JPS6036946A - Control device for air-fuel ratio - Google Patents

Control device for air-fuel ratio

Info

Publication number
JPS6036946A
JPS6036946A JP58145916A JP14591683A JPS6036946A JP S6036946 A JPS6036946 A JP S6036946A JP 58145916 A JP58145916 A JP 58145916A JP 14591683 A JP14591683 A JP 14591683A JP S6036946 A JPS6036946 A JP S6036946A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
oxygen
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58145916A
Other languages
Japanese (ja)
Inventor
Seishi Wataya
綿谷 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58145916A priority Critical patent/JPS6036946A/en
Publication of JPS6036946A publication Critical patent/JPS6036946A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable easy detection of whether an air-fuel ratio sensor attains activating temp. or not with a device for using the air-fuel ratio sensor of which the output changes proportionally to the air-fuel ratio and subjecting the gaseous mixture taken into an engine to feedback control by setting the reference voltage of an oxygen sensor at an adequate value after the start of the engine. CONSTITUTION:The analog value of the information on an intake air flow is converted to a digital value by an AD converter 20 while feedback control by an air-fuel ratio sensor 2 is not performed. A microprocessor 21 reads out the preprogrammed procedure and constant from an ROM 22 and operates an optimum fuel feed rate. The result of the arithmetic fed via an output interface circuit 24 to a means 15 for forming a gaseous mixture corresponds to the driving pulse width of, for example, an electromagnetic fuel injection valve provided in the means 15, by which the air-fuel ratio in the means 15 is controlled. The correction by pump current Ip is further added to the arithmetic of the open loop control in which the feedback control is not executed, in the operating state in which the feedback control is performed in accordance with the output from the sensor 2.

Description

【発明の詳細な説明】 この発明は、内燃機関等の排気ガス中の酸素濃度を測定
して空燃比を検知する装置に関するものでア)、特にイ
オン伝導性固体電解質で構成された酸素ポンプ式の空燃
比センサを用いた空燃比制御装置における空燃比センサ
の活性化を判別する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a) a device for detecting an air-fuel ratio by measuring oxygen concentration in exhaust gas of an internal combustion engine, etc., and particularly relates to an oxygen pump type device constructed of an ion-conducting solid electrolyte. The present invention relates to a method for determining activation of an air-fuel ratio sensor in an air-fuel ratio control device using an air-fuel ratio sensor.

従来よル、イオン伝導性固体電解質(例えば安定化ジル
コニア)で構成された酸素センサを用い、排気ガスの酸
素分圧と空気の酸素分圧との差によって生じる起電力の
変化によって理論空燃比での燃焼状態を検知することに
よ)、例えば自動車の機関を理論空燃比で運転するよう
に制御することは衆知の通シである。ところで、上記酸
素センサは空気と燃料との重量比率である空燃比A /
 Fが理論空燃比14,7で多る時は大きな変化出力が
得られるが他の゛運転空燃比域では出力変化がほとんど
なく、理論空燃比以外の空燃比で機関を運転する場合に
は、上記酸素センサの出力を利用することができない。
Conventionally, an oxygen sensor composed of an ion-conducting solid electrolyte (e.g. stabilized zirconia) is used to detect the stoichiometric air-fuel ratio by changing the electromotive force caused by the difference between the oxygen partial pressure of the exhaust gas and the oxygen partial pressure of the air. It is well known that, for example, an automobile engine can be controlled to operate at a stoichiometric air-fuel ratio by detecting the combustion state of the engine. By the way, the above oxygen sensor has an air-fuel ratio A/ which is the weight ratio of air and fuel.
When F is large at the stoichiometric air-fuel ratio of 14.7, a large change in output is obtained, but in other operating air-fuel ratios there is almost no change in output, and when the engine is operated at an air-fuel ratio other than the stoichiometric air-fuel ratio, The output of the oxygen sensor cannot be used.

この発明は、理論空燃比の正確な検知が困難であると言
われていた特開昭56−130649号で提案されてい
るような固体電解質酸素ポンプ式の酸素濃度測定装置を
用い正確な理論空燃比の検知はもちろんのこと、それ以
外の空燃比をも検知することができる機関の空燃比セン
サを用いて空燃比を制御するものである。以下、この発
明の一実施例について説明する。
This invention uses a solid electrolyte oxygen pump type oxygen concentration measuring device, which was proposed in Japanese Patent Laid-Open No. 130649/1983, which was said to be difficult to accurately detect the stoichiometric air-fuel ratio, to accurately detect the stoichiometric air-fuel ratio. The air-fuel ratio is controlled using an engine air-fuel ratio sensor that can detect not only the fuel ratio but also other air-fuel ratios. An embodiment of the present invention will be described below.

