較的簡単な構成によって極めて近距離の物体
に対してまで十分良好に諸収差を補正することができる
。ここで、前群を構成する各レンズの平均屈折率N!を 1.68 < Nt < 1.78       (3
)とし、さらに最も物体側に位置する第1正レンズL1
について、物体側の面と像側の面の曲率半径をそれぞれ
rl 、”2とするどきr意 −rl とすることが望ましい。
This unique construction satisfies the achromatic conditions for both the front and rear groups, so there is little image deterioration due to chromatic aberration even when the aperture distance is changed and each group is moved over a wide range. . Therefore, with a relatively simple configuration, various aberrations can be sufficiently corrected even for objects at extremely close distances. Here, the average refractive index N! of each lens constituting the front group! 1.68 < Nt < 1.78 (3
), and the first positive lens L1 located closest to the object side
It is desirable to set the radius of curvature of the object-side surface and the image-side surface to rl and 2, respectively.

(3)式の条件の下限を超えて前群の屈折率が小さくな
ると、(1)式及び(2)式で定められる前群としての
屈折力を負担するために各レンズ面の曲率が強くなり、
諸収差、特に高次の球面収差の発生が著しくなり、至近
距離での補正が難しくなる。一方この条件の上限を超え
ると、前群内での色消しを行なう九めに負レンズの屈折
率が高くなる傾向を生じ、ペッツバール和が正に過大と
なり、像面湾曲の増大をも之らす。ま几(4)式の条件
は、最至近距離における高次の球面収差を良好に補正す
る之めのものであり、またレンズ系を大口径比にするほ
ど至近距離で著しく発生する負の歪曲収差ヲ精正するt
めのものである。上記の構成による本レンズ系では、エ
リ近距離の物体に対して、絞り間隔を大きくすることに
よって非点隔差を小さく抑え、像面の平坦性を保つこと
は可能であるが、これに反して負の歪曲収差が著しくな
る傾向にある。この几め無限遠物体に対しである程度正
の歪曲収差を許容することが望ましく、歪曲収差の補正
に最も大きな役割を持つ第1正レンズL1の形状を(4
)式のごとくいわゆるシエイプファクターに工って定め
tものである。この条件の下限を超えるとコマ収差の発
生が大きくなり、上限を超えると負の歪曲収差が増大し
、他の取分に工り良好に補正することが難しくなる。
When the refractive index of the front group decreases beyond the lower limit of the condition in equation (3), the curvature of each lens surface increases to bear the refractive power of the front group determined by equations (1) and (2). Become,
Various aberrations, especially higher-order spherical aberrations, occur significantly, making it difficult to correct them at close range. On the other hand, if the upper limit of this condition is exceeded, the refractive index of the negative lens that performs achromatization in the front group tends to increase, the Petzval sum becomes positively excessive, and the curvature of field increases. vinegar. The condition of equation (4) is intended to satisfactorily correct high-order spherical aberration at the closest distance, and the larger the aperture ratio of the lens system, the more significant negative distortion occurs at the closest distance. Correct aberrations
It's a special thing. In this lens system with the above configuration, it is possible to suppress the astigmatism difference and maintain the flatness of the image plane by increasing the aperture distance for objects at close distances, but on the other hand, Negative distortion tends to become significant. It is desirable to allow a certain degree of positive distortion for this narrowed object at infinity, and the shape of the first positive lens L1, which plays the largest role in correcting distortion aberration, is
) is determined using the so-called shape factor. If the lower limit of this condition is exceeded, the occurrence of comatic aberration increases, and if the upper limit is exceeded, negative distortion aberration increases, making it difficult to correct other factors satisfactorily.

