JPH0115814B2 - - Google Patents
Info
- Publication number
- JPH0115814B2 JPH0115814B2 JP55165242A JP16524280A JPH0115814B2 JP H0115814 B2 JPH0115814 B2 JP H0115814B2 JP 55165242 A JP55165242 A JP 55165242A JP 16524280 A JP16524280 A JP 16524280A JP H0115814 B2 JPH0115814 B2 JP H0115814B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- gas
- flow rate
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 124
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000012041 precatalyst Substances 0.000 claims description 14
- 239000007789 gas Substances 0.000 description 69
- 229910010413 TiO 2 Inorganic materials 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 238000005259 measurement Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/0015—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
- F02D35/0023—Controlling air supply
- F02D35/0038—Controlling air supply by means of air pumps
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】
本発明は自動車用エンジンやその他の燃焼装置
の排気の空燃比を例えば試験台上においてきわめ
て精密に計測する超精密の空燃比計に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-precise air-fuel ratio meter that measures the air-fuel ratio of exhaust gas from an automobile engine or other combustion device very accurately, for example, on a test stand.
今日の社会においては自動車エンジンを始めと
する各種の燃焼装置からの排気中に含まれる有害
成分を極力低減することが求められている。この
要請に応えるために点火時期、EGRを始めとす
る各種調節が行なわれているが、それ等の内でも
空燃比の調節はその根幹を成すものといえる。従
つて、整備工場や研究部門等で空燃比を測定する
機会が多い。一般にエンジン等の燃焼装置におい
ては理論空燃比近傍で燃焼させるのが高出力であ
り、しかも排気中の有害成分も少なく良好な場合
が多い。それ故、多くの場合には理論空燃比で燃
焼するように設計される。 In today's society, there is a need to reduce as much as possible harmful components contained in exhaust from various combustion devices including automobile engines. Various adjustments are being made to meet this demand, including ignition timing and EGR, but among these adjustments, air-fuel ratio adjustment can be said to be the most fundamental. Therefore, there are many opportunities to measure the air-fuel ratio at maintenance shops, research departments, and the like. In general, in combustion devices such as engines, combustion near the stoichiometric air-fuel ratio provides high output, and in many cases, there are few harmful components in the exhaust gas. Therefore, in many cases they are designed to burn at a stoichiometric air-fuel ratio.
しかしながら、実際には様々な原因で空燃比の
ずれが起るので計測したり、調整したりする必要
が生ずる。 However, in reality, deviations in the air-fuel ratio occur due to various causes, so it becomes necessary to measure and adjust the air-fuel ratio.
近年のエンジン制御の高度化、特に触媒を用い
たものなどでは触媒の特性が空燃比に対して極め
て鋭敏なため非常に高精度の制御が要求される。
それ故、空燃比計測にも高精度のものが必要にな
つてきた。 Engine control has become more sophisticated in recent years, especially those using catalysts, which require extremely high precision control because the characteristics of the catalyst are extremely sensitive to the air-fuel ratio.
Therefore, there is a need for highly accurate air-fuel ratio measurements.
しかしながら、従来品では要求された高精度を
出すことができないという悩みがあつた。 However, there was a problem that conventional products could not achieve the required high precision.
上記の如き排気の空燃比計測を行なうのに、こ
れ迄は非分散赤外吸収式(NDIR)の分析計を応
用した空燃比計を用いられる場合が多かつた。 In order to measure the air-fuel ratio of exhaust gas as described above, until now, air-fuel ratio meters based on non-dispersive infrared absorption (NDIR) analyzers have often been used.
例えばCO2、CO、HCの3成分濃度をそれぞれ
の赤外式分析計で測定し、計算式を用いて空燃比
を求める方式がある。但し、その計算を手計算で
行なつていては即時性が失なわれ、連続的な空燃
比計測に追従するのが困難なので、計算機を内蔵
して自動的に計算を行なわせ、直接的に空燃比出
力を表示するようにしたものである。その他にも
サンプリングしたガスに一定比率の空気を混入
し、CO、HC、H2等を酸化してCO2(H2O)に変
換し、CO2濃度と空燃比をほぼ直線的な関係に導
き、赤外分析計でCO2濃度を測定し、それを空燃
比に変換して表示する方式のものである。 For example, there is a method in which the concentrations of the three components CO 2 , CO, and HC are measured using infrared analyzers, and the air-fuel ratio is determined using a calculation formula. However, if the calculations are done manually, immediacy is lost and it is difficult to keep up with continuous air-fuel ratio measurements. It is designed to display the air-fuel ratio output. In addition, a certain ratio of air is mixed into the sampled gas, and CO, HC, H2 , etc. are oxidized and converted to CO2 ( H2O ), creating a nearly linear relationship between CO2 concentration and air-fuel ratio. This method measures the CO 2 concentration with an infrared analyzer, converts it into an air-fuel ratio, and displays it.
上記と類似の方法としてサンプリングしたガス
に一定比率の空気を混入し、CO、HC、H2等を
酸化してCO2(H2O)に変換し、余剰のO2濃度と
空燃比をほぼ直線的な関係に導き、O2濃度を測
定し、それを空燃比に変換して表示する方式のも
のもある。又、O2濃度測定には通常磁気式のも
のが多いが、ジルコニア等のイオン導電体を用い
た酸素濃淡電池式のものが用いられているものも
ある。 A method similar to the above is to mix a certain ratio of air into the sampled gas, oxidize CO, HC, H 2 , etc. and convert it to CO 2 (H 2 O), reducing the excess O 2 concentration and air-fuel ratio to approximately There is also a method that derives a linear relationship, measures the O 2 concentration, and converts it into an air-fuel ratio and displays it. Further, most O 2 concentration measurements are usually performed using a magnetic method, but some use an oxygen concentration battery method using an ionic conductor such as zirconia.
その他にも酸化物半導体の抵抗が空燃比に依存
して変化するのを利用し、抵抗を測定して空燃比
を求めるような試みも知られている。このタイプ
のものは文献には出ているが未だ市販されてはい
ないようである。 In addition, attempts are also known to utilize the fact that the resistance of an oxide semiconductor changes depending on the air-fuel ratio, and measure the resistance to determine the air-fuel ratio. Although this type of product has been reported in the literature, it does not appear to be commercially available yet.
以上のように、従来、各種の方式の空燃比計が
知られてはいたが、それ等の空燃比計の精度は3
〜5〔%〕程度である。 As mentioned above, various types of air-fuel ratio meters have been known in the past, but the accuracy of these air-fuel ratio meters is 3.
It is about 5%.
空燃比の測定範囲が広く、かつ、空燃比の変化
範囲が広い場合や、空燃比の微少な変化ではエン
ジン諸特性に顕著な変化が生じない場合や、空燃
比制御自体がそれ程精密にできない場合等におい
ては上記の精度で間に合う場合も多い。 When the air-fuel ratio measurement range is wide and the air-fuel ratio change range is wide, when minute changes in the air-fuel ratio do not cause noticeable changes in engine characteristics, or when the air-fuel ratio control itself cannot be very precise. In many cases, the above accuracy is sufficient.
しかしながら、最近の排気中の有害成分低減の
要請に応えて登場した触媒を用いて有害成分の浄
化を図るシステム等ではこれ迄とはいささか趣を
異にしている。それは下記の理由による。 However, in response to recent demands for reducing harmful components in exhaust gas, systems that use catalysts to purify harmful components are somewhat different from conventional systems. This is due to the following reasons.