第1図はこの発明の一実施例を示す構成図であシ、第2
図は第1図のll−1線に泊う断面図である。図中、(
1)は機関の排気管、(2)は排気管(1)内に配設さ
れた空燃比センサである。空燃比センサ(2)は厚さが
約0.5篩の平板状のイオン伝導性固体電解質(安定化
ジルコニア)(3)の両側面にそれぞれ白金電極(41
、(5)を設けて構成された固体電解質酸素ポンプ(G
)と、この酸素ポンプ(6)と同じよりに平板状のイオ
ン伝導性固体電解質(7)の両側面にそれぞれ白金電極
(8)および(9)を設けて構成された固体電解質酸素
センサα〔と、上記酸素ポンプ(6〕と上記。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a cross-sectional view taken along line ll-1 in FIG. In the figure, (
1) is an exhaust pipe of the engine, and (2) is an air-fuel ratio sensor disposed within the exhaust pipe (1). The air-fuel ratio sensor (2) has platinum electrodes (41
, (5), a solid electrolyte oxygen pump (G
), and a solid electrolyte oxygen sensor α [ which is constructed by providing platinum electrodes (8) and (9) on both sides of a flat ion-conducting solid electrolyte (7), which is the same as the oxygen pump (6). and the above oxygen pump (6).

酸素センサ翰を0.1冑程度の微小間1111dを介し
て対向配置するための支持台aυで構成されている。
It is composed of a support stand aυ for arranging the oxygen sensor rods facing each other with a minute gap 1111d of about 0.1 mm in between.

←4は電子制御装置であシ、上記酸素センサ叫が電極(
8) 、 (9)間に発生する起電力eを抵抗Rzを介
して演算増幅器人の反転入力端子に印加し、上記演算増
幅器Aの非反転入力端子に印加されている基準電圧Vs
と上記起電力eの差異に比例した上記演算増幅器Aの出
力によルトランジスタTRを駆動して上記酸素ポンプ(
6)の電極(4)、(5)間に流すポンプ電流IPを制
御する機能を備えている。すなわち、上記起電力eを所
定値(Vs)に保つのに必要な上記ポンプ電流I’Pを
供給する作用をする。
← 4 is the electronic control unit, and the above oxygen sensor scream is the electrode (
8) and (9) Apply the electromotive force e generated between them to the inverting input terminal of the operational amplifier via the resistor Rz, and apply the reference voltage Vs applied to the non-inverting input terminal of the operational amplifier A.
The output of the operational amplifier A proportional to the difference between the electromotive force e and the electromotive force e drives the transistor TR to
6) has a function of controlling the pump current IP flowing between the electrodes (4) and (5). That is, it functions to supply the pump current I'P necessary to maintain the electromotive force e at a predetermined value (Vs).

また、ポンプ電流供給手段である直流電源Bから供給さ
れる上記ポンプ電流IPに対らした出力信号を得るため
の抵抗ROを備えている。この抵抗noは上記直流電源
Bと対応して上記ポンプ電流IPが過大に流れないよう
な所望の抵抗値が選ばれている。Cはコンデンサ、Sは
上記基準電圧VsをMlからVsに変更するための切換
装置である。
Further, a resistor RO is provided for obtaining an output signal corresponding to the pump current IP supplied from the DC power supply B serving as pump current supply means. This resistor no corresponds to the DC power supply B, and a desired resistance value is selected so that the pump current IP does not flow excessively. C is a capacitor, and S is a switching device for changing the reference voltage Vs from Ml to Vs.