以下1本発明による近距離撮影用レンズ系の実施例につ
いて説明する@ 第1図に示し次第1実施例は前述し念ごときいわゆる変
形ガウスタイプを採用し几もので、前記4つの条件を全
て満足するごとく構成されている。第1図(α)は本実
施例の無限遠物体撮影時の状態であり、最至近距離物体
撮影時の状態を第1図(b)に示し友。ここでは、絞り
を後群と一体に移動するごとく構成している。本実施例
の諸元を表1に示し、諸収差図を第2図に示し几。第2
図(α)は物体距離(レンズ系の最前レンズ面から物体
までの距離ン4=ωの場合、第2図ψ)#:を物体距離
d・= 164,194、撮影倍率β冨−1,0の場合
の諸収差を示す。ま次第2図0には4=■及びβ=−1
,0のそれぞれの場合の球面収差の色収差及び倍率の色
収差を示す。Fナンバー2.8とかなり明るいレンズ系
でありながら、等倍においても、色収差は勿論各駅差と
も極めて良好な補正状四Vc維持されていることが分る
An embodiment of a lens system for close-range photography according to the present invention will be described below. As shown in FIG. It's nicely structured. FIG. 1(α) shows the state when photographing an object at infinity in this embodiment, and FIG. 1(b) shows the state when photographing an object at the closest distance. Here, the aperture is configured to move together with the rear group. The specifications of this example are shown in Table 1, and various aberration diagrams are shown in Fig. 2. Second
Figure (α) shows the object distance (distance from the frontmost lens surface of the lens system to the object when n4 = ω, ψ in Figure 2) #: object distance d = 164,194, photographing magnification β - 1, Various aberrations in the case of 0 are shown. 4 = ■ and β = -1 in Madashi 2 Figure 0
, 0, the chromatic aberration of spherical aberration and the chromatic aberration of magnification are shown. Although it is a fairly bright lens system with an F number of 2.8, it can be seen that even at the same magnification, an extremely good correction of 4 Vc is maintained for not only chromatic aberration but also for each station difference.

表 1 (第1実施例) 焦点距離f=ioo、o  Fナンバー礼8画角2ω=
42.92゜ ct、 :可変 物体距離d6=cc+のときcL6= 13.301物
体距離do” 164.194即ち撮影倍率β=−1,
0のどきd6= 29,773 絞りは後群G、の最前レンズ面の前方5.818の位置 f、= 208,824 fx= 115.797 第2実施例i−j第3図(α)、(6)に示すごとく前
述した第1実施例の構成における前群中の正メニスカス
レンズL2と負メニスカスレンズL3との間に比較的弱
い屈折力を有し物体側に凸面を向けた正メニスカスレン
ズLzs f設け。
Table 1 (First Example) Focal length f = ioo, o F number 8 Angle of view 2ω =
42.92°ct, :When variable object distance d6=cc+, cL6=13.301 object distance do" 164.194, that is, photographing magnification β=-1,
0 Throat d6 = 29,773 The diaphragm is at the front 5.818 position f of the frontmost lens surface of the rear group G, = 208,824 fx = 115.797 2nd Example i-j Figure 3 (α), As shown in (6), a positive meniscus lens having a relatively weak refractive power and having a convex surface facing the object side between the positive meniscus lens L2 and the negative meniscus lens L3 in the front group in the configuration of the first embodiment described above. Lzs f provided.

前群での収差補正をより良好にしたものである。第3図
(α) fl−tcoo = cry、第3図(h)F
i cLo =+209,4β=−0.7143のそれ
ぞれの状態を示す。
This allows better correction of aberrations in the front group. Figure 3 (α) fl-tcoo = cry, Figure 3 (h) F
The respective states of i cLo =+209 and 4β=-0.7143 are shown.

本実施例の諸元を表2に示し、do=■及びdo” 2
09.438、β=−0,7143の時の諸収差をそれ
ぞれ第4図@)、第4図(b)に示す。
The specifications of this example are shown in Table 2, and do=■ and do''2
Various aberrations when β=09.438 and β=−0,7143 are shown in FIG. 4 @) and FIG. 4(b), respectively.

Fナンバー2.0と大口径比でありながら最至近距離で
も諸収差が良好に補正されていることが分る。
It can be seen that although the lens has an F number of 2.0 and a large aperture ratio, various aberrations are well corrected even at the closest distance.

表  2  (第2実施例) 焦点距離7=100.OFナンバー2.0画角2ω=3
2.13゜ 4=可変 物体距離do= ooのときd、= 13,710物体
距離do” 209,438即ち撮影倍率β=−0,7
143のとき(tg=32,377絞りi−、j後群G
1の最前レンズ面のn1丁方5,333ので111rf
Table 2 (Second Example) Focal length 7=100. OF number 2.0 angle of view 2ω = 3
2.13゜4 = Variable object distance do = When oo, d = 13,710 object distance do'' 209,438, that is, photographing magnification β = -0,7
143 (tg=32,377 aperture i-, j rear group G
1 front lens surface n1 square 5,333 so 111rf
.

