JPH01157473A - Fine porous body - Google Patents

Fine porous body

Info

Publication number
JPH01157473A
JPH01157473A JP31641887A JP31641887A JPH01157473A JP H01157473 A JPH01157473 A JP H01157473A JP 31641887 A JP31641887 A JP 31641887A JP 31641887 A JP31641887 A JP 31641887A JP H01157473 A JPH01157473 A JP H01157473A
Authority
JP
Japan
Prior art keywords
fine particles
fibers
fine
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31641887A
Other languages
Japanese (ja)
Inventor
Takashi Kishimoto
隆 岸本
Shozo Hirao
平尾 正三
Masaru Yokoyama
勝 横山
Koichi Takahama
孝一 高濱
Hiroshi Yokogawa
弘 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP31641887A priority Critical patent/JPH01157473A/en
Publication of JPH01157473A publication Critical patent/JPH01157473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the fine porous body which is excellent in heat insulation in normal pressure and easy to be produced with low cost and has preferable mechanical strength and is suitable for practical use by mixing >=2 kinds of fine particles of different primary particle diameters, and forming it so as to make fibers coexist. CONSTITUTION:The fine porous body is so made that >=2 kinds of fine particles, such as A and B, are mixed and formed with fibers C so as to coexist with fine particles. The size of clearances formed by fine particles is preferably 1-60nm when the clearances are filled with air. As for the fine particles A, foaming pearlite, sirasu-balloon, and finely pulverized matter of these substances, soot, aerogel (fine particles produced by dry or wet method), diatomaceous earth, etc., are used, and the diameter of the particle is preferably 5nm-10mum. As for the fine particle B, dried substance of colloidal sol and polysilicic acid are used and the diameter of the particles is preferably 1-10nm. As for the fiber, inorganic and organic fibers of 1-30mum diameter and 1-30mm length are used.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性に優れた微細多孔体に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a microporous material with excellent heat insulation properties.

〔背景技術〕[Background technology]

従来の断熱材の熱伝導率は0.03〜0.05 kca
l/mhr”c程度で、空気の熱伝導率0.02〜0.
024kcal/mhr″Cよりも高い。硬質発泡ポリ
ウレタンのように、0.015 kcal/mhr”c
という低い熱伝導率をもつ断熱材も開発されているが、
この発泡ポリウレタンの場合、空隙内に封入されたフレ
オンガスの持つ低い熱伝導率(0,006〜0.01k
cal/mhr”c)に依存しているだけのものであり
、長時間の使用でフレオンガスと空気との置換が起こる
と断熱性にも劣化が発生し、約1年後には0.021〜
0.024 kcal/mhr”c程度にまで熱伝導率
カ上昇してしまった例もある。
The thermal conductivity of conventional insulation materials is 0.03-0.05 kca
l/mhr"c, the thermal conductivity of air is 0.02 to 0.
Higher than 0.024 kcal/mhr"C. Like rigid polyurethane foam, 0.015 kcal/mhr"C
Insulating materials with low thermal conductivity have also been developed,
In the case of this polyurethane foam, the Freon gas sealed in the voids has a low thermal conductivity (0.006 to 0.01k).
cal/mhr"c), and if Freon gas is replaced with air after long-term use, the insulation properties will also deteriorate, and after about a year, the temperature will be 0.021~
In some cases, the thermal conductivity increased to about 0.024 kcal/mhr"c.

また、発泡ポリウレタンの場合、有機物で構成されてい
るため、100℃以上での使用はできず、用途が限られ
る。
Further, in the case of foamed polyurethane, since it is composed of organic substances, it cannot be used at temperatures above 100°C, and its uses are limited.