以上のように構成されたこの発明の空燃比センサを国産
乗用車用2000 のガソリン機関に装着して試験した
結果を第3図に示す。過大なポンプ電流IPが流れると
上記酸素ポンプ<6)が破壊するので上記ポンプ電流I
Pは100mA以上流れないように上記直流電源Bによ
シ制限した。また基準電圧■8はV 1 =55mVと
し■2は200mVに設定して試験した結果、切換装置
Sによ)基準電圧Vs ヲVl = 55mV K し
り場合uM 3図に示す(a)の特性が得られた。また
上記切換装置Sによル上記基準電圧VBをVB=200
mVに変更すると(b)の特性が得られた。上記特性を
利用して空燃比A/Fを12〜19の広い範囲で検知し
ようとすると6)の特性では同じポンプ電流値の空燃比
点が2個所存在するので、上記ポンプ電流値のみで検知
することができない。他方(ロ)の特性では理論空燃比
14.7以下の範囲ではポンプ電流IPの変化がないの
でこの範囲での空燃比を検知することはできない。そこ
で、例えば機関運転中の空燃比を検知する場合、まず、
上記切換装置Sによル上記基準電圧VsをVzに設定す
る。そうすると上記’(b)の特性によシ、上記運転空
燃比が理論空燃比よシ小さい時はポンプ電流IPは10
0mAとなシ、理論空燃比よシ大きい時は100mAよ
シ小さい値となるので上記運転空燃比が理論空燃比よ)
小さいか大きいかの検知ができる。つぎに上記切換装置
Sによル上記基準電圧■8をVzに変更し、上記(a)
の特性によル、理論空燃比よシ小さい範囲または大きい
範囲において上記運転空燃比を検知することができる。
FIG. 3 shows the results of a test in which the air-fuel ratio sensor of the present invention constructed as described above was installed in a gasoline engine of a domestic passenger car 2000. If an excessive pump current IP flows, the oxygen pump <6) will be destroyed, so the pump current I
P was limited by the DC power source B so that it did not flow more than 100 mA. In addition, as a result of testing with the reference voltage (8) set to V 1 = 55 mV and (2) set to 200 mV, the characteristic of (a) shown in Figure 3 is obtained by the switching device S). Obtained. Further, the switching device S sets the reference voltage VB to VB=200.
When the voltage was changed to mV, the characteristics shown in (b) were obtained. If you try to detect the air-fuel ratio A/F in a wide range of 12 to 19 using the above characteristics, in the characteristic 6), there are two air-fuel ratio points with the same pump current value, so it can be detected only with the above pump current value. Can not do it. On the other hand, in the characteristic (b), since there is no change in the pump current IP in the range of the stoichiometric air-fuel ratio of 14.7 or less, the air-fuel ratio cannot be detected in this range. Therefore, for example, when detecting the air-fuel ratio during engine operation, first,
The switching device S sets the reference voltage Vs to Vz. Then, according to the characteristic '(b) above, when the operating air-fuel ratio is smaller than the stoichiometric air-fuel ratio, the pump current IP is 10.
If it is 0mA, if it is larger than the stoichiometric air-fuel ratio, it will be smaller than 100mA, so the above operating air-fuel ratio is the stoichiometric air-fuel ratio)
It can detect whether it is small or large. Next, the switching device S changes the reference voltage (8) to Vz, and the above (a)
Depending on the characteristics of the air-fuel ratio, the operating air-fuel ratio can be detected in a range smaller or larger than the stoichiometric air-fuel ratio.

なお、第3図の特性が示すように、空燃比A/Fが理論
空燃比よ)大きい範囲で、ポンプ電流IPが空燃比に比
例して変化する理由は特開昭56−130649号に記
載されている。すなわち微小−′疎部d内に導入された
排気ガスの酸素分圧を上記酸素ポンプ(6)の作用によ
シ変更することによシ、排気管(1)内を流れる排気ガ
スの酸素分圧と差異をもたせ、この酸素分圧の差異に応
じて発生する上記酸素セン+1I11の#f!、9−h
p −AtTit 9i? 桔シhスrらf←貢己酔来
ボンプ(6)に供給されるポンプ電流IPを制御する時
、このポンプ電流IPは上記排気ガス中の酸素濃度に比
例して変化するのである。そして空燃比は上記酸素濃度
にほぼ比例するので結果的に上記ポンプ電流IPは空燃
比A/Fに比例して変化するのである。ところで理論空
燃比よシ小さい範囲でポンプ電流Npが変化するのは排
気ガス中の一酸化炭素(CO)濃度に上記空燃比センサ
(2)が感応しているように考えられる。
The reason why the pump current IP changes in proportion to the air-fuel ratio in a range where the air-fuel ratio A/F is larger than the stoichiometric air-fuel ratio, as shown by the characteristics in FIG. 3, is described in JP-A-56-130649. has been done. That is, by changing the oxygen partial pressure of the exhaust gas introduced into the micro-' sparse part d by the action of the oxygen pump (6), the oxygen content of the exhaust gas flowing inside the exhaust pipe (1) can be reduced. #f! of the oxygen sensor +1I11 generated in response to the difference in oxygen partial pressure. , 9-h
p-AtTit 9i? When controlling the pump current IP supplied to the pump (6), this pump current IP changes in proportion to the oxygen concentration in the exhaust gas. Since the air-fuel ratio is approximately proportional to the oxygen concentration, the pump current IP changes in proportion to the air-fuel ratio A/F. Incidentally, the reason why the pump current Np changes in a range smaller than the stoichiometric air-fuel ratio is considered to be because the air-fuel ratio sensor (2) is sensitive to the carbon monoxide (CO) concentration in the exhaust gas.