fI =2 0 4,0 0 0 fz=  1 0 7,6 9 2 第3実施例は第5図@)、(b))に示すごとく、前述
し次第2実施例の構成における正メニスカスレンズL2
mの代りに負レンズと正レンズとの貼合せからなる負レ
ンズL23  を設け、前群における色消しをエリ良好
に行なうとともに他の収差補正能力も高め友ものである
。第2実施例と同様Fナンバー2.0のものが可能とな
つ7toWJ5図(z) u do = ω、第5図C
h)はdo=205.696、β=−0,7143のそ
れぞれの状態を示す。本実施例の諸元を表3に示し、d
o=ω及びβ=−0,7143の時の諸収差をそれぞれ
第6図(α)、第6図(A)に示す。
fI = 2 0 4, 0 0 0 fz = 1 0 7, 6 9 2 As shown in Fig. 5 @) and (b)), the third embodiment is a positive meniscus lens L2 in the configuration of the second embodiment as described above.
In place of m, a negative lens L23 consisting of a negative lens and a positive lens is provided to achieve excellent achromatization in the front group and to improve the ability to correct other aberrations. As in the second embodiment, an F number of 2.0 is possible. 7toWJ5 Figure (z) u do = ω, Figure 5C
h) indicates the respective states of do=205.696 and β=-0,7143. The specifications of this example are shown in Table 3, and d
Various aberrations when o=ω and β=−0,7143 are shown in FIG. 6(α) and FIG. 6(A), respectively.

表 3 (第3実がり例) 焦点距離f−=100.OFナンバー2.0画角2ω=
32.13゜ 4=可変 物体距離d6=coのとき4= 11,086物体距離
d−o= 205,696即ち撮影倍率β=−0,71
43のとき4= 29,753絞りは後群Glの最前レ
ンズ面の前方5,333の位置 fl=204,000 fz= 107,692 以上のごとぐ、本発明によれば、補助的なレンズを何ら
付加することなく、シかも構成の簡単なレンズでありな
がら、大口径比で極めて近距離の物体撮影に際しても良
好な収差補正状態を維持するレンズ系が達成され念。
Table 3 (Third fruiting example) Focal length f-=100. OF number 2.0 angle of view 2ω =
32.13°4=When variable object distance d6=co 4=11,086 object distance do=205,696, that is, photographing magnification β=-0,71
43, 4 = 29,753 The aperture is located 5,333 in front of the frontmost lens surface of the rear group Gl fl = 204,000 fz = 107,692 As described above, according to the present invention, the auxiliary lens is We hope to have achieved a lens system that maintains good aberration correction even when photographing objects at extremely close distances with a large aperture ratio, even though it is a simple lens without any additions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の光学系断面図で(α)は
無限遠物体撮影時の状態であり(h)は最至近距離物体
撮影時の状態である。 第2図は第1図の諸収差図で@)は物体距離do=の、
<b>n物体距離do= 164.194、撮影倍率β
=−i、o、(C) u CLo =■、β=−1,0
の場合の諸収差を示す。  − 第3図は本発明の第2実施例の光学系断面図で(L:L
)rtz 4= Co、(h)l’t d−o= 20
9,438、β=−0,7143のそれぞれの状態であ
る。 第4図d第3図の諸収差図で(α)は4=ω、(h)は
β=−0,7143%(Lo= 209.438の場合
の諸収差を示す。 第5図は第3実施例の光学系断面図で、(α)けcL6
=oo、(lI)はd−o= 205,696、β=−
0,7143の状態である。 第6図は第5図の諸収差図で、(a)tid−o=ω、
(h)ばdo=205,696、β=−0,7143の
場合の諸収差を示す。 〔主要部分の符号の説明〕 第1図 (吾9 畔 第2 図 (0−)  σ。、〜 球面収外    ′4L桑収差 歪曲り父性 」収差(
8)         〆り=−イO第2図 (C) 諒■硅     色卒0ρq又荒 矛4図 (σ) 球面収竺   4■i又塵  歪曲収差  順収二け)
/S’=−0,741L5 、、+ 竺 トロ 手続補正書 昭和61年12月15日
FIG. 1 is a sectional view of an optical system according to a first embodiment of the present invention, in which (α) shows the state when photographing an object at an infinite distance, and (h) shows the state when photographing an object at the closest distance. Figure 2 is a diagram of various aberrations in Figure 1, and @) is the object distance do =
<b>n object distance do = 164.194, photographing magnification β
=-i, o, (C) u CLo =■, β=-1,0
The various aberrations in the case of - Figure 3 is a sectional view of the optical system of the second embodiment of the present invention (L:L
) rtz 4= Co, (h) l't d-o= 20
9,438 and β=-0,7143. Figure 4 d In the aberration diagram in Figure 3, (α) shows the various aberrations when 4 = ω, and (h) shows the various aberrations when β = -0,7143% (Lo = 209.438. In the cross-sectional view of the optical system of Example 3, (α) ke cL6
=oo, (lI) is d−o= 205,696, β=−
The state is 0,7143. Figure 6 is a diagram of various aberrations in Figure 5, (a) tid-o=ω,
(h) shows various aberrations when do=205,696 and β=-0,7143. [Explanation of symbols of main parts] Fig. 1 (A9 Fig. 2 (0-) σ., ~ Spherical aberration '4L Mulberry aberration Distorted paternity 'Aberration (
8) 〆ri=-iO Fig. 2 (C) Ryo ■ 硅 color gradation 0 ρq Matara 4 Fig. (σ) Spherical convergence 4 ■ i Mata dust Distortion aberration Normal convergence 2 digits)
/S'=-0,741L5 ,,+ Toro procedural amendment December 15, 1985