これに対し、不燃性で熱伝導率の低い材料として、ケイ
酸カルシウムの多孔体を0.1 Torr程度の真空状
態にしたものや、発泡粉砕パーライトをOol Tor
r程度の真空状態にしたもの(特開昭60−33479
号公報参照)等があるが、いずれも、真空状態を保つこ
とが必要であり、製造コスト等の点で問題がある。しか
も、断熱材として利用するにしても、真空を維持する必
要から、形状や用途が著しく限定され、充分には実用化
されていない。
On the other hand, nonflammable materials with low thermal conductivity include porous calcium silicate in a vacuum state of about 0.1 Torr and foamed and crushed pearlite.
A vacuum state of about r (Japanese Patent Application Laid-Open No. 60-33479
However, all of them require maintaining a vacuum state, which poses problems in terms of manufacturing costs and the like. Moreover, even when used as a heat insulating material, the shape and use are extremely limited due to the need to maintain a vacuum, and it has not been fully put to practical use.

常圧でも空気の熱伝導率を超えた断熱材として、微細多
孔質シリカの集合体による材料がある(特公昭51−4
0088号公報参照)が、空気との熱伝導率差は僅かな
ものであるし、脆くて機械的強度的な点で十分ではない
。また、高価な微細多孔質シリカが必ず多量に必要であ
るという点でコスト面の問題もある。そのため、広く利
用されるまでには至っていない。
As a heat insulating material whose thermal conductivity exceeds that of air even at normal pressure, there is a material made from aggregates of microporous silica (Japanese Patent Publication No. 51-4
However, the difference in thermal conductivity with air is small, and it is brittle and does not have sufficient mechanical strength. There is also a cost problem in that a large amount of expensive microporous silica is necessarily required. Therefore, it has not reached the point where it is widely used.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の事情に鑑みてなされたものであって
、常圧において断熱性に優れ、製造が容易であり、かつ
安価であって、しかも、良好な機械的強度をもつ実用的
な微細多孔体を提供することを目的とする。
This invention has been made in view of the above circumstances, and is a practical microstructure that has excellent heat insulation properties at normal pressure, is easy to manufacture, is inexpensive, and has good mechanical strength. The purpose is to provide a porous body.

〔発明の開示〕[Disclosure of the invention]

発明者らは、上記目的のうち常圧において断熱性に優れ
、製造が容易であり、かつ安価である微細多孔体として
、−次粒子径の異なる2種以上の微粒子が成形されてな
る微細多孔体を先に案出し、これを出願した。
Among the above objects, the inventors have developed a microporous body formed by molding two or more types of microparticles with different primary particle diameters, as a microporous body that has excellent heat insulation properties at normal pressure, is easy to manufacture, and is inexpensive. I devised the body first and applied for it.

ところが、この先の微細多孔体は、断熱性に大変優れ、
製造し易く、安価であるが、機械的強度の面では改善さ
れず、未だ、従来のものと同様に、非常に脆く、壊れや
すくて取り扱いも困難であり、実用性に関しては今ひと
つであった。
However, future microporous materials have excellent insulation properties,
Although it is easy to manufacture and inexpensive, it has not been improved in terms of mechanical strength, and is still very brittle, easy to break, and difficult to handle, just like conventional products, and its practicality has not been satisfactory.

そこで、さらに検討を行った結果、−次粒子径の異なる
2種以上の微粒子に対し繊維を共存させると、微細多孔
体の機械的強度が増し、実用性が著しく高まるという知
見を得て、この発明を完成させることができたのである
Therefore, as a result of further investigation, we found that when fibers coexist with two or more types of fine particles with different primary particle sizes, the mechanical strength of the microporous material increases and its practicality increases significantly. He was able to complete his invention.

すなわち、この発明は、−次粒子径の異なる2種以上の
微粒子が混合成形されてなる微細多孔体であって、前記
微粒子に繊維を共存させて成形されてなることを特徴と
する微細多孔体を要旨としている。
That is, the present invention provides a microporous body formed by mixing and molding two or more types of fine particles having different primary particle diameters, the fine porous body being molded in such a manner that the fine particles coexist with fibers. The gist is:

以下、この発明にかかる微細多孔体を詳しく説明する。Hereinafter, the microporous body according to the present invention will be explained in detail.

この発明にかかる微細多孔体が、常圧において断熱性に
優れているという点についてまず説明する。
First, the point that the microporous material according to the present invention has excellent heat insulation properties at normal pressure will be explained.