以上述べたように、固体電解質の酸素センサQ(1と酸
素ポンプ(6)を用いて空燃比を理論空燃比および理論
空燃比以外の空燃比に制御することができるが、この空
燃比センサ(2)が第3図に示すような特性を発揮する
ことができるのは、空燃比センサ(2)の温度が所定値
(例えば500℃)以上の場合であシ、温度が低いとき
には第4図の破線ag、baに示すように特性が低下し
、正確な空燃比(A/F)を知ることはできなくなる。
As described above, the air-fuel ratio can be controlled to the stoichiometric air-fuel ratio and the air-fuel ratio other than the stoichiometric air-fuel ratio using the solid electrolyte oxygen sensor Q (1) and the oxygen pump (6). 2) can exhibit the characteristics shown in Fig. 3 only when the temperature of the air-fuel ratio sensor (2) is above a predetermined value (for example, 500°C), and when the temperature is low, the characteristics shown in Fig. 4 can be exhibited. The characteristics deteriorate as shown by the broken lines ag and ba, and it becomes impossible to know the accurate air-fuel ratio (A/F).

この発明は、機関の始動後、機関の温度が低いときに空
燃比センサの比例出力領域を使用すると、空燃比の検出
精度が低く誤差が太き(なるという不具合を防止するた
め、機関始動後は空燃比センサ(2)のポンプ電流(I
P)出力特性が理論空燃比点において反転スイッチング
するように基準電圧(v8)を設定し、機関の運転中に
ポンプ電流(IF)の値を監視し、空燃比センサ(2)
の活性化判別を行なうものである。以下、本発明の一実
施例につき図面を参照して詳細に説明する。
This invention prevents the problem that if the proportional output range of the air-fuel ratio sensor is used when the engine temperature is low after the engine has started, the air-fuel ratio detection accuracy will be low and the error will be large. is the pump current (I) of the air-fuel ratio sensor (2)
P) Set the reference voltage (v8) so that the output characteristics switch inverted at the stoichiometric air-fuel ratio point, monitor the pump current (IF) value while the engine is running, and set the air-fuel ratio sensor (2)
This is to determine the activation of. Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図において、a3はポンプ電流(Ip)を電圧レベ
ルに変換する電流電圧変換器、α4はこの変換器α四か
ら信号を受け、また混合気生成手段(1ωに信号を送る
制御装置、(161は内燃機関、(Iηは車両運転時に
閉成されるキースイッチである。なお、凶は電流電圧変
換器−のアナログ出力や吸入空気量情報をデジタル値に
変換するADコンノ4−タ、QυはROM(2つに予め
書き込まれたプログラムの手順に従って演算および論理
処理を行うマイクロプロセッサ、(ハ)はマイクロプロ
セッサ(2刀の演算値を一時的に記憶してお(RAM、
弼はマイクロプロセッサ(2υの演算および論理処理の
結果を受けて電子制御装置a2内の切換装置(3)をV
xまたはVz に切換える信号や混合気生成手段(至)
への燃料供給量または吸入空気量を制御する電気信号を
出力する出力′ インターフェース回路であシ、これら
の要素にょ〕制御装置α41カ構成される。
In FIG. 1, a3 is a current-voltage converter that converts the pump current (Ip) into a voltage level, α4 is a control device that receives a signal from this converter α4, and also sends a signal to the air-fuel mixture generating means (1ω); 161 is an internal combustion engine, (Iη is a key switch that is closed when the vehicle is running. The main character is an AD converter that converts the analog output of the current-voltage converter and intake air amount information into digital values, and Qυ ROM (2) is a microprocessor that performs arithmetic and logical processing according to the procedure of a program written in advance; (c) is a microprocessor (2) that temporarily stores the calculated values (RAM);
In response to the results of the arithmetic and logical processing of the microprocessor (2υ), the switching device (3) in the electronic control unit a2 is switched to V.
Signal to switch to x or Vz and mixture generation means (to)
The control device α41 is composed of an output interface circuit that outputs an electric signal for controlling the amount of fuel supplied or the amount of intake air to the engine.