Claims (1)

【特許請求の範囲】 1、正の屈折力を有する前群と、同じく正の屈折力を有
する後群と、前記両群の間に設 けられた絞りとからなり、無限遠物体から 近距離物体への合焦に際して、前記両群の 空気間隔を増大させつつ両群を共に物体側 へ移動させることを特徴とする近距離撮影 用レンズ系。 2、特許請求の範囲第1項記載の近距離撮影用レンズに
おいて、 全系の合成焦点距離をf、前記前群及び 後群の焦点距離をそれぞれf_1、f_2とするとき 1.6<f_1/f<2.4 1.5<f_1/f_2<2.5 なる条件を満足することを特徴とするもの。
[Claims] 1. Consisting of a front group having a positive refractive power, a rear group also having a positive refractive power, and a diaphragm provided between the two groups, it is possible to move from an object at infinity to an object at a short distance. 1. A lens system for close-up photography, characterized in that when focusing on a subject, both groups are moved toward the object side while increasing an air gap between the two groups. 2. In the lens for short-distance photography according to claim 1, when the composite focal length of the entire system is f, and the focal lengths of the front group and the rear group are f_1 and f_2, respectively, 1.6<f_1/ It is characterized by satisfying the following conditions: f<2.4 1.5<f_1/f_2<2.5.
JP27092286A 1986-11-15 1986-11-15 Lens system for short range photographing Granted JPS62143011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27092286A JPS62143011A (en) 1986-11-15 1986-11-15 Lens system for short range photographing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27092286A JPS62143011A (en) 1986-11-15 1986-11-15 Lens system for short range photographing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10087378A Division JPS5528038A (en) 1978-08-21 1978-08-21 Lens system for close distance photographing

Publications (2)

Publication Number Publication Date
JPS62143011A true JPS62143011A (en) 1987-06-26
JPH0252244B2 JPH0252244B2 (en) 1990-11-13

Family

ID=17492859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27092286A Granted JPS62143011A (en) 1986-11-15 1986-11-15 Lens system for short range photographing

Country Status (1)

Country Link
JP (1) JPS62143011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264172A (en) * 2006-03-28 2007-10-11 Pentax Corp Intermediate telephoto lens system
US8040613B2 (en) 2007-03-05 2011-10-18 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
JP2014026184A (en) * 2012-07-30 2014-02-06 Ricoh Imaging Co Ltd Large-aperture lens system
CN108089298A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264172A (en) * 2006-03-28 2007-10-11 Pentax Corp Intermediate telephoto lens system
US8040613B2 (en) 2007-03-05 2011-10-18 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
JP2014026184A (en) * 2012-07-30 2014-02-06 Ricoh Imaging Co Ltd Large-aperture lens system
CN108089298A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens

Also Published As

Publication number Publication date
JPH0252244B2 (en) 1990-11-13

Similar Documents

Publication Publication Date Title
US4260223A (en) Lens system for photographing objects from infinity to a very short distance
JPH06130291A (en) Standard lens
JP4187311B2 (en) Medium telephoto lens
JP3964533B2 (en) Medium telephoto lens
JPS6113206B2 (en)
JPH0123763B2 (en)
JPS6148686B2 (en)
JPH0713704B2 (en) Wide-angle lens
US4435049A (en) Telephoto lens system
US4348085A (en) Inverted telephoto type wide angle lens
JPS623928B2 (en)
JPH0423763B2 (en)
JPS5820009B2 (en) Large-diameter ultra-wide-angle photographic lens
JPS62143011A (en) Lens system for short range photographing
JPH04250408A (en) Small-sized super wide-angle lens
JPH0763996A (en) Super-wide visual field eyepiece lens
JPS6048014B2 (en) wide field eyepiece
JPS6358324B2 (en)
JPH0850238A (en) Wide angle lens
JPH04181910A (en) Compact high variable power zoom lens
JPS6112246B2 (en)
US4396256A (en) Large aperture ratio, long focus lens
JP3500473B2 (en) Wide-angle lens
JPH0718972B2 (en) Large aperture ratio photographic lens
JPH0574806B2 (en)