多孔体の熱伝導率は、空隙中に含まれる気体(通常は空
気)の熱伝導率に左右される。気体の熱伝導率の影響を
なくすためには、微細多孔体中の空隙を、極く狭い空隙
(気体の平均自由工程よりも小さい空隙であり、具体的
には、空気の場合には、たとえば1nm〜60nm程度
)とする必要がある。ところが、微細多孔体では、第5
図にみるように、粒子Pを最密充填状態にしても、その
粒子PSP間には、粒径の15%程度の空隙が生ずる。
The thermal conductivity of a porous body depends on the thermal conductivity of the gas (usually air) contained in the voids. In order to eliminate the influence of the thermal conductivity of gas, the voids in the microporous material must be made extremely narrow (smaller than the mean free path of the gas; specifically, in the case of air, for example, (approximately 1 nm to 60 nm). However, in microporous materials, the fifth
As shown in the figure, even if the particles P are packed in the closest packed state, voids of about 15% of the particle size are created between the particles PSP.

この空隙を小さくすれば断熱性が高まるのである。した
がって、前記のような極く狭い空隙を得るためには、非
常に粒径の小さい粒子を用いればよいことになる。とこ
ろが、粒径の小さい微粒子は凝集性が強く、第6図に示
すように、大きな多次粒子P′を形成し、この多次粒子
P′、P′間に大きな空隙ができてしまって、気体の熱
伝導率の影響を強く受けてしまう。例えば、微粉末シリ
カの場合、粉末表面にシラノール基のOHが多量に存在
しており、水素結合により粉末同士の結合が強いため、
特に凝集し易い。しかし、第3図にみるように、−次粒
子径の異なる2種類の微粒子A、Bが共存していると、
粒径の大きい微粒子Aの隙間に粒径の小さい微粒子Bが
うまく分かれて存在しており、微細多孔体の空隙の大き
さは、粒径の小さい微粒子B、B間の隙間で決まる極く
狭いものになる。そのため、気体の熱伝導率の影響を除
去でき、十分な断熱性を有することになる。
By making these voids smaller, insulation can be improved. Therefore, in order to obtain extremely narrow voids as described above, it is sufficient to use particles with a very small particle size. However, fine particles with a small particle size have a strong aggregation property, and as shown in FIG. 6, they form large multi-dimensional particles P', and large voids are created between these multi-dimensional particles P' and P'. It is strongly affected by the thermal conductivity of the gas. For example, in the case of fine powder silica, there are a large amount of silanol group OH on the powder surface, and the bond between the powders is strong due to hydrogen bonds.
Particularly easy to aggregate. However, as shown in Figure 3, when two types of fine particles A and B with different particle diameters coexist,
Fine particles B with a small particle size are well separated and exist in the gaps between fine particles A with a large particle size, and the size of the void in the microporous material is extremely narrow determined by the gap between the fine particles B with a small particle size. Become something. Therefore, the influence of the thermal conductivity of gas can be removed, and sufficient heat insulation properties can be obtained.

なお、粒径の小さい微粒子Bが多くなると、第4図にみ
るように、微粒子Bが微粒子Aを取り囲むようなかたち
となる。
Note that when the number of fine particles B with a small particle size increases, the fine particles B surround the fine particles A, as shown in FIG.

粒径の大きい微粒子Aが存在するため、安価で製造し易
くなる。微粒子Aが含まれている分、比較的高価な粒径
の小さい微粒子Bが節約できるので、安価になるのであ
る。また、製造し易くなるのは、成形性が良くなるから
である。粒径の大きな粒子A(と下記繊維C)と粒径の
小さい微粒子Bとが、互いに成形圧を分散し、吸収しあ
う等して、成形圧を均一に保つ働きを有しているためと
考えられる。
Since the fine particles A having a large particle size are present, it is inexpensive and easy to manufacture. Because the fine particles A are included, the relatively expensive fine particles B, which have a small particle size, can be saved, resulting in a lower price. Moreover, the reason why it is easier to manufacture is because the moldability is improved. This is because particles A with a large particle size (and fibers C below) and fine particles B with a small particle size have the function of keeping the molding pressure uniform by distributing and absorbing the molding pressure with each other. Conceivable.