このように構成された一実施例につき、その動作を説明
する。まず空燃比センサ(2)によるフィードバック制
御を行なわない運転状態では、吸入空気量情報のアナロ
グ値をADコンバータ(至)によルデジタル値に変換し
、マイクロプロセッサ(2刀はROM(ハ)に予めプロ
グラムされた手順および定数を読み出して最適な燃料供
給量を演算する。出力インターフェース回路(財)を経
て混合気生成手段α9に送られるこの演算結果は、混合
気生成手段αQ内に設けられた例えば電磁式燃料噴射弁
の駆動パルス幅に対応し、これによシ混合気生成手段(
15における空燃比が制御される。つぎに、空燃比セン
サ(2)の出力つtbポンプ電流CI?)に基いてフィ
ードバック制御する運転状態では、上述のフィード算に
対し、さらにこのポンプ電流(Ip) Kよる補正を付
加するが、この補正は一般にPI制御にょシ適度なリッ
プルを含んだものとなる。
The operation of one embodiment configured in this way will be explained. First, in operating conditions where feedback control by the air-fuel ratio sensor (2) is not performed, the analog value of the intake air amount information is converted to a digital value by the AD converter (2), and the analog value of the intake air amount information is converted to a digital value by the microprocessor (2) The optimum fuel supply amount is calculated by reading the pre-programmed procedure and constants.The calculation result is sent to the air-fuel mixture generating means α9 via the output interface circuit. For example, it corresponds to the driving pulse width of an electromagnetic fuel injection valve, and the mixture generating means (
The air-fuel ratio at 15 is controlled. Next, the output of the air-fuel ratio sensor (2) tb pump current CI? ), a correction based on the pump current (Ip) K is added to the feed calculation described above, but this correction generally includes a moderate amount of ripple due to PI control. .

ところで、この発明における空燃比センサ(2)の活性
化判別は次のような手順で行なわれる。すなわち、車両
の運転開始時にキースイッチaηが投入されると、第5
図のフローチャートに示したように、電子制御装置αり
内の切換スイッチ(S)は、制御装置α4の出力によっ
て基準電圧Vs=Vzに設定される。基準電圧VB=V
lのときは空燃比センサ(2)の温度が所定値以上であ
れば、第4図のbxのような特性を示すが、温度が充分
に高くないときにはbsないし紘さらに低レベルの出力
特性を示す。機関の始動後の暖機中は、空燃比センサ(
2)の温度が低いので充分な出力特性は得られずミボン
プ電流(IF)は空燃比がリッチ側の領域においてIP
Iに達しないので、基準電圧(Vs)は■1に設定され
たままであるが、温度が上昇してポンプ電流(IF)が
IPlを超えると空燃比センサ(2)が活性化されたム
のシ瑣1軒I 舅i覧雷座rVg)糾V負f鐙中くh−
第4図のalなる正規の特性が使用可能となる。
Incidentally, in the present invention, activation determination of the air-fuel ratio sensor (2) is performed in the following procedure. That is, when the key switch aη is turned on when the vehicle starts driving, the fifth
As shown in the flowchart of the figure, the changeover switch (S) in the electronic control device α4 is set to the reference voltage Vs=Vz by the output of the control device α4. Reference voltage VB=V
When the temperature of the air-fuel ratio sensor (2) is above a predetermined value, it exhibits the characteristics shown in bx in Fig. 4, but when the temperature is not high enough, it exhibits output characteristics at a lower level, such as bs or hiro. show. While the engine is warming up after starting, the air-fuel ratio sensor (
2) Because the temperature is low, sufficient output characteristics cannot be obtained, and the fuel current (IF) is low in the rich air-fuel ratio region.
Since the reference voltage (Vs) does not reach I, the reference voltage (Vs) remains set at ■1, but when the temperature rises and the pump current (IF) exceeds IPl, the air-fuel ratio sensor (2) activates the shi 1 house I 舅Iviewraiza rVg) 糾Vnegativef stirrup h-
The regular characteristic al shown in FIG. 4 can be used.