(1) 触媒の浄化率は例え1〔%〕以内の空燃比変
化に対しても敏感に変化する。(1) The purification rate of the catalyst changes sensitively even if the air-fuel ratio changes within 1%.
(2) 触媒を高浄化率領域で働らかせるべく、高精
度空燃比制御方法が開発され、実用されている
(例えばEFI+三元触媒+O2センサ制御のも
の)。(2) High-precision air-fuel ratio control methods have been developed and put into practice in order to make the catalyst work in a high purification rate range (for example, EFI + three-way catalyst + O 2 sensor control).
これ等のシステムにおける空燃比の微少な変化
を取扱うのには従来の空燃比計の精度は不充分で
ある。それ故、実際に空燃比に僅かな差があるた
めに有害成分の排出量が大幅に異なるような場合
があつても、差が僅小過ぎて空燃比計の精度を下
回り、空燃比の差異として有効に検出することの
不可能な場合もあり、計測実験や解析に著るしい
障害となつていた。 The accuracy of conventional air-fuel ratio meters is insufficient to handle minute changes in air-fuel ratio in these systems. Therefore, even if there is a case where the emissions of harmful components differ significantly due to a slight difference in the air-fuel ratio, the difference is so small that it is less than the accuracy of the air-fuel ratio meter, and the difference in air-fuel ratio In some cases, it has been impossible to effectively detect this phenomenon, which has been a significant hindrance to measurement experiments and analyses.
これ等の問題では従来の空燃比計の具体的な構
成の個々について問題点を指滴する訳にはいかな
いが、要するに精度不足という一言につきる。 Regarding these problems, it is not possible to point out the problems with each specific configuration of the conventional air-fuel ratio meter, but the short answer is that the accuracy is insufficient.
上記の如く、従来の空燃比計の数10倍もの高精
度が必要になるという高度な要求に対しては、従
来法の改良で対応することは到底不可能と考えら
れる。 As mentioned above, it is considered that it is completely impossible to meet the high demands for accuracy, which is several tens of times higher than that of conventional air-fuel ratio meters, by improving conventional methods.
そこで、本発明は、従来の空燃比計では到底得
られなかつたような高精度の空燃比計を実現する
ことを目的とするものである。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to realize an air-fuel ratio meter with a high degree of accuracy that could never be achieved with conventional air-fuel ratio meters.
この発明は従来技術の改良によるものではな
く、独自の考え方に基づくものであり、その基本
的な考え方は次のとおりである。即ち、一般にサ
ンプリングした被測定ガスの空燃比が理論空燃比
から外れているとすると燃料又は酸素(空気)の
いずれかが不足していると見なすことができる。
それ故、いずれのガスが不足しているか又、どれ
だけの割合で不足しているかを知ることができれ
ば、不足分を補充することによつて理論空燃比の
ガスにすることが可能である。そして補充したガ
スの種類と混入率から被測定ガスの空燃比を演算
して表示するのが本発明の基本的な考え方であ
る。 This invention is not based on an improvement on the prior art, but is based on an original idea, and the basic idea is as follows. That is, if the air-fuel ratio of the sampled gas to be measured deviates from the stoichiometric air-fuel ratio, it can be considered that either fuel or oxygen (air) is insufficient.
Therefore, if it is possible to know which gas is deficient and at what rate, it is possible to make the gas at the stoichiometric air-fuel ratio by replenishing the deficient gas. The basic idea of the present invention is to calculate and display the air-fuel ratio of the gas to be measured from the type and mixing rate of the replenished gas.
第1図は本発明の構成の概略を説明するための
ブロツク図である。 FIG. 1 is a block diagram for explaining the outline of the configuration of the present invention.
図に示すように、本発明の主な要素としては、
一定流量供給部1、反応器2、O2センサ3、演
算部4、補充ガス制御部5、および空燃比表示部
6がある。一定流量供給部1は、被測定ガス系よ
り一定流量を吸気して反応器以降へガスを供給す
るものである。反応器2は、被測定ガスと補充ガ
スを合わせてよく混合させると共に反応を促進さ
せて化学平衡に近い状態にするものである。O2
センサ3は被測定ガスを補充ガスを合わせたガス
が燃料リツチ(以下、単にリツチ(Rich)と略
す)か燃料リーン(以下、単にリーン(Lean)
と略す)かを検出するための検出器である。 As shown in the figure, the main elements of the invention are:
There are a constant flow rate supply section 1, a reactor 2, an O 2 sensor 3, a calculation section 4, a supplementary gas control section 5, and an air-fuel ratio display section 6. The constant flow rate supply section 1 takes in a constant flow rate from the gas system to be measured and supplies the gas to the reactor and subsequent parts. The reactor 2 is used to thoroughly mix the gas to be measured and the replenishment gas and promote the reaction to bring the gas to a state close to chemical equilibrium. O2
Sensor 3 detects whether the gas to be measured and the supplementary gas are either fuel rich (hereinafter simply referred to as rich) or fuel lean (hereinafter simply referred to as lean).
This is a detector for detecting whether
なお、ここでO2センサについて若干説明を加
える。酸化物半導体の抵抗や酸素濃淡電池の起電
力が理論空撚比で急変する現象が知られている。
第2図にはN型酸化物半導体の空燃比に対する抵
抗の特性を示す。同様に第3図にはP型酸化物半
導体の特性、第4図には酸素濃淡電池の特性を示
す。これ等のセンサでは抵抗や起電力が酸素分圧
の対数(log10Po2)に比例して変化する現象と充
分に反応した(化学平衡に到つた)ガスは理論空
燃比でlog10Po2が急変する現象の組み合わせによ
つて第2図〜第4図の如く理論空燃比で抵抗や起
電力が急変する特性になつている。これ等の理論
空燃比で特性が急変するセンサをO2センサと呼
んでいる。 Here, we will add some explanation about the O 2 sensor. It is known that the resistance of oxide semiconductors and the electromotive force of oxygen concentration batteries suddenly change with the theoretical air twist ratio.
FIG. 2 shows the resistance characteristics of the N-type oxide semiconductor with respect to the air-fuel ratio. Similarly, FIG. 3 shows the characteristics of a P-type oxide semiconductor, and FIG. 4 shows the characteristics of an oxygen concentration battery. In these sensors, the resistance and electromotive force change in proportion to the logarithm of the oxygen partial pressure (log 10 Po 2 ), and gas that has sufficiently reacted (reached chemical equilibrium) has a stoichiometric air-fuel ratio of log 10 Po 2 Due to the combination of phenomena in which the resistance and electromotive force suddenly change, the resistance and electromotive force suddenly change at the stoichiometric air-fuel ratio as shown in FIGS. 2 to 4. These sensors whose characteristics change suddenly at the stoichiometric air-fuel ratio are called O 2 sensors.
演算部4は、O2センサ信号からリツチかリ
ーンか判定する、補充すべきガス種類、流量を
決定する、被測定ガスの空燃比を演算する、と
いう3つの機能を有するものである。補充ガス制
御部5は、演算部4の出力に従つて不足ガスを供
給するものである。空燃比表示部6は演算部4で
演算された空燃比を表示する部分である。 The calculation unit 4 has three functions: determining whether the gas is rich or lean based on the O 2 sensor signal, determining the type and flow rate of the gas to be replenished, and calculating the air-fuel ratio of the gas to be measured. The supplementary gas control section 5 supplies insufficient gas according to the output of the calculation section 4. The air-fuel ratio display section 6 is a section that displays the air-fuel ratio calculated by the calculation section 4.
さて、第1図の動作の概略は次のようになる。
一定流量供給部1によつて、被測定ガスから一定
流量のガスを吸引して来る。仮りにこの流量が変
動するようであれば後の空燃比演算部で定数とし
て与えるかわりに変数として与えれば良い。そし
て、上記の被測定ガスと補充ガス制御部5からの
補充ガスを合わせたものを反応器2へ導き、良く
混合すると共に充分に反応を促進させる。そのガ
スをO2センサ3へ導く。演算部4ではO2センサ
3のリツチ側での出力とリーン側での出力の中間
の値を基準値として設定しておき、O2センサ3
の出力がその基準値よりも大なるか小なるかによ
つてリツチかリーンか判定する。その判定結果を
受けて、補充ガス制御部5は、リツチであると判
定された場合には酸素(又は空気)を徐々に増量
して理論空燃比になる迄増量する。リーンと判定
された場合には燃料を徐々に増量して理論空燃比
になる迄増量する。このようにして、酸素又は燃
料の増減によつて、O2センサ3のガスが理論空
燃比に近い状態になれば、演算部4は空燃比を演
算して空燃比表示部6に与え、空燃比表示部6は
それを表示する。 Now, the outline of the operation shown in FIG. 1 is as follows.
A constant flow rate supply section 1 sucks a constant flow rate of gas from the gas to be measured. If this flow rate fluctuates, it may be given as a variable instead of being given as a constant in the later air-fuel ratio calculating section. Then, a combination of the gas to be measured and the replenishment gas from the replenishment gas control section 5 is introduced into the reactor 2, where they are thoroughly mixed and the reaction is sufficiently promoted. The gas is guided to the O 2 sensor 3. In the calculation unit 4, the intermediate value between the output on the rich side and the output on the lean side of the O 2 sensor 3 is set as a reference value, and the O 2 sensor 3
It is determined whether the output is rich or lean depending on whether the output is larger or smaller than the reference value. In response to the determination result, the replenishment gas control unit 5 gradually increases the amount of oxygen (or air) until it reaches the stoichiometric air-fuel ratio if it is determined that the gas is rich. If it is determined that the fuel is lean, the amount of fuel is gradually increased until the stoichiometric air-fuel ratio is reached. In this way, when the gas in the O 2 sensor 3 reaches a state close to the stoichiometric air-fuel ratio due to an increase or decrease in oxygen or fuel, the calculation unit 4 calculates the air-fuel ratio and provides it to the air-fuel ratio display unit 6 to display the air-fuel ratio. The fuel ratio display section 6 displays it.
なお、上記の説明においては補充ガスとして酸
素又は燃料の双方を可変にした場合について説明
したが、この他に補充ガスの一方を常時一定流量
流しておき、他の一方のガスのみ可変にするやり
方もできる。この場合には流量制御器が一系統で
済むこと、それに伴なつて演算器も一系統分の演
算をすれば済むこと等装置を簡略化し、低コスト
化を図る上で有利である。 In addition, in the above explanation, we have explained the case where both oxygen and fuel are made variable as the supplementary gas, but there is also a method in which one of the supplementary gases is always flowed at a constant flow rate and only the other gas is made variable. You can also do it. In this case, only one system of flow rate controllers is required, and accordingly, calculations for one system of computing devices are required, which is advantageous in terms of simplifying the device and reducing costs.
次に本発明の一実施例について図面により詳細
に説明する。 Next, one embodiment of the present invention will be described in detail with reference to the drawings.
第5図は実施例の構成を示すものである。この
装置では被測定燃焼系の排気系より一定流量(2
〜6〔/min〕)のガスを吸引する。そのために
ポンプ7および定流量制御弁8および流量計9を
用いる。なお、除煤のためフイルタ10も設け
る。 FIG. 5 shows the configuration of the embodiment. This device uses a constant flow rate (2
~6 [/min]) gas is sucked. For this purpose, a pump 7, a constant flow control valve 8 and a flow meter 9 are used. Note that a filter 10 is also provided for removing soot.
補充ガスとしてはH2とO2を用いている。そし
てH2流量は一定値(20〜60〔cm3/min〕)でO2流
量を可変する方式を採つている。H2を一定流量
流すためにガスボンベ11、減圧弁12、定流量
制御弁13および流量計14を設ける。 H 2 and O 2 are used as supplementary gases. A method is adopted in which the H 2 flow rate is a constant value (20 to 60 [cm 3 /min]) and the O 2 flow rate is varied. A gas cylinder 11, a pressure reducing valve 12, a constant flow control valve 13, and a flow meter 14 are provided to flow H 2 at a constant flow rate.
O2流量を可変するためにガスボンベ15、減
圧弁16、流量検知制御器17(例えば大倉電気
のマスフローコントローラMFC−1)を設ける。 In order to vary the O 2 flow rate, a gas cylinder 15, a pressure reducing valve 16, and a flow rate detection controller 17 (for example, Okura Electric's mass flow controller MFC-1) are provided.
被測定ガスと補充ガス(H2、O2)を混合した
ガスを前置触媒18に導き反応させる。前置触媒
18の容器の大きさは約10〔cm2〕であり、前置触
媒18を反応促進作用に適する温度(400〜900
〔℃〕)に加熱しておく。そのために温度検出部1
9(例えば熱電対)と温度調節器20およびヒー
タ21を設ける。 A gas mixture of the gas to be measured and supplementary gas (H 2 , O 2 ) is introduced into the precatalyst 18 and reacted. The size of the container for the precatalyst 18 is approximately 10 [cm 2 ], and the precatalyst 18 is heated at a temperature suitable for reaction promotion (400 to 900°C).
Heat to [℃]). For this purpose, the temperature detection section 1
9 (for example, a thermocouple), a temperature regulator 20, and a heater 21.
被測定ガスとしては一般に燃焼済の排気が供給
されるのが常であるが、場合によつては着火ミス
等で未着火の混合気が供給される恐れもある。そ
の場合には前置触媒18で大きな発熱が起るので
触媒および容器の耐熱性および熱の放散性につい
ては充分に配慮しておく必要がある。前置触媒1
8で反応を済ませたガスをO2センサ22に供給
する。O2センサ22としてはTiO2センサを用い
る。TiO2センサの動作に適する温度400〔℃〕〜
900〔℃〕に加熱すべく、温度検出部23(熱電
対)、温度調節器24(大倉電気EC−76A04)、
ヒータ25を設けておく。 Although combusted exhaust gas is generally supplied as the gas to be measured, in some cases, there is a possibility that unignited air-fuel mixture may be supplied due to an ignition error or the like. In that case, a large amount of heat is generated in the precatalyst 18, so it is necessary to give sufficient consideration to the heat resistance and heat dissipation of the catalyst and the container. Precatalyst 1
The gas that has undergone the reaction in step 8 is supplied to the O 2 sensor 22. A TiO 2 sensor is used as the O 2 sensor 22. Temperature suitable for operation of TiO 2 sensor: 400 [℃] ~
In order to heat to 900 [℃], temperature detection section 23 (thermocouple), temperature controller 24 (Okura Electric EC-76A04),
A heater 25 is provided.
TiO2の抵抗は第2図に示すように理論空燃比
に於て抵抗が急変する特性を有する。抵抗変化幅
が103.5〜104.5位と極めて広いので対数変換型の抵
抗計26(実願昭55−69848号として出願済)を
開発してこの用途に充てた。基準抵抗設定部27
の基準抵抗値としては、リツチな側での抵抗とリ
ーンな側での抵抗の中間の値を基準として設定す
る。そしてリツチリーン判定部28はTiO2セン
サ22の抵抗値が基準抵抗値より高い場合にはリ
ーンと判定し、低い場合にはリツチと判定する。
そして、リツチと判定したときにはO2流量を増
量するように、逆にリーンと判定したときには
O2流量を減量するような極性に積分器29を働
らかせる。積分器29の出力は酸素流量値fo2に
対応している。前記の対数変換型抵抗計26、基
準抵抗設定部27、リツチリーン判定部28、お
よび積分器29よりなる部分を総称として第1演
算部という。そして、その第1演算部の出力、即
ち、積分器29の出力で流量検知制御器17を介
してO2流量を加減する。この場合、積分のゲイ
ンを適切に選ぶ必要がある。積分のゲインが高す
ぎると流量制御状態が振動的になると共に空燃比
の振幅が大きくなつて、空燃比の平均値と理論空
燃比の一致が悪くなり誤差増大の原因となる。一
方、ゲインを余りにも小さくし過ぎると応答性が
悪化するので、高精度が得られ、かつなるべく速
応性の得られるゲインにするべきである。 As shown in FIG . 2, the resistance of TiO 2 has a characteristic that the resistance changes suddenly at the stoichiometric air-fuel ratio. Since the resistance change range is extremely wide, about 10 3.5 to 10 4.5 , a logarithmic conversion type resistance meter 26 (filed as Utility Application No. 1983-69848) was developed and used for this purpose. Reference resistance setting section 27
The reference resistance value is set to a value midway between the resistance on the rich side and the resistance on the lean side. The rich lean determination unit 28 determines that the resistance value of the TiO 2 sensor 22 is lean when it is higher than the reference resistance value, and determines that it is rich when it is lower.
Then, when it is determined to be rich, the O 2 flow rate is increased, and conversely, when it is determined to be lean, the O 2 flow rate is increased.
The integrator 29 is operated with a polarity that reduces the O 2 flow rate. The output of the integrator 29 corresponds to the oxygen flow value fo 2 . The portion consisting of the logarithmic conversion type resistance meter 26, reference resistance setting section 27, rich lean determining section 28, and integrator 29 is collectively referred to as a first calculation section. Then, the O 2 flow rate is adjusted via the flow rate detection controller 17 using the output of the first calculation section, that is, the output of the integrator 29. In this case, it is necessary to appropriately select the integral gain. If the integral gain is too high, the flow rate control state becomes oscillatory and the amplitude of the air-fuel ratio increases, causing poor agreement between the average value of the air-fuel ratio and the stoichiometric air-fuel ratio, causing an increase in error. On the other hand, if the gain is made too small, the responsiveness will deteriorate, so the gain should be set so as to provide high accuracy and quick response as much as possible.
この最適ゲインについては前置触媒の量、温
度、性状やガス流量および流量検知制御器の応答
性によつても影響されるので簡単な式などで明示
することはいささか困難である。 This optimum gain is affected by the amount, temperature, and properties of the precatalyst, the gas flow rate, and the responsiveness of the flow rate detection controller, so it is somewhat difficult to specify it using a simple formula.
さて、ガス量を加減してTiO2等の理論空燃比
検出センサ22へ到るガスの空燃比を理論空燃比
と一致させたとすると、そのときの流量と被測定
ガスの関係を計算して表示する必要がある。その
ために計算する空燃比計算部30(第2演算部)
と、その結果を表示する空燃比表示部31を設け
る。 Now, if the air-fuel ratio of the gas reaching the stoichiometric air-fuel ratio detection sensor 22 such as TiO 2 is made to match the stoichiometric air-fuel ratio by adjusting the gas amount, the relationship between the flow rate and the gas to be measured at that time is calculated and displayed. There is a need to. Air-fuel ratio calculation unit 30 (second calculation unit) that calculates for this purpose
and an air-fuel ratio display section 31 that displays the results.
次に流量対空燃比の関係を説明する。 Next, the relationship between flow rate and air-fuel ratio will be explained.
被測定ガスの空燃比A/Fを理論空燃比(A/
F)stpichで正規化して空気過剰率λを定義する。 The air-fuel ratio A/F of the gas to be measured is calculated from the stoichiometric air-fuel ratio (A/F).
F) Define excess air ratio λ by normalizing with stpich .
λ=A/F/(A/F)stpich ………(1)
このときの余剰酸素濃度O2exは
O2ex=0.21(1−1/λ) ………(2)
但し、上式において0.21は空気中の酸素濃度を
示す。 λ=A/F/(A/F) stpich ......(1) The excess oxygen concentration O 2ex at this time is O 2ex = 0.21 (1-1/λ)......(2) However, in the above equation, 0.21 indicates the oxygen concentration in the air.
サンプリングガス量をFsとすると余剰酸素流量
fo2exは
fo2ex=Fs・O2ex …………(3)
一方、混入している水素ガス流量をfH2、混入
している酸素ガス流量をfo2とする。 If the sampling gas amount is F s , the surplus oxygen flow rate is
fo 2ex is fo 2ex = F s・O 2ex …………(3) On the other hand, let f H2 be the flow rate of the mixed hydrogen gas, and fo 2 be the flow rate of the mixed oxygen gas.
理論空燃比になつているという条件から
fo2ex+fo2=fH2/νH2 ………(4)
νi=(fi/fo2)stpich ………(5)
但し、fi:任意成分燃料流量
νi:O2流量に対し、化学量論比になる燃料流量の
比
(4)式より
fo2ex=fH2/νH2−fo2 ………(6)
(3)式より
O2ex=fo2ex/Fs ………(7)
=fH2/υH2−fo2/Fs ………(8)
(2)式より
O2ex/0.21=1−1/λ ………(9)
1/λ=1−O2ex/0.21 ………(10)
λ=1/1−O2ex/0.21 ………(11)
(11)式に(8)式を代入して
λ=1/1−(fH2/υH2−fo2)/0.21FS………
(12)
(1)式より
A/F=λ・(A/F)stpich ………(13)
(13)式に(12)式を代入して
A/F=(A/F)stpich/1−fH2/υH2−fo2/
0.21FS………(14)
燃料としてH2を用いる場合にはνH2=2であ
る。又、COを用いる場合も同様にνCO=2であ
る。 From the condition that the air-fuel ratio is at the stoichiometric air-fuel ratio, fo 2ex + fo 2 = f H2 / ν H2 ………(4) ν i = (f i / fo 2 ) stpich ………(5) However, f i : arbitrary component Fuel flow rate ν i : Ratio of fuel flow rate that achieves stoichiometric ratio to O 2 flow rate From formula (4) fo 2ex = f H2 /ν H2 −fo 2 ......(6) From formula (3) O 2ex =fo 2ex /F s ……(7) =f H2 /υ H2 −fo 2 /F s ……(8) From formula (2), O 2ex /0.21=1−1/λ ……(9 ) 1/λ=1−O 2 ex /0.21 ………(10) λ=1/1−O 2 ex/0.21 ………(11) Substituting formula (8) into formula (11), λ=1 /1−(f H2 /υ H2 −fo 2 )/0.21F S ………
(12) From equation (1), A/F=λ・(A/F) stpich ......(13) Substituting equation (12) into equation (13), A/F=(A/F) stpich / 1−f H2 /υ H2 −fo 2 /
0.21F S (14) When H 2 is used as fuel, ν H2 =2. Similarly, when CO is used, ν CO =2.
理論空燃比を中心に制御する系では理論空燃比
からのずれは±2%位に収まる場合が多い。この
仮定によれば(14)式の分母の第2項は±0.02の
範囲で可変できればよいことになる。それ故
fo2/0.21Fsの変化範囲は0.04程度でよい。fo2の
流量計測の精度が2.5%で行なえたとすると、
A/Fの精度は0.04×2.5〔%〕=0.1〔%〕となり極
めて高精度の計測が行なえることになる。これは
最近の高精度計測の要求に対して充分満足できる
良好な値である。 In a system that controls mainly the stoichiometric air-fuel ratio, the deviation from the stoichiometric air-fuel ratio is often within about ±2%. According to this assumption, the second term in the denominator of equation (14) only needs to be variable within the range of ±0.02. Therefore
The variation range of fo 2 /0.21F s may be about 0.04. Assuming that the accuracy of fo 2 flow rate measurement is 2.5%,
The accuracy of A/F is 0.04×2.5 [%] = 0.1 [%], which means that extremely high precision measurement can be performed. This is a good value that fully satisfies the recent demands for high precision measurement.
なお、(4)式〜(14)式においては補充用の燃料
としてH2を用い、酸化剤として100〔%)O2を用
いる場合についての式を示したが、任意組成の燃
料と任意濃度のO2を用いる場合には次式の如く
変換するだけで良い。 In addition, in equations (4) to (14), the equations are shown for the case where H 2 is used as the replenishing fuel and 100 [%] O 2 is used as the oxidizing agent, but fuel of arbitrary composition and arbitrary concentration When using O 2 of , just convert as shown in the following equation.
(12)式より
λ=1/1−fi/υi−CX・fOX/0.21FS………(15
)
但し、Cx:補充用酸化ガス中の酸素濃度
fox:補充用酸化ガス流量
(14)式より
A/F=(A/F)stpich/1−fi/υi−CX・f
OX/0.21FS
次に、第7図は第5図の実施例の一部を詳細に
示すものである。 From equation (12), λ=1/1−fi/υi−C X・f OX /0.21F S ………(15
) However, C x : Oxygen concentration in the replenishing oxidizing gas fo x : Flow rate of the replenishing oxidizing gas From equation (14), A/F=(A/F) stpich /1-fi/υi-C X・f
OX /0.21F S Next, FIG. 7 shows a part of the embodiment shown in FIG. 5 in detail.
TiO2センサ22は対数変換型抵抗計26に接
続されている。TiO2センサの抵抗は前述のよう
に空燃比変化に伴つて103.5〜104.5倍もの大きな割
合で変化するので、レンジ切換なしで連続的に精
度良くその抵抗を測定するために対数変換型の抵
抗計26を用いている。第6図は、その対数変換
型抵抗計26の被測定抵抗(TiO2センサの抵抗)
と出力電圧との関係を示すもので、標準抵抗とし
て105〔Ω〕、ゲインを1〔V/decode〕に設定し
た場合の特性である。なお、TiO2センサ22は
無極性なので接続方向は無関係である。対数変換
型抵抗計26の出力はコンパレータCの正(+)
入力へ入力され、コンパレータCの負(−)入力
には反転付ポテンシヨメータP1の出力が入力さ
れる。その反転付ポテンシヨメータP1には+10V
が入力され、係数aは、TiO2センサ雰囲気がリ
ツチのとき対数変換抵抗計26の出力電圧と、リ
ーンのときの出力電圧の中間値にP1の出力がな
るように設定する。なお、上記中間の値が負値の
場合を想定しているが、仮に正値の場合にはP1
に入力する+10Vを−10Vに変更する必要があ
る。 The TiO 2 sensor 22 is connected to a logarithmic conversion resistance meter 26 . As mentioned above, the resistance of the TiO 2 sensor changes at a large rate of 10 3.5 to 10 4.5 times as the air-fuel ratio changes, so a logarithmic conversion type sensor is used to measure the resistance continuously and accurately without changing the range. A resistance meter 26 is used. Figure 6 shows the resistance to be measured by the logarithmic conversion type resistance meter 26 (resistance of the TiO 2 sensor).
This shows the relationship between the output voltage and the output voltage, and shows the characteristics when the standard resistance is set to 10 5 [Ω] and the gain is set to 1 [V/decode]. Note that since the TiO 2 sensor 22 is non-polar, the connection direction is irrelevant. The output of the logarithmic conversion type resistance meter 26 is the positive (+) of the comparator C.
The negative (-) input of the comparator C receives the output of the inverting potentiometer P1 . +10V for its reversing potentiometer P 1
is input, and the coefficient a is set so that the output of P1 becomes an intermediate value between the output voltage of the logarithmic conversion resistance meter 26 when the TiO 2 sensor atmosphere is rich and the output voltage when it is lean. It is assumed that the above intermediate value is a negative value, but if it is a positive value, P 1
It is necessary to change the +10V input to -10V.
このように接続することにより、コンパレータ
C28は負入力を基準にして正入力の方の電圧が
高いとき、即ちTiO2センサの雰囲気がリーンの
とき、ONになり、リレーRをONにする。逆に、
リツチのとき、コンパレータCはOFFになり、
リレーRをOFFにする。 By connecting in this manner, comparator C28 is turned ON and relay R is turned ON when the voltage of the positive input is higher with respect to the negative input, that is, when the atmosphere around the TiO 2 sensor is lean. vice versa,
When rich, comparator C turns OFF,
Turn off relay R.
又、−10〔V〕を反転アンプ付ポテンシヨメータ
P2の入力に接続し、その出力はリレーの常時開
(NO)端子および加算器Aの−1倍入力に接続
する。加算器Aの出力はリレーの常時閉(NC)
端子に接続する。反転アンプ付ポテンシヨメータ
P2の設定値bは積分のゲインを決めるもので前
述のようにすこぶる重要な値なので、安定性、精
度、応答性の兼ね合いが丁度良くなるように加減
する必要がある。加算器Aの役目はリツチのとき
に積分器Iの出力も上昇させて、流量検知制御器
17を介してO2流量を増量させるものである。
ゲインとして−1倍を用いるのは減量時のレート
と増量時のレートを等しくするためであるが、も
し異なつたレートで制御する必要が生じた場合に
は加算器Aを反転アンプ付ポテンシヨメータPに
置き換えればできる。 Also, -10 [V] is a potentiometer with an inverting amplifier.
P2 is connected to the input of P2, and its output is connected to the normally open (NO) terminal of the relay and the -1 times input of adder A. The output of adder A is the normally closed relay (NC).
Connect to the terminal. Potentiometer with inverting amplifier
The set value b of P 2 determines the integral gain and is a very important value as mentioned above, so it must be adjusted so that the balance between stability, precision, and responsiveness is just right. The role of the adder A is to also increase the output of the integrator I when the fuel is rich, thereby increasing the O 2 flow rate via the flow rate detection controller 17.
The reason for using -1 as the gain is to equalize the rate when decreasing and increasing the rate, but if it is necessary to control at different rates, adder A can be replaced with a potentiometer with an inverting amplifier. You can do this by replacing it with P.
リレーの共通端子(COM)も積分器Iの−1
入力に接続する。積分器Iの出力は流量検知制御
器17に接続する。この流量検知制御器17は正
の電圧入力によつて働くようになつている。 The common terminal (COM) of the relay is also -1 of the integrator I.
Connect to input. The output of the integrator I is connected to a flow rate detection controller 17. This flow rate detection controller 17 is adapted to operate with a positive voltage input.
積分器Iの出力は酸素流量値fo2に対応してお
り、空燃比計算部30へ入力する。空燃比A/F
の計算は(14)式を用いて行なう。fo2以外の全
ての値は定数として与えておく。 The output of the integrator I corresponds to the oxygen flow rate value fo 2 and is input to the air-fuel ratio calculation unit 30. Air fuel ratio A/F
is calculated using equation (14). All values except fo 2 are given as constants.
fH2やFが変動するような場合にはそれ等を定
数として与えずに変数としてfo2と共に計算部3
0へ入力しなければならない。空燃比A/Fの計
算値は空燃比表示部31へ導き表示する。 If f H2 or F fluctuates, do not give them as constants, but use them as variables together with fo 2 in calculation unit 3.
Must be entered as 0. The calculated value of the air-fuel ratio A/F is led to the air-fuel ratio display section 31 and displayed.
なお、実施例ではO2センサ22として抵抗変
化型酸化物を用い、TiO2センサの例を挙げたが
これ以外のN型酸化物半導体Nb2Os、CeO2セン
サでもTiO2と同様に使用できる。 In the example, a variable resistance oxide was used as the O 2 sensor 22, and a TiO 2 sensor was given as an example, but other N-type oxide semiconductors such as Nb 2 Os and CeO 2 sensors can also be used in the same way as TiO 2 . .
又、NiO、CoO等のP型酸化物半導体の場合に
は第3図のようにN型酸化物半導体と逆の特性に
なるので、リツチ側での抵抗とリーン側での抵抗
の中間の抵抗を基準抵抗として設定し、基準抵抗
より低い場合をリーン、高い場合をリツチと判定
する。 In addition, in the case of P-type oxide semiconductors such as NiO and CoO, the characteristics are opposite to those of N-type oxide semiconductors as shown in Figure 3, so the resistance is between the resistance on the rich side and the resistance on the lean side. is set as a reference resistance, and when it is lower than the reference resistance, it is judged as lean, and when it is higher, it is judged as rich.
O2センサとしては抵抗変化型の他に酸素濃淡
電池型(例えばジルコニア等)のものでも良く、
その空燃比対起電力特性は第3図のようになつて
いる。起電力を計測する場合には対数変換型抵抗
計26を用いずに計測アンプ等の直流増幅器を用
いる。又、この種センサの場合には基準抵抗とい
うのはなくなるのでリーン側での起電力とリツチ
側での起電力の中間の値を基準電圧として設定
し、起電力が基準電圧より低ければリーン、高け
ればリツチと判定する。 The O 2 sensor may be of the variable resistance type or of the oxygen concentration battery type (for example, zirconia, etc.).
Its air-fuel ratio versus electromotive force characteristics are as shown in FIG. When measuring the electromotive force, a DC amplifier such as a measurement amplifier is used instead of the logarithmic conversion type resistance meter 26. Also, in the case of this type of sensor, there is no reference resistance, so the value between the electromotive force on the lean side and the electromotive force on the rich side is set as the reference voltage, and if the electromotive force is lower than the reference voltage, it is lean. If it is high, it is judged as rich.
流量制御するガスを酸化ガス側に選んだが、逆
に燃料流量を可変にして酸化ガス流量を一定にし
ても良い。この場合には当然リーンの判定のとき
に流量を増し、リツチの判定のときに流量を減少
するように制御しなければならない。 Although the oxidizing gas side is selected as the gas whose flow rate is to be controlled, the oxidizing gas flow rate may be kept constant by making the fuel flow rate variable. In this case, it is natural that the flow rate must be controlled to increase when determining lean and to decrease when determining rich.
又、実施例では前置触媒18とTiO2センサ2
2を別々に設けて各々に加熱、温度制御している
が、これ以外にもTiO2センサのハウジング内に
前置触媒18を組み込むのも有効である。例えば
アルミナを担体として白金(Pt)やロジウム
(Rh)、パラジウム(Pd)等の貴金属の塩化物等
を単独又は混合して担持後焼成したような物を2
〜3〔g〕センサの周囲に設置することにより前
置触媒の役目を果させる方法である。この方法は
前置触媒部でのガスの遅れ時間を軽減すると共に
前述の未着火混合気を吸入したりしたような場合
にも反応するガス量自体を少なくできるため、発
熱の絶体量を少なくできてより安全になる等のメ
リツトが認められる。 In addition, in the embodiment, the precatalyst 18 and the TiO 2 sensor 2
In addition to this, it is also effective to incorporate the precatalyst 18 into the housing of the TiO 2 sensor. For example, chlorides of noble metals such as platinum (Pt), rhodium (Rh), palladium (Pd), etc. are supported on alumina as a carrier, singly or in combination, and then fired.
-3 [g] This is a method in which the catalyst is placed around the sensor to serve as a pre-catalyst. This method reduces the delay time of gas in the precatalyst section, and also reduces the amount of gas that reacts even when unignited air-fuel mixture is inhaled, thereby reducing the absolute amount of heat generated. It is recognized that there are merits such as improved safety and improved safety.
実施例では、混合ガスの反応を促進するための
前置触媒を用いる例を示したが、精度を多少犠牲
にしてでも応答速度を重視する場合には、TiO2
センサ自体に担持又はその他の方法で添加する触
媒量を増す等して、反応能力を高めて、前置触媒
を省略するものも有効である。 In the example, an example was shown in which a precatalyst was used to promote the reaction of the mixed gas, but if the response speed is important even at the cost of some accuracy, TiO 2
It is also effective to increase the reaction capacity by increasing the amount of catalyst supported on the sensor itself or added by other methods, and omitting the pre-catalyst.
又、流量制御のための別法として酸化性ガスお
よび燃料ガスの双方を制御できるようにしてお
き、過剰側のガスはZeroにして、不足側のガス
だけ流す様な方法も考えられる。この方法では補
充用ガスの消費量を最小限に押えることができる
利点がある。 Further, as another method for controlling the flow rate, it is possible to control both the oxidizing gas and the fuel gas, setting the excess gas to zero, and allowing only the insufficient gas to flow. This method has the advantage of minimizing the amount of supplementary gas consumed.
TiO2センサOの温度制御を精密に行なう必要
があるときは、熱電対埋め込み型のTiO2センサ
を用いても良いが、その場合には抵抗測定系と温
度測定系の干渉が生ずるのを避けるため、熱電対
を自動冷接点補償器を経由して計測アンプやその
他の絶縁アンプを通じて、絶縁を得た後で温度調
節器に導けば良い。 When it is necessary to precisely control the temperature of the TiO 2 sensor O, a thermocouple-embedded TiO 2 sensor may be used, but in that case, avoid interference between the resistance measurement system and the temperature measurement system. Therefore, the thermocouple can be insulated by passing through an automatic cold junction compensator, a measurement amplifier, or another isolation amplifier, and then led to the temperature controller.
又、本実施例よりも更に低コスト化を図ろうと
するには対数変換型の抵抗測定器を用いて抵抗値
を電圧に直すかわりに、TiO2センサを直列抵抗
を経由して定電圧源と接地の間に接続して分圧方
式で電圧に直す方法やあるいは定電流源に接続し
て抵抗と比例した電圧に直す方法もある。これ等
の方法でも直列抵抗や定電圧源の値、定電流値を
適切に選んでリツチ側での抵抗とリーン側での抵
抗の中間の抵抗にて判定が行なえるようにすれば
良い。 In addition, in order to further reduce the cost compared to this example, instead of converting the resistance value into voltage using a logarithmic conversion type resistance measuring device, the TiO 2 sensor could be connected to a constant voltage source via a series resistor. There is also a method of connecting it between ground and converting it to a voltage using a voltage division method, or a method of connecting it to a constant current source and converting it to a voltage proportional to the resistance. With these methods, it is sufficient to appropriately select the series resistance, constant voltage source value, and constant current value so that the determination can be made at a resistance intermediate between the resistance on the rich side and the resistance on the lean side.
又、空燃比計として全般に説明したが空気過剰
率計としても良く、(14)式を用いるかわりに(12)
式を用い、あるいは(16)式を用いるかわりに
(15)式を用いるだけで良い。 Also, although it was generally explained as an air-fuel ratio meter, it may also be used as an excess air ratio meter, and instead of using formula (14), (12)
or just use equation (15) instead of equation (16).
次に、第8図ないし第11図について、本発明
空燃比計の実際の測定結果について説明する。 Next, actual measurement results of the air-fuel ratio meter of the present invention will be explained with reference to FIGS. 8 to 11.
第8図は、本発明空燃比計(図では本装置とい
う)の評価に使用した燃焼装置(以下燃焼装置と
略称する)の概略を示すブロツク図で、i−
C4H10と空気を混合し、流量比演算装置を経て燃
焼装置のλの計測系へ導き、一方O2センサを経
て本装置へ導いてλを測定した。 FIG. 8 is a block diagram schematically showing a combustion device (hereinafter referred to as the combustion device) used for evaluating the air-fuel ratio meter of the present invention (referred to as the present device in the figure).
C 4 H 10 and air were mixed and led to the λ measurement system of the combustion device through a flow rate ratio calculation device, and on the other hand, to the present device through an O 2 sensor to measure λ.
燃焼装置のλを0.002ずつ3分毎にステツプ的
に変化させたとき、本装置では、第9図に示すよ
うにそのλの変化をほぼ忠実に表示した。 When the λ of the combustion device was changed stepwise by 0.002 every 3 minutes, this device displayed the change in λ almost faithfully, as shown in FIG.
またλを第10図に示すように変化させ、デイ
レイタイム{O2センサが燃料を空気の混合ガス
に触れてから空燃比が検出されるまでの遅れ時間
の、リツチ側とリーン側における平均値(O2セ
ンサではリツチ側とリーン側の遅れ時間が非対称
となり、平均値では理論空燃比は得れない。その
ため若干の補正を加える必要が生じる)に対する
補正値}を変化させた場合のλの変化を比較した
結果が第11図aである。同図において丸印はリ
ツチの側からリーンの側に変化させた(TR−
L)場合、角印はリーンの側からリツチの側に変
化させた(TL−R)場合、星印はその中間の場
合である。 In addition, by changing λ as shown in Fig. 10, the delay time {the average value of the delay time from when the O 2 sensor touches the fuel to the air mixture until the air-fuel ratio is detected, on the rich side and the lean side. (In the O 2 sensor, the delay time on the rich side and the lean side is asymmetric, and the stoichiometric air-fuel ratio cannot be obtained with the average value. Therefore, it is necessary to add some correction)} of λ The results of comparing the changes are shown in Figure 11a. In the same figure, the circles have been changed from the rich side to the lean side (TR-
In the case L), the square mark indicates a change from the lean side to the rich side (TL-R), and the star mark indicates the case in between.
また、第11図bは第10図に示すスキツプ量
を変化させたときの燃料装置のλに対する本装置
表示のλ値を示す。 Further, FIG. 11b shows the λ value displayed by the present device with respect to λ of the fuel system when the skip amount shown in FIG. 10 is changed.
第11図aおよびbからも明らかなように、測
定値が両図の対角線(破線)に極めて近いので、
本装置の測定、表示値が極めて精度の高いもので
あることがわかる。 As is clear from Figures 11a and b, the measured values are very close to the diagonal line (dashed line) in both figures, so
It can be seen that the measured and displayed values of this device are extremely accurate.
因みに、このような精度の高いものは従来提供
されていない。 Incidentally, a device with such high precision has not been provided in the past.
以上に詳述した本発明によれば、自動車用エン
ジンやその他の燃焼装置の排気の空燃比を、従来
の空燃比計では得られなかつた精密さをもつて計
測することができる。 According to the present invention described in detail above, the air-fuel ratio of exhaust gas from an automobile engine or other combustion device can be measured with precision that cannot be obtained with a conventional air-fuel ratio meter.
第1図は本発明の概略を説明するためのブロツ
ク図、第2図はN型酸化物半導体の特性を示す
図、第3図はP型酸化物半導体の特性を示す図、
第4図は酸素濃淡電池の特性を示す図、第5図は
本発明の実施例を説明するための図、第6図は対
数変換型抵抗計の特性を示す図、第7図は第6図
の一部を詳細に示す図、第8図は本発明空燃比計
の評価に使用された燃焼装置のブロツク図、第9
図はλをステツプ的に変えたときに本発明空燃比
計の追従性を示す図、第10図は測定時のλの変
化波形、第11図a,bはそれぞれデイレイタイ
ムおよびスキツプ量を変化したときの本発明空燃
比計のλ表示の状況を示す図である。
1……一定流量供給部、2……反応器、3……
O2センサ、4……演算部、5……補充ガス制御
部、6……空燃比表示部、7……ポンプ、8,1
3……定流量制御弁、9,14……流量計、10
……フイルタ、11,15……ガスボンベ、1
2,16……減圧弁、17……流量検知制御器、
18……前置触媒、19,23……温度検出部、
20,24……温度調節器、21,25……ヒー
タ、22……O2センサ、26……対数変換型抵
抗計、27……基準抵抗設定部、28……リツチ
リーン判定部、29……積分器、30……空燃比
計算部、31……空燃比表示部、P1,P2……反
転アンプ付ポテンシヨメータ、C……コンパレー
タ、A……加算器、I……積分器、R……リレ
ー。
FIG. 1 is a block diagram for explaining the outline of the present invention, FIG. 2 is a diagram showing the characteristics of an N-type oxide semiconductor, FIG. 3 is a diagram showing the characteristics of a P-type oxide semiconductor,
FIG. 4 is a diagram showing the characteristics of an oxygen concentration battery, FIG. 5 is a diagram for explaining an embodiment of the present invention, FIG. 6 is a diagram showing the characteristics of a logarithmic conversion type resistance meter, and FIG. Figure 8 is a block diagram of the combustion device used for evaluation of the air-fuel ratio meter of the present invention; Figure 9 is a diagram showing a part of the figure in detail;
The figure shows the followability of the air-fuel ratio meter of the present invention when λ is changed stepwise. Figure 10 shows the changing waveform of λ during measurement. Figures 11a and b show changes in delay time and skip amount, respectively. FIG. 3 is a diagram showing the state of the λ display of the air-fuel ratio meter of the present invention when 1... Constant flow rate supply section, 2... Reactor, 3...
O 2 sensor, 4... Calculation unit, 5... Replenishment gas control unit, 6... Air-fuel ratio display unit, 7... Pump, 8, 1
3... constant flow control valve, 9, 14... flow meter, 10
...Filter, 11, 15...Gas cylinder, 1
2, 16... pressure reducing valve, 17... flow rate detection controller,
18... Pre-catalyst, 19, 23... Temperature detection section,
20, 24... Temperature controller, 21, 25... Heater, 22... O 2 sensor, 26... Logarithmic conversion type resistance meter, 27... Reference resistance setting section, 28... Rich Lean judgment section, 29... Integrator, 30...Air-fuel ratio calculation unit, 31...Air-fuel ratio display unit, P1 , P2 ...Potentiometer with inverting amplifier, C...Comparator, A...Adder, I...Integrator, R...Relay.
Claims (1)
燃比が理論空燃比からどちらへずれているかを検
出するためのO2センサと、O2センサからの出力
をもとにして混合ガスの空燃比を理論空燃比とす
るために補充すべきガスの流量を求める第1演算
部と、その演算結果に基き補充すべきガスの流量
を制御する制御部と、補充ガス流量等をもとにし
て被測定ガスの空燃比又はそれに対応する出力を
求める第2演算部と、その第2演算部の出力を表
示する表示部とを備えた超精密空燃比計。 2 被測定ガスに補充ガスを加えた混合ガスの空
燃比が理論空燃比からどちらへずれているかを検
出するためのO2センサと、そのO2センサからの
出力をもとにして混合ガスの空燃比を理論空燃比
とするため補充すべきガスの流量を求める第1演
算部と、その演算結果に基づき補充すべきガスの
流量を制御する制御部と、補充ガス流量等をもと
にして被測定ガスの空燃比又はそれに対応する出
力を求める第2演算部と、その第2演算部の出力
を表示する表示部とを備えた超精密空燃比計にお
いて、被測定ガスに補充ガスを加えた混合ガスの
反応を促進するための前置触媒を設けたことを特
徴とする超精密空燃比計。[Claims] 1. An O 2 sensor for detecting in which direction the air-fuel ratio of a mixed gas obtained by adding supplementary gas to the gas to be measured deviates from the stoichiometric air-fuel ratio, and an O 2 sensor based on the output from the O 2 sensor. a first calculation unit that calculates the flow rate of gas to be replenished in order to bring the air-fuel ratio of the mixed gas to the stoichiometric air-fuel ratio; a control unit that controls the flow rate of gas to be replenished based on the calculation result; An ultra-precision air-fuel ratio meter comprising: a second calculation section that calculates the air-fuel ratio of a gas to be measured or an output corresponding thereto based on the above information; and a display section that displays the output of the second calculation section. 2 An O 2 sensor is used to detect which way the air-fuel ratio of the mixed gas, which is the gas to be measured and supplementary gas is added, deviates from the stoichiometric air - fuel ratio. a first calculation unit that calculates the flow rate of gas to be replenished in order to make the air-fuel ratio the stoichiometric air-fuel ratio; a control unit that controls the flow rate of gas to be replenished based on the calculation result; In an ultra-precision air-fuel ratio meter that is equipped with a second calculation section that calculates the air-fuel ratio of the gas to be measured or an output corresponding thereto, and a display section that displays the output of the second calculation section, supplementary gas is added to the gas to be measured. This ultra-precision air-fuel ratio meter is characterized by being equipped with a pre-catalyst to promote the reaction of the mixed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55165242A JPS5790148A (en) | 1980-11-26 | 1980-11-26 | Extra-precise air-fuel ratio gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55165242A JPS5790148A (en) | 1980-11-26 | 1980-11-26 | Extra-precise air-fuel ratio gauge |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5790148A JPS5790148A (en) | 1982-06-04 |
JPH0115814B2 true JPH0115814B2 (en) | 1989-03-20 |
Family
ID=15808567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55165242A Granted JPS5790148A (en) | 1980-11-26 | 1980-11-26 | Extra-precise air-fuel ratio gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5790148A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5648601A (en) * | 1994-11-14 | 1997-07-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for analyzing air/fuel ratio sensor characteristics |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3610363A1 (en) * | 1986-03-27 | 1987-10-01 | Kernforschungsz Karlsruhe | METHOD FOR CONTINUOUSLY MONITORING CONCENTRATIONS OF GASEOUS INGREDIENTS IN GAS MIXTURES, EXCEPT O (ARROW DOWN) 2 (ARROW DOWN) |
-
1980
- 1980-11-26 JP JP55165242A patent/JPS5790148A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5648601A (en) * | 1994-11-14 | 1997-07-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for analyzing air/fuel ratio sensor characteristics |
Also Published As
Publication number | Publication date |
---|---|
JPS5790148A (en) | 1982-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6828156B2 (en) | Evaluating method for NOx eliminating catalyst, an evaluating apparatus therefor, and an efficiency controlling method therefor | |
NL8001062A (en) | METHOD AND APPARATUS FOR MEASURING THE STRENGTH OF THE RATIO OF AIR AND FUEL SUPPLIED TO A COMBUSTION SYSTEM. | |
US5360266A (en) | Control and analysis circuit device for measuring reaction heat | |
WO1996026434A1 (en) | Arrangement for analysis of exhaust gases | |
KR890000342B1 (en) | System for controlling combustion and o2 in the flue gases from combustion processes | |
JP3262682B2 (en) | Air-fuel ratio sensor characteristic analyzer | |
US4844788A (en) | Wide-range air/fuel ratio sensor and detector using the same | |
JPH0115814B2 (en) | ||
Peyton Jones et al. | Potential and pitfalls in the use of dual exhaust gas oxygen sensors for three-way catalyst monitoring and control | |
CA1096197A (en) | Apparatus for measuring excess oxygen or combustibles in a gaseous sample of a combustion process | |
JP4671253B2 (en) | Combustible gas concentration measuring device | |
JPH09318572A (en) | Method and equipment for measuring component of exhaust gas | |
JP3510447B2 (en) | Gas concentration measurement method | |
JP2501643B2 (en) | Catalyst deterioration detection device | |
JPH0666788A (en) | Measuring instrument for combustion speed of city gas | |
US4095462A (en) | Device for detecting the air-fuel ratio of an internal combustion engine | |
JPS6142225B2 (en) | ||
ES2200287T3 (en) | PROCEDURE FOR THE SURVEILLANCE OF THE OPERATION AND AGING OF A CATALYTIC CONVERTER FOR A MOTOR THAT OPERATES WITH POOR MIXTURE AND SYSTEM FOR PUTTING INTO PRACTICE. | |
Cederquist et al. | Characterization of zirconia and titania engine exhaust gas sensors for air/fuel feedback control systems | |
JPS5810138Y2 (en) | Oxygen sensor performance evaluation device | |
JPH05264501A (en) | Measuring apparatus of hydrocarbon concentration | |
Haslett et al. | Equivalence ratio meter | |
JPH0114918Y2 (en) | ||
JPS6036946A (en) | Control device for air-fuel ratio | |
Ono et al. | Total-NOx sensor based on mixed-potential for detecting of low NOx concentrations |