そして、この微細多孔体は、第1図にみるように、微粒
子A、Bに繊維Cを共存させている。このように微細多
孔体に繊維Cが含まれていると、微粒子A、Bと繊維C
の間のいわば絡み作用で、それらの間の結合状態が強ま
り、その結果、微細多孔体の機械的強度が高まることに
なるのである。微粒子のみを成形した微細多孔体の機械
的強度に比べて著しく向上し、微細多孔体が実用性ある
ものとなる。なお、微粒子Bの量が多い場合には、第2
図にみるように、微粒子Aが微粒子Bに囲まれるような
かたちとなる。また、繊維の共存は成形性を向上させる
作用もある。
As shown in FIG. 1, this microporous material has fine particles A and B coexisting with fibers C. If the microporous material contains fibers C in this way, fine particles A and B and fibers C
The so-called interlocking action between them strengthens the bond between them, and as a result, the mechanical strength of the microporous body increases. The mechanical strength is significantly improved compared to that of a microporous material formed by molding only fine particles, making the microporous material practical. Note that if the amount of fine particles B is large, the second
As shown in the figure, fine particles A are surrounded by fine particles B. Furthermore, the coexistence of fibers also has the effect of improving moldability.

微粒子Aとしては、発泡パーライト、シラスバルーン、
および、これらの微粉砕物、スス、コロイダルゾルの乾
燥物、エアロゲル(乾式あるいは湿式製法微粒子シリカ
)、ケイソウ土、ケイ酸カルシウム、酸化チタン等が挙
げられるが、これらに限らない。これらは単独で、ある
いは、複数混合して使用することができる。
As fine particles A, foamed perlite, shirasu balloon,
Examples include, but are not limited to, finely pulverized products of these materials, soot, dried colloidal sols, aerogels (dry or wet-process fine particle silica), diatomaceous earth, calcium silicate, titanium oxide, and the like. These can be used alone or in combination.

微粒子Bとしては、前記コロイダルゾルの乾燥物、ポリ
ケイ酸、エアロゲル(湿式製法微粉末シリカ、乾式製法
微粉末シリカ)等が挙げられるが、これらに限らない。
Examples of the fine particles B include, but are not limited to, dry products of the colloidal sol, polysilicic acid, aerogels (wet process fine powder silica, dry process fine powder silica), and the like.

これらは単独で、あるいは、複数混合して使用すること
ができる。
These can be used alone or in combination.

微粒子Aの粒径は、従来のものと同様5nm〜10μm
程度であることが好ましく、5nm〜1μmの範囲内で
あることがより好ましい。一方、微粒子Bの粒径は、通
常は1〜10nm程度であることが好ましく、3〜8n
mの範囲内であることがより好ましい。ただ、微粒子B
として湿式製法微粉末シリカ、乾式製法微粉末シリカを
用いる場合には、粒径が、1〜10100nより好まし
くは6〜30nmの範囲)であることが好ましい。なお
、以上に示した粒径の範囲には重複している部分がある
が、両微粒子A、Bは、「微粒子Aの粒径〉微粒子Bの
粒径」の条件が必ず満たされるように選定されている。
The particle size of fine particles A is 5 nm to 10 μm, similar to conventional ones.
The thickness is preferably within the range of 5 nm to 1 μm. On the other hand, the particle size of the fine particles B is usually preferably about 1 to 10 nm, and 3 to 8 nm.
More preferably, it is within the range of m. However, fine particles B
When using wet-process fine powder silica or dry-process fine powder silica, the particle size is preferably in the range of 1 to 10,100 nm, more preferably 6 to 30 nm. Note that although there is some overlap in the particle size ranges shown above, both fine particles A and B are selected so that the condition of "particle size of fine particle A> particle size of fine particle B" is always satisfied. has been done.

なお、以上の説明では、粒径の種類が2種類であったが
、微粒子間で粒径が3種類以上あってもよいことはいう
までもない。各微粒子と繊維の共存状態も、第1.2図
に示したものに限らない。
In the above explanation, there are two types of particle sizes, but it goes without saying that there may be three or more types of particle sizes among the fine particles. The coexistence state of each fine particle and fiber is not limited to that shown in FIG. 1.2.

繊維としては、セラミック繊維、ガラス繊維、ロックウ
ール繊維、アスベスト繊維、炭素繊維、アラミド繊維等
の無機繊維や有機繊維が挙げられる。各繊維は単独であ
るいは、複数種類併用して用いられる。繊維の径は、1
〜30μm(より好ましくは1〜5μm)程度の範囲が
好ましい。繊維の長さは、1〜301m(より好ましく
は5〜20+u)程度の範囲が好ましい。繊維によって
は、混合処理中に切れて短くなることもあるので、上記
繊維の長さはもうすこし長くてもかまわない場合がある
。粒子に対する添加量は、粒子の総量に対して5〜20
重量%程度の範囲が好ましい。5重量%を下回ると、機
械的強度向上の程度が少なく、20重量%を上回ると断
熱性の向上の程度が少なくなってくるからである。繊維
は一種類だけでなく複数種類を同時に併用するようにし
てもよい。繊維はなるべく均一に分散している方がよい
微粒子と繊維の混合方法は、例えば、高速ミキサーによ
る方法がある。成形方法は、例えば、加圧成形方法があ
る。しかし、混合方法や成形方法はこれらの方法に限ら
ない。
Examples of the fibers include inorganic fibers and organic fibers such as ceramic fibers, glass fibers, rock wool fibers, asbestos fibers, carbon fibers, and aramid fibers. Each fiber may be used alone or in combination. The fiber diameter is 1
A range of approximately 30 μm (more preferably 1 to 5 μm) is preferable. The length of the fibers is preferably in the range of about 1 to 301 m (more preferably 5 to 20+ m). Some fibers may break and become short during the mixing process, so the length of the fibers may be slightly longer. The amount added to the particles is 5 to 20% of the total amount of particles.
A range of about % by weight is preferred. This is because if it is less than 5% by weight, the degree of improvement in mechanical strength will be small, and if it exceeds 20% by weight, the degree of improvement in heat insulation will be reduced. Not only one type of fiber but also multiple types of fibers may be used simultaneously. A method of mixing fine particles and fibers in which the fibers should be dispersed as uniformly as possible includes, for example, a method using a high-speed mixer. The molding method includes, for example, a pressure molding method. However, the mixing method and molding method are not limited to these methods.

また、微粒子A、Bと繊維Cはハニカム構造体の空間部
に充填され成形されているようであってもよい。このよ
うにすると、−層、機械的強度が増す。ハニカム構造体
としては、クラフト紙、アスベスト紙、水酸化アルミニ
ウム等を含浸させた不燃ハニカム、セラミック、金属薄
板等の板材を、円形、三角形、四角形、六角形等の任意
の形状の孔を有する構造に形成した通常のものを使用す
ることができる。そして、通常、ハニカム構造体の両面
、あるいは、片面に接着剤で板材も固着する。板材には
、クラフト紙やアスベスト紙、段ボール紙、水酸化アル
ミニウム等を含浸させた不燃紙等の紙、金属板、合板、
ガラスクロス、ケイ酸カルシウム板、石膏ボード等が使
用される。
Further, the fine particles A and B and the fibers C may be filled and molded into the spaces of the honeycomb structure. This increases the mechanical strength of the layer. The honeycomb structure is made of kraft paper, asbestos paper, non-combustible honeycomb impregnated with aluminum hydroxide, ceramic, thin metal plate, etc., and has holes of any shape such as circular, triangular, square, hexagonal, etc. You can use a regular one formed in . Then, usually, plate materials are also fixed to both sides or one side of the honeycomb structure with an adhesive. Board materials include kraft paper, asbestos paper, cardboard paper, noncombustible paper impregnated with aluminum hydroxide, metal plates, plywood, etc.
Glass cloth, calcium silicate board, gypsum board, etc. are used.

つぎに、この発明の具体的な実施例と比較例を製造の様
子も含めて説明する。
Next, specific examples and comparative examples of the present invention will be described, including the manufacturing process.

なお、以下の実施例および比較例における微粒子の粒径
は、窒素吸着法によってその比表面積を求め、密度を2
.5と仮定して算出した。
In addition, the particle size of the fine particles in the following Examples and Comparative Examples is determined by determining the specific surface area by the nitrogen adsorption method and calculating the density by 2.
.. Calculations were made assuming that 5.

(実施例1) 発泡粉砕パーライト(粒径:9.5μm、三井金属パー
ライト■製 F P −’1 ) をボールミルにより
粉砕して得られた微粉砕物(粒径:500nm)と、エ
アロゲル(粒径:約lnm5日本アエロジル01製 A
EROSIL 380 )を重量比1:1で混和した粉
末を作製した。混和した粉末の重量に対し、セラミック
ファイバー(直径:2.8μm、長さ:50鶴、新日鉄
化学■製SCバルク#111)を7重量%さらに加えた
後、高速ミキサー(約300Orpm)で攪拌し、均一
に分散・混合させた。ついで、この混合物を圧力10k
g/c−で成形し微細多孔体を得た。
(Example 1) A finely pulverized product (particle size: 500 nm) obtained by pulverizing foamed pulverized pearlite (particle size: 9.5 μm, FP-'1 manufactured by Mitsui Kinzoku Perlite ■) with a ball mill, and an airgel (particle size: 500 nm) Diameter: approx. lnm5 Made by Nippon Aerosil 01 A
A powder was prepared by mixing EROSIL 380) at a weight ratio of 1:1. After adding 7% by weight of ceramic fiber (diameter: 2.8 μm, length: 50 cranes, SC bulk #111 manufactured by Nippon Steel Chemical Co., Ltd.) based on the weight of the mixed powder, the mixture was stirred with a high-speed mixer (approximately 300 rpm). , uniformly dispersed and mixed. Then, this mixture was heated to a pressure of 10 k.
g/c- to obtain a microporous body.

(実施例2) 繊維の添加量を、5重量%とした以外は、実施例1と同
様にして、微細多孔体を得た。
(Example 2) A microporous body was obtained in the same manner as in Example 1 except that the amount of fiber added was 5% by weight.

(実施例3) 繊維の添加量を、10重量%とした以外は、実施例1と
同様にして、微細多孔体を得た。
(Example 3) A microporous body was obtained in the same manner as in Example 1 except that the amount of fiber added was 10% by weight.

(実施例4) 繊維の添加量を、30重量%とした以外は、実施例1と
同様にして、微細多孔体を得た。
(Example 4) A microporous body was obtained in the same manner as in Example 1 except that the amount of fiber added was 30% by weight.

(実施例5) 繊維として、セラミックファイバーの代わりに、ロック
ウールファイバー(直径=4μm、長さ830〜43m
m、新日鉄化学■製 Sファイバー層状綿)を加えるよ
うにした以外は、実施例1と同様にして微細多孔体を得
た。
(Example 5) Rock wool fiber (diameter = 4 μm, length 830 to 43 m) was used as the fiber instead of ceramic fiber.
A microporous material was obtained in the same manner as in Example 1, except for adding S fiber layered cotton (manufactured by Nippon Steel Chemical Co., Ltd.).

(実施例6) 繊維として、セラミックファイバーの代わりに、カーボ
ンファイバー(直径=15μm、長さ:20■璽、日本
カーボン@!A)を加えるようにした以外は、実施例1
と同様にして微細多孔体を得た〈実施例7) パーライト微粉砕物の代わりに、酸化チタン(粒径:1
9Qnm  古河鉱業側型 FR−41)を用いた以外
は、実施例1と同様にして微細多孔体を得た。
(Example 6) Example 1 except that carbon fiber (diameter = 15 μm, length: 20 cm, Nippon Carbon @!A) was added instead of ceramic fiber as the fiber.
A microporous body was obtained in the same manner as in Example 7. Titanium oxide (particle size: 1
A microporous body was obtained in the same manner as in Example 1, except that 9Qnm Furukawa Mining Type FR-41) was used.

(比較例1) 実施例1において、繊維を混合しない以外は、実施例1
と同様にして、微細多孔体を得た。
(Comparative Example 1) Example 1 except that the fibers were not mixed in Example 1.
A microporous material was obtained in the same manner as above.

(比較例2) 実施例7において、繊維を混合しない以外は、実施例7
と同様にして、微細多孔体を得た。
(Comparative Example 2) Example 7 except that the fibers were not mixed in Example 7.
A microporous material was obtained in the same manner as above.

(比較例3) 実施例1において、繊維とエアロゲルの両方を混合しな
い以外は、実施例1と同様にして、微細多孔体を得た。
(Comparative Example 3) A microporous body was obtained in the same manner as in Example 1 except that both the fiber and the airgel were not mixed.

(比較例4) 比較例2において、エアロゲルも混合しないようにした
以外は、比較例2と同様にして、微細多孔体を得た。
(Comparative Example 4) A microporous body was obtained in the same manner as in Comparative Example 2, except that airgel was not mixed either.

実施例ならびに比較例の各微細多孔体の熱伝導率および
曲げ強度を測定した。熱伝導率の測定は、英仏精機■製
の定常法による熱伝導率測定装置を使用して、ASTM
−C518に準拠した方法で、設定温度20℃と40℃
の条件で行った。また、曲げ強度はJIS^9510に
準拠して測定した。
The thermal conductivity and bending strength of each microporous body of Examples and Comparative Examples were measured. Thermal conductivity was measured using a thermal conductivity measuring device manufactured by Anglo-French Seiki Co., Ltd. using the steady method.
- Set temperature 20°C and 40°C in accordance with C518
It was conducted under the following conditions. Further, the bending strength was measured in accordance with JIS^9510.

第1表の結果より、この発明の実施例による微細多孔体
は、いずれも、低い熱伝導率を維持しつつ、比較例と較
べて1桁近く良好な機械的強度を有していて、より実用
的であることが分かる。
From the results in Table 1, it can be seen that the microporous bodies according to the examples of the present invention all have mechanical strength that is nearly one order of magnitude better than that of the comparative examples while maintaining low thermal conductivity. It turns out to be practical.

〔発明の効果〕〔Effect of the invention〕

この発明の微細多孔体は、以上に詳述したとおり、−次
粒子径の異なる2種以上の微粒子と共に繊維が成形され
ているため、常圧において断熱性に優れ、製造が容易で
あり、かつ安価であって、しかも、良好な機械的強度を
もち極めて実用的である。
As detailed above, the microporous material of the present invention has fibers molded together with two or more types of fine particles having different primary particle sizes, so it has excellent heat insulation properties at normal pressure, is easy to manufacture, and It is inexpensive, has good mechanical strength, and is extremely practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ、この発明の微細多孔
体の一例の構造を拡大して模式的にあられす説明図、第
3図および第4図は、それぞれ、微粒子による空隙状態
の一例を模式的に示す説明図、第5図は、従来の粒子に
よる空隙状態を模式的に示す説明図、第6図は、粒径の
小さい微粒子間の空隙状態の参考例を模式的に示す説明
図である。 A・・・粒径の大きい微粒子 B・・・粒径の小さい微
粒子 C・・・繊維 代理人 弁理士  松 本 武 彦 第1図 第2図 第3図 第4図 第5図 @6図 弓稿ヅ酵甫正書(自発 昭和63年2月25日
FIGS. 1 and 2 are respectively enlarged explanatory views of the structure of an example of the microporous material of the present invention, and FIGS. 3 and 4 are examples of the state of voids caused by fine particles, respectively. FIG. 5 is an explanatory diagram schematically showing a void state due to conventional particles. FIG. 6 is an explanatory diagram schematically showing a reference example of a void state between fine particles with a small particle size. It is a diagram. A...Fine particles with large particle size B...Fine particles with small particle size C...Fiber agent Patent attorney Takehiko Matsumoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 @ Figure 6 Bow Manuscript published on February 25, 1988

Claims (2)

【特許請求の範囲】[Claims] (1)一次粒子径の異なる2種以上の微粒子が混合成形
されてなる微細多孔体であって、前記微粒子に繊維を共
存させて成形されてなることを特徴とする微細多孔体。
(1) A microporous body formed by mixing and molding two or more types of fine particles having different primary particle diameters, the fine porous body being formed by making fibers coexist with the fine particles.
(2)微粒子により形成されている空隙の大きさが1n
m〜60nmである特許請求の範囲第1項記載の微細多
孔体。
(2) The size of the voids formed by fine particles is 1n
2. The microporous material according to claim 1, wherein the microporous material has a particle size of m to 60 nm.
JP31641887A 1987-12-15 1987-12-15 Fine porous body Pending JPH01157473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31641887A JPH01157473A (en) 1987-12-15 1987-12-15 Fine porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31641887A JPH01157473A (en) 1987-12-15 1987-12-15 Fine porous body

Publications (1)

Publication Number Publication Date
JPH01157473A true JPH01157473A (en) 1989-06-20

Family

ID=18076854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31641887A Pending JPH01157473A (en) 1987-12-15 1987-12-15 Fine porous body

Country Status (1)

Country Link
JP (1) JPH01157473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013681A2 (en) * 1997-09-05 1999-03-18 1... Ipr Limited Aerogels, piezoelectric devices, and uses therefor
WO2006065904A1 (en) * 2004-12-15 2006-06-22 Cabot Corporation Aerogel containing blanket

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013681A2 (en) * 1997-09-05 1999-03-18 1... Ipr Limited Aerogels, piezoelectric devices, and uses therefor
WO1999013681A3 (en) * 1997-09-05 1999-08-05 1 Ipr Limited Aerogels, piezoelectric devices, and uses therefor
WO2006065904A1 (en) * 2004-12-15 2006-06-22 Cabot Corporation Aerogel containing blanket
US7635411B2 (en) 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
US8021583B2 (en) 2004-12-15 2011-09-20 Cabot Corporation Aerogel containing blanket

Similar Documents

Publication Publication Date Title
JP6487494B2 (en) Flexible insulating structure and method for making and using the same
JP6592050B2 (en) Composite material of airgel and fiber vat
JP3212309B2 (en) High insulation panel
US6859364B2 (en) Portable information appliance
US5084320A (en) Evacuated thermal insulation
WO2014030651A1 (en) Vacuum heat-insulating material and method for manufacturing vacuum heat-insulating material
JP4361602B2 (en) Aerogel-containing composite material, production method thereof and use thereof
CN103237838B (en) Comprise the melamine resin foam of nanoporous filler
JPH10510888A (en) Fiber web / airgel composites containing bicomponent fibers, methods for their preparation and their use
US6589488B1 (en) Molding for supporting a monolith in a catalytic converter
JP5571851B2 (en) Inorganic nanoporous particles with water-dispersible polyurethane binder
WO2015182768A1 (en) Vacuum heat-insulating material
CN102910887A (en) Inorganic nanometer gas condensation sand insulation material and preparation method thereof
CN108822873A (en) A kind of Performances of Novel Nano-Porous meter level micropore heat-barrier material and preparation method thereof
WO2021095279A1 (en) Composite insulation material and manufacturing method therefor
CN106082780B (en) Nano silica sol modified low-density thermal insulation board and preparation method thereof
JPH01157473A (en) Fine porous body
JPH094785A (en) Vacuum heat insulation material
JPH0569063B2 (en)
JPH01164773A (en) Production of porous body having minute pore
JPH01153896A (en) Heat-insulating board
JPH05221741A (en) Thermally expandable ceramic fiber composite material
JPH01199095A (en) Insulation board
JPH0566341B2 (en)
JPS5817294A (en) Heat-insulating structure