なお、空燃比センサ(2)の活性化を判別する方法とし
て、空燃比センサ(2)の特性が理論空燃比点で反転ス
イッチングするような基準電圧(v8)を設定したのは
、空燃比センサ(2)が空燃比に対して比例出力を得る
ように基準電圧(Vs)を設定すると、温度による出力
つまルポンプ電流(IP)の低下なのかまたは実際の空
燃比による出力の低下なのか区別ができないからである
In addition, as a method for determining activation of the air-fuel ratio sensor (2), a reference voltage (v8) was set so that the characteristic of the air-fuel ratio sensor (2) reverses switching at the stoichiometric air-fuel ratio point. If the reference voltage (Vs) is set so that (2) obtains a proportional output to the air-fuel ratio, it is difficult to distinguish whether the output decreases due to temperature or the output pump current (IP) or the output decreases due to the actual air-fuel ratio. Because you can't.

以上述べたように、この発明によれば、空燃比に対して
出力が比例的に変化する空燃比センサを用い、機関に吸
入される混合気をフィードバック制御する装置において
、機関の始動後に酸素センサの基準電圧を適切な値に設
定することによシ、空燃比センサが活性温度に達してい
るか否か、極めて簡単に検知することができるという効
果がある。
As described above, according to the present invention, in a device that feedback-controls the air-fuel mixture taken into an engine using an air-fuel ratio sensor whose output changes proportionally to the air-fuel ratio, the oxygen sensor By setting the reference voltage to an appropriate value, it is possible to very easily detect whether or not the air-fuel ratio sensor has reached its activation temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社本発明の一実施例を示す概略構成図、第2図は
第1図の空燃比センサを示す断面図、第3図および第4
図は空燃比センサの特性図、第5図は本発明の一実施例
についてその動作手順を示すフローチャートである。 (2)・e−・空燃比センサ、(121・・・・電子制
御装置、α1・・−電流電圧変換器、a4・・・嗜制御
装置。 代理人 大岩増雄 第1図 ] 第2図 第3図 理□ 14/F) 論 空 セき
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention; Fig. 2 is a sectional view showing the air-fuel ratio sensor of Fig. 1; Figs. 3 and 4;
The figure is a characteristic diagram of the air-fuel ratio sensor, and FIG. 5 is a flowchart showing the operating procedure of an embodiment of the present invention. (2)・e-・Air-fuel ratio sensor, (121...Electronic control unit, α1...-Current voltage converter, a4...Adjustment control device. Agent: Masuo Oiwa, Figure 1) Figure 2 3 Diagram □ 14/F) Roku Seki

Claims (1)

【特許請求の範囲】[Claims] 機関の排気ガスを導入する間隙部、この間隙部内の酸素
分圧を制御する固体電解質酸素ポンプ、上記間隙部内の
酸素分圧と上記間隙部外の排気ガス中の赫素分圧に対応
した起電力を発生する固体電解質酸素センサを備えた空
燃比センサと、この空燃比センサの酸素センサが発生す
る起電力を所定値に保つのに必要な上記酸素ポンプのポ
ンプ電流に対応した出力信号によシ上記機関の空燃比を
検知するようにした制御装置と、上記空燃比センサの出
力信号に応じてフィードバック制御される混合気生成手
段とからなる空燃比制御装置において、機関の始動時に
は酸素ポンプのポンプ電流が理論空燃比において急激に
変化するように酸素センサの起電力を設定し、それ以後
機関の運転中にポンプ電流が所定レベル以上に達した後
は酸素ポンプのポンプ電流が空燃比に対し比例的な変化
をするように酸素センサの起電力を設定することを特徴
とする空燃比制御装置。
A gap section into which engine exhaust gas is introduced, a solid electrolyte oxygen pump that controls the oxygen partial pressure within this gap section, and an actuator corresponding to the oxygen partial pressure within the gap section and the fluorine partial pressure in the exhaust gas outside the gap section. An air-fuel ratio sensor equipped with a solid electrolyte oxygen sensor that generates electric power, and an output signal corresponding to the pump current of the oxygen pump necessary to maintain the electromotive force generated by the oxygen sensor of this air-fuel ratio sensor at a predetermined value. In an air-fuel ratio control device comprising a control device configured to detect the air-fuel ratio of the engine, and an air-fuel mixture generating means that is feedback-controlled in accordance with the output signal of the air-fuel ratio sensor, the oxygen pump is activated when the engine is started. The electromotive force of the oxygen sensor is set so that the pump current changes rapidly at the stoichiometric air-fuel ratio, and after the pump current reaches a predetermined level or higher during engine operation, the pump current of the oxygen pump changes rapidly relative to the air-fuel ratio. An air-fuel ratio control device characterized in that the electromotive force of an oxygen sensor is set so as to change proportionally.
JP58145916A 1983-08-08 1983-08-08 Control device for air-fuel ratio Pending JPS6036946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145916A JPS6036946A (en) 1983-08-08 1983-08-08 Control device for air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145916A JPS6036946A (en) 1983-08-08 1983-08-08 Control device for air-fuel ratio

Publications (1)

Publication Number Publication Date
JPS6036946A true JPS6036946A (en) 1985-02-26

Family

ID=15396035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145916A Pending JPS6036946A (en) 1983-08-08 1983-08-08 Control device for air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS6036946A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125230A (en) * 1987-11-11 1989-05-17 Mitsubishi Heavy Ind Ltd Printing press
JPH01135642A (en) * 1987-11-24 1989-05-29 Hitachi Seiko Ltd Regulator for phase of plate cylinder in rotary press
EP1266755A1 (en) 2001-06-13 2002-12-18 Tokyo Kikai Seisakusho, Ltd. Rotary press control apparatus and method capable of controlling operation in a power failure
US6615730B2 (en) 2001-04-09 2003-09-09 Tokyo Kikai Seisakusho, Ltd. Method and apparatus for controlling rotary presses in power failure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125230A (en) * 1987-11-11 1989-05-17 Mitsubishi Heavy Ind Ltd Printing press
JPH01135642A (en) * 1987-11-24 1989-05-29 Hitachi Seiko Ltd Regulator for phase of plate cylinder in rotary press
US6615730B2 (en) 2001-04-09 2003-09-09 Tokyo Kikai Seisakusho, Ltd. Method and apparatus for controlling rotary presses in power failure
EP1266755A1 (en) 2001-06-13 2002-12-18 Tokyo Kikai Seisakusho, Ltd. Rotary press control apparatus and method capable of controlling operation in a power failure
US6684788B2 (en) 2001-06-13 2004-02-03 Tokyo Kikai Seisakusho, Ltd. Rotary press control apparatus and method capable of controlling operation in a power failure

Similar Documents

Publication Publication Date Title
US7776194B2 (en) Gas concentration measuring apparatus designed to compensate for output error
US6453724B1 (en) Gas concentration sensing apparatus
EP0127964B1 (en) Air-to-fuel ratio sensor for engine
JPH1090218A (en) Decision device and method for internal resistance of gamma sensor
US20040089545A1 (en) High-resolution gas concentration measuring apparatus
JPH11264340A (en) Abnormality diagnostic device for wide area air-fuel ratio sensor
JP3785024B2 (en) Catalyst temperature detector
EP0740150A1 (en) Method and apparatus for controlling to energize a heater in an oxygen sensor
US6550305B2 (en) Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor
JP3500976B2 (en) Abnormality diagnosis device for gas concentration sensor
JPH1082763A (en) Method and apparatus for determining sensitivity of hydrocarbon sensor for internal combustion engine
JPS6036946A (en) Control device for air-fuel ratio
US5106481A (en) Linear air/fuel sensor
JP4048489B2 (en) Oxygen sensor abnormality detection device and abnormality detection method
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JPH037268B2 (en)
US20050139491A1 (en) Oxygen concentration detecting apparatus and method
JPH0315980B2 (en)
JPS59208451A (en) Air-fuel ratio sensor for engine
JPS6027751A (en) Method of compensating temperature characteristics of air-fuel ratio sensor
JP2001317400A (en) Activity judging device for air-fuel ratio sensor
Cederquist et al. Characterization of zirconia and titania engine exhaust gas sensors for air/fuel feedback control systems
JP4069887B2 (en) Oxygen concentration detector
JPH01110855A (en) Air-fuel ratio controller
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor