JPH01153896A - Heat-insulating board - Google Patents

Heat-insulating board

Info

Publication number
JPH01153896A
JPH01153896A JP31262687A JP31262687A JPH01153896A JP H01153896 A JPH01153896 A JP H01153896A JP 31262687 A JP31262687 A JP 31262687A JP 31262687 A JP31262687 A JP 31262687A JP H01153896 A JPH01153896 A JP H01153896A
Authority
JP
Japan
Prior art keywords
particles
ultrafine particles
fine granules
heat insulating
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31262687A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokogawa
弘 横川
Shozo Hirao
平尾 正三
Masaru Yokoyama
勝 横山
Takashi Kishimoto
隆 岸本
Koichi Takahama
孝一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP31262687A priority Critical patent/JPH01153896A/en
Publication of JPH01153896A publication Critical patent/JPH01153896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PURPOSE: To raise thermal insulation and mechanical strength by filling condensation-preventive processed super fine granules in the spaces of a honeycomb structure. CONSTITUTION: A thermal insulation board is formed by filling super fine granules, or a filling 3 of super fine granules mixed with fine granules of large diameters in the spaces 1a of the honeycomb structure 1, and fixing plates 2 on both sides of the structure by adhesive layers 4. The super fine granules are excellent for obtaining extremely narrow spaces, however as the super fine granules have condensation properties, the surfaces thereof are condensation- preventive processed so as to prevent condensation. Therefore, it is possible to keep the narrow spaces between the super fine granules.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性および機械的強度に優れた断熱ボー
ドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a heat insulating board with excellent heat insulating properties and mechanical strength.

〔背景技術〕[Background technology]

従来の断熱材の熱伝導率は0.03〜O’、 05 k
cal/mhr ’C程度で、空気の熱伝導率0.02
〜0.024kca l/mhr ’Cよりも高い。硬
質発泡ポリウレタンのように、0.015 kcal/
mhr’cという低い熱伝導率をもつ断熱材も開発され
ているが、この発泡ポリウレタンの場合、空隙内に封入
されたフレオンガスの持つ低い熱伝導率(0,006〜
0.01 kcal/mhr”c)に依存しているだけ
のものであり、長時間の使用でフレオンガスと空気との
置換が起こると断熱性にも劣化が発生し、約1年後には
0.021〜0.024 kcal/mhr”c程度に
まで熱伝導率が上昇してしまった例もある。
The thermal conductivity of conventional insulation materials is 0.03~O', 05k
The thermal conductivity of air is 0.02 at cal/mhr 'C.
~0.024 kcal/mhr 'C. Like rigid polyurethane foam, 0.015 kcal/
Insulating materials with a low thermal conductivity of mhr'c have also been developed, but in the case of polyurethane foam, the low thermal conductivity of Freon gas sealed in the voids (0,006~
0.01 kcal/mhr"c), and if Freon gas is replaced with air after long-term use, the heat insulation properties will also deteriorate, and after about a year, the temperature will be 0.01 kcal/mhr"c) In some cases, the thermal conductivity has increased to about 0.021 to 0.024 kcal/mhr"c.

また、発泡ポリウレタンの場合、有機物で構成されてい
るため、100℃以上での使用はできず、用途が限られ
る。
Further, in the case of foamed polyurethane, since it is composed of organic substances, it cannot be used at temperatures above 100°C, and its uses are limited.

これに対し、不燃性で熱伝導率の低い材料として、ケイ
酸カルシウムの多孔体を0. I Torr程度の真空
状態にしたものや、発泡粉砕パーライトをO9l To
rr程度の真空状態にしたもの(特開昭60−3347
9号公報参照)等があるが、いずれも、真空状態を保つ
ことが必要であり、製造コスト等の点で問題がある。し
かも、断熱材として利用するにしても、真空を維持する
必要から、形状や用途が著しく限定され、充分には実用
化されていない。
On the other hand, a porous body of calcium silicate is used as a nonflammable material with low thermal conductivity. O9l Torr or foamed crushed pearlite
A vacuum state of about rr (Japanese Patent Application Laid-Open No. 60-3347
9), but all of them require maintaining a vacuum state, which poses problems in terms of manufacturing costs and the like. Moreover, even when used as a heat insulating material, the shape and use are extremely limited due to the need to maintain a vacuum, and it has not been fully put to practical use.

常圧でも空気の熱伝導率を超えた断熱材として、微細多
孔質シリカの集合体による材料がある(特公昭51−4
0088号公報参照)が、空気との熱伝導率差は極く僅
かなものであるし、強度的な点で十分ではなかった。そ
のため、実用的に十分利用されるまでには至っていない
As a heat insulating material whose thermal conductivity exceeds that of air even at normal pressure, there is a material made from aggregates of microporous silica (Japanese Patent Publication No. 51-4
However, the difference in thermal conductivity with air was extremely small, and the strength was not sufficient. Therefore, it has not yet been fully utilized practically.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の事情に鑑みてなされたものであって
、常圧において断熱性に優れ、かつ十分な機械的強度が
ある実用的な断熱ボードを得ることを目的としている。
The present invention has been made in view of the above circumstances, and aims to provide a practical heat insulating board that has excellent heat insulating properties at normal pressure and sufficient mechanical strength.

〔発明の開示〕[Disclosure of the invention]

上記目的のうち常圧において断熱性に優れているものを
得るため、発明者らは、超微粒子の表面に予め凝集防止
処理をしてから成形し微細多孔体を得るという発明を先
に案出し、これを出願したところが、この先の発明にか
かる微細多孔体は、断熱性は非常に優れていたが、強度
的には改善されず、未だ、従来のものと同様に、非常に
脆く、壊れやすくて取り扱いが困難であった。
In order to obtain one of the above objects that has excellent heat insulation properties at normal pressure, the inventors first devised an invention in which the surface of ultrafine particles is treated to prevent agglomeration beforehand and then molded to obtain a microporous body. However, although the microporous material according to the previous invention had excellent heat insulation properties, the strength was not improved, and it was still very brittle and easily broken, just like the conventional material. It was difficult to handle.

そこで、さらに検討を行った結果、これらの超微粒子を
ハニカム構造体内に充填すれば良いことを見出し、この
発明を完成した。
Therefore, as a result of further investigation, it was discovered that these ultrafine particles could be filled into a honeycomb structure, and the present invention was completed.

すなわち、この発明は、ハニカム構造体の空間部に超微
粒子が充填されてなる断熱ボードであって、前記超微粒
子の表面には凝集防止処理が施されていることを特徴と
するWr熱ボードを要旨としている。
That is, the present invention provides a heat insulating board in which the space of a honeycomb structure is filled with ultrafine particles, and the surface of the ultrafine particles is treated to prevent agglomeration. This is the summary.

以下、この発明にかかる微細多孔体をさらに詳しく説明
する。
Hereinafter, the microporous body according to the present invention will be explained in more detail.

この発明にかかる断熱ボードが、常圧において断熱性に
優れている理由をまず説明する。
First, the reason why the heat insulating board according to the present invention has excellent heat insulating properties at normal pressure will be explained.

多孔体の熱伝導率は、空隙中に含まれる気体(通常は空
気)の熱伝導率に左右されるため、気体の熱伝導率の影
響をなくすためには、極く狭い空隙(気体の平均自由工
程よりも小さい空隙であり、具体的には、空気の場合に
は、たとえば1nm〜60nm程度)とする必要がある
。ところが、微細多孔体では、第4図にみるように、粒
子Pを最密充填状態にしても、その粒子P、P間には、
粒径の15%程度の空隙が生ずる。したがって、前記の
ような極く狭い空隙を得るためには、非常に粒径の小さ
い粒子、いわゆる「超微粒子」を用いた微細多孔体であ
ればよいと考えたわけである。ところが、超微粒子には
凝集性があり、第5図に示すように、大きな多次粒子P
′を形成し、この多次粒子P′間に大きな空隙ができ、
気体の熱伝導率の影響を強く受ける。例えば、超微粒子
シリカの場合、粒子表面にシラノール基のOHが多量に
存在しており、水素結合により粒子同士の結合が強いた
め、特に凝集しやすい。しかし、この発明の微細多孔体
の超微粒子のように、表面に凝集防止処理が施されてい
ると、第2図にみるように、超微粒子A、A間の空隙が
極く狭いものとなる。
The thermal conductivity of a porous material depends on the thermal conductivity of the gas (usually air) contained in the voids, so in order to eliminate the influence of the thermal conductivity of the gas, it is necessary to make the voids extremely narrow (the average of the gas The gap is smaller than the free path, and specifically, in the case of air, it needs to be, for example, about 1 nm to 60 nm). However, in a microporous material, as shown in Figure 4, even if the particles P are packed in a close-packed state, there are
Voids of about 15% of the particle size are created. Therefore, in order to obtain extremely narrow voids as described above, it was thought that a microporous material using particles with extremely small diameters, so-called "ultrafine particles", would be sufficient. However, ultrafine particles have agglomeration properties, and as shown in Figure 5, large multidimensional particles P
' is formed, and large voids are created between these multi-dimensional particles P'.
Strongly affected by the thermal conductivity of gas. For example, in the case of ultrafine silica particles, a large amount of OH of silanol groups is present on the particle surface, and since the bonds between the particles are strong due to hydrogen bonds, they are particularly prone to agglomeration. However, when the surface of the ultrafine particles of the microporous material of this invention is treated to prevent agglomeration, the gaps between the ultrafine particles A become extremely narrow, as shown in Figure 2. .

そのため、気体の熱伝導率の影響を除去でき、十分な断
熱性を有することになる。
Therefore, the influence of the thermal conductivity of gas can be removed, and sufficient heat insulation properties can be obtained.

そして、断熱ボードの機械的強度は、超微粒子がハニカ
ム構造体内に充填物として充填された構造になっている
ので、超微粒子のみを成形したものに比べて著しく向上
する。そのために、断熱ボードが実用性に富むものとな
っている。
Since the insulation board has a structure in which ultrafine particles are filled as a filler within the honeycomb structure, the mechanical strength of the heat insulation board is significantly improved compared to a board made of only ultrafine particles. This makes insulation boards highly practical.

つぎに超微粒子の表面に施されている凝集防止処理につ
いて説明する。
Next, the agglomeration prevention treatment applied to the surface of the ultrafine particles will be explained.

凝集防止処理は、例えば、超微粒子に表面処理剤を加え
る等して行う。超微粒子としては、乾式製法または湿式
製法による超微粒子シリカ(粒径としては1 rH11
〜20 nm程度が好ましく、3〜8nm程度がより好
ましい)が、−例として挙げられる。表面処理剤とは、
粒子表面のOH基に結合して水素結合の生起を妨げるよ
うにするもの、粒子同士に反発性をもたせ直接的に粒子
の凝集を防止するもの、等をいう。その例としては、例
えば、トリメチルメトキシシラン、ジメチルジェトキシ
シラン、ジメチルジメトキシシラン、メチルトリメトキ
シシラン等のアルコキシシラン化合物、ジメチルジクロ
ロシラン、トリメチルクロロシラン、メチルビニルジク
ロロシラン等のクロロシラン化合物、ヘキサメチルジシ
ラザン、ジメチルトリメチルシリルアミン等のシラザン
化合物が挙げられるが、超微粒子表面と反応するシラン
化合物であればよい。反応は、気相反応、または、液相
反応のいずれであってもよい。
The aggregation prevention treatment is performed, for example, by adding a surface treatment agent to the ultrafine particles. Ultrafine particles include ultrafine silica produced by a dry or wet process (particle size: 1 rH11
-20 nm is preferable, and about 3-8 nm is more preferable). What is a surface treatment agent?
These include those that bind to OH groups on the particle surface to prevent the formation of hydrogen bonds, and those that provide repulsion between particles and directly prevent particle aggregation. Examples include alkoxysilane compounds such as trimethylmethoxysilane, dimethyljethoxysilane, dimethyldimethoxysilane, and methyltrimethoxysilane, chlorosilane compounds such as dimethyldichlorosilane, trimethylchlorosilane, and methylvinyldichlorosilane, and hexamethyldisilazane. , dimethyltrimethylsilylamine and other silazane compounds, but any silane compound that reacts with the surface of ultrafine particles may be used. The reaction may be either a gas phase reaction or a liquid phase reaction.

なお、表面処理剤による処理に溶剤を用いる場合の溶剤
としては、ベンゼン、水、トルエン等が挙げられる。超
微粒子が分散し易い溶剤であればよい。
Note that when a solvent is used for the treatment with the surface treatment agent, examples of the solvent include benzene, water, toluene, and the like. Any solvent in which the ultrafine particles can be easily dispersed may be used.

超微粒子シリカは、空気中の水分子を吸着し易い性質が
あり、経時変化を起こす傾向がみられる。しかし、超微
粒子シリカが前記シラン化合物で凝集防止処理されてい
る場合、超微粒子シリカが撥水性も有しており、空気中
の水の吸着は殆どなく、断熱特性の経時変化も防止され
る。
Ultrafine silica particles tend to adsorb water molecules in the air and tend to change over time. However, when ultrafine silica particles are treated with the silane compound to prevent agglomeration, the ultrafine silica also has water repellency, hardly adsorbs water in the air, and prevents changes in heat insulating properties over time.

続いて、一実施例をあられす図面を参照しつつさらに詳
しく説明する。
Next, one embodiment will be described in more detail with reference to the accompanying drawings.

第1図(a)、(b)にみるように、この実施例にかか
る断熱ボードは、超微粒子、あるいは、これに粒径の大
きい微粒子を共存させた充填物3がハニカム構造体1の
空間部1aに充填され、その両面あるいは片面(図では
両面)に、板材2が接着層4によって固着されてなるも
のである。
As shown in FIGS. 1(a) and 1(b), in the heat insulation board according to this embodiment, the filling 3 containing ultrafine particles or fine particles with a large particle size coexists in the space of the honeycomb structure 1. The plate material 2 is filled in the portion 1a, and the plate material 2 is fixed to both sides or one side (both sides in the figure) with an adhesive layer 4.

なお、ここで言う粒子とは、各方向の寸法がほぼ等しい
球や立方体、あるいは多面体等の形状のものを指し、一
方向の寸法が極端に大きい、いわゆる繊維状のものは含
まない。
It should be noted that the term "particles" used herein refers to particles having a shape such as a sphere, cube, or polyhedron with substantially equal dimensions in each direction, and does not include so-called fibrous particles having an extremely large dimension in one direction.

超微粒子に加えて、第3図にみるように、超微粒子Aよ
りも大き目の粒径の微粒子Bが共存していてもよい。こ
の場合、粒径の大きな粒子B、B間の大きな空隙に超微
粒子Aが充填されているため、空隙の大きさは、超微粒
子A、A間の空隙となる。したがって、静止空気の熱伝
導率の影響を受けない微細な空隙を形成することが可能
となる。しかも、微粒子Bが含まれていると、その分、
超微粒子シリカのような高価な超微粒子を多量に必要と
せず、安価になる。また、微粒子Bが含まれていると成
形性が向上するという利点もある。
In addition to the ultrafine particles, as shown in FIG. 3, fine particles B having a larger particle size than the ultrafine particles A may coexist. In this case, since the ultrafine particles A are filled in the large gaps between the particles B having a large particle size, the size of the gap is the gap between the ultrafine particles A and A. Therefore, it is possible to form fine voids that are not affected by the thermal conductivity of still air. Moreover, if fine particles B are included,
It does not require large amounts of expensive ultrafine particles such as ultrafine silica, making it cheaper. Further, the inclusion of fine particles B has the advantage that moldability is improved.

これは、粒径の大きな粒子Bと超微粒子Aとが、互いに
成形圧を分散し、吸収しあう等して、成形圧を均一に保
つ働きを有しているためと考えられる。
This is thought to be because the large particles B and the ultrafine particles A have the function of keeping the molding pressure uniform by distributing and absorbing the molding pressure with each other.

なお、微粒子Bとしては、パーライト、シラスバルーン
、および、これらを粉砕したもの、スス、コロイダルゾ
ルの乾燥物、乾式あるいは湿式製法微粒子シリカ、ケイ
ソウ土、ケイ酸カルシウム等が挙げられる。微粒子Bに
は凝集防止処理を施す必要はないが、施すようにしても
よいことはいうまでもない。微粒子Bは、5nm= 1
0000nm程度であることがより好ましい(超微粒子
Aの粒径〈微粒子Bの粒径の関係が常に成立するように
雨粒子A、Bは選定される)。
Examples of the fine particles B include perlite, shirasu balloons, crushed products thereof, soot, dried colloidal sol, dry or wet process fine particle silica, diatomaceous earth, calcium silicate, and the like. Although it is not necessary to subject the fine particles B to anti-aggregation treatment, it goes without saying that such treatment may be carried out. Fine particles B are 5 nm = 1
More preferably, it is approximately 0,000 nm (rain particles A and B are selected so that the relationship between the particle size of ultrafine particles A and the particle size of fine particles B always holds).

ハニカム構造体lとしては、クラフト紙、アスベスト紙
、水酸化アルミニウム等を含浸させた不燃ハニカム、セ
ラミック、金属薄板等の板材を、円形、三角形、四角形
、六角形等の任意の形状の孔を有する構造に形成した通
常のものを使用することができる。
The honeycomb structure l is made of a plate material such as kraft paper, asbestos paper, non-combustible honeycomb impregnated with aluminum hydroxide, ceramic, thin metal plate, etc., and has holes of any shape such as circular, triangular, square, hexagonal, etc. A conventional one formed into a structure can be used.

板材2は、前述したように、上記ハニカム構造体1の両
面、あるいは、片面に固着されるもので、クラフト紙や
アスベスト紙、段ポール紙、水酸化アルミニウム等を含
浸させた不燃紙等の紙、金属板、合板、ガラスクロス、
ケイ酸カルシウム板、石膏ボード等が使用される。
As mentioned above, the plate material 2 is fixed to both sides or one side of the honeycomb structure 1, and is made of paper such as kraft paper, asbestos paper, corrugated paper, or noncombustible paper impregnated with aluminum hydroxide. , metal plate, plywood, glass cloth,
Calcium silicate board, gypsum board, etc. are used.

ハニカム構造体1に板材2を固着するには、たとえば、 ■ ナイロン、ポリエチレン等のような200℃程度で
軟化し接着性を有する有機フィルム、■ エポキシ樹脂
、ポリウレタン樹脂、フェノール樹脂、PVA、酢酸ビ
ニル樹脂、アクリル樹脂、イソシアネート樹脂、ブタジ
ェンアクリロニトリル樹脂、多硫化ゴム等の有機系接着
剤、■ 水ガラス系接着剤、コロイド状無機結合剤、金
属アルコキシド加水分解物、液状化した硼砂等の無機系
接着剤、 等からなる接着層4が使用される。
To fix the plate material 2 to the honeycomb structure 1, for example, ■ an organic film such as nylon, polyethylene, etc. that softens at about 200°C and has adhesive properties, ■ epoxy resin, polyurethane resin, phenol resin, PVA, vinyl acetate, etc. Organic adhesives such as resins, acrylic resins, isocyanate resins, butadiene acrylonitrile resins, polysulfide rubber, ■ Inorganic adhesives such as water glass adhesives, colloidal inorganic binders, metal alkoxide hydrolysates, and liquefied borax. An adhesive layer 4 consisting of adhesive, etc. is used.

上記ハニカム構造体1や板材2は、用途により、適宜組
み合わせて使用することができる。
The honeycomb structure 1 and the plate materials 2 described above can be used in appropriate combinations depending on the purpose.

たとえば、この発明の断熱ボードを、高温部の断熱に使
用する場合には、ハニカム構造体1としてアスベスト紙
、不燃ハニカム、セラミック、金属薄板等を使用し、板
材2としても同様に、アスベスト紙、不燃紙、ガラスク
ロス、ケイ酸カルシウム板、石膏ボード、金属板等を使
用すればよい。接着層4にも、これら材料の接着に適し
たものを選ぶようにする。
For example, when the insulation board of the present invention is used to insulate a high-temperature part, asbestos paper, non-combustible honeycomb, ceramic, thin metal plate, etc. are used as the honeycomb structure 1, and asbestos paper, Noncombustible paper, glass cloth, calcium silicate board, gypsum board, metal plate, etc. may be used. The adhesive layer 4 should also be selected to be suitable for adhering these materials.

また、ボード全体の断熱性を考えた場合には、云うまで
もなく、ハニカム構造体1や板材2、接着層4としても
、熱伝導率の低いものを使用することが好ましい。
Furthermore, when considering the heat insulation properties of the entire board, it goes without saying that it is preferable to use materials with low thermal conductivity for the honeycomb structure 1, the plate material 2, and the adhesive layer 4.

つぎに、この発明の具体的な実施例と比較例を製造も含
めて説明する。
Next, specific examples and comparative examples of the present invention will be described, including manufacturing.

(実施例1) まず、以下のようにして凝集防止処理を施した超微粒子
を準備した。ベンゼンに乾式製法超微粒子シリカ(日本
アエロジル0菊製、AEROSIL 380、粒径:約
7nm)を攪拌分散させ、この分散溶液に、ヘキサメチ
ルジシラザン(東芝シリコーン側製、TSL 8802
)のベンゼン溶液を加え、30分間混合後、ベンゼンの
還流温度(80℃)で約2時間、攪拌を続け、反応を行
った。この時の重量比は、超微粒子シリカ:ヘキサメチ
ルジシラザン:ベンゼン=1:0.13:18であった
。この反応溶液を減圧乾燥によって室温で乾燥させ、凝
集防止処理した超微粒子を得た。
(Example 1) First, ultrafine particles subjected to agglomeration prevention treatment were prepared as follows. Dry process ultrafine particle silica (AEROSIL 380, manufactured by Nippon Aerosil 0 Kiku, particle size: approximately 7 nm) is stirred and dispersed in benzene, and hexamethyldisilazane (manufactured by Toshiba Silicone, TSL 8802) is added to this dispersion solution.
) was added, and after mixing for 30 minutes, stirring was continued for about 2 hours at the benzene reflux temperature (80° C.) to carry out the reaction. The weight ratio at this time was ultrafine silica:hexamethyldisilazane:benzene=1:0.13:18. This reaction solution was dried under reduced pressure at room temperature to obtain ultrafine particles treated to prevent agglomeration.

ハニカム構造体1としてペーパハニカム(昭和飛行機工
業■製38−3−0)を準備し、このハニカム構造体1
を金型に設置しておいて、ハニカム構造体1の空間部1
a内に超微粒子を充填した。充填後、加圧成形し、空隙
部1aに超微粒子が詰まった成形体を得た。成形体を金
型から取り出し、その両面に接着層4たる有機フィルム
(ダイセル化学工業■製ダイアミドフィルム3102)
によって、クラフト紙からなる板材2を固着させて、断
熱ボードを完成させた。固着は、170℃に加熱してフ
ィルムを軟化させ、圧力5 kg / co!で加圧圧
着することにより行った。
A paper honeycomb (38-3-0 manufactured by Showa Aircraft Industry Co., Ltd.) was prepared as the honeycomb structure 1, and this honeycomb structure 1
is installed in the mold, and the space 1 of the honeycomb structure 1 is
A was filled with ultrafine particles. After filling, the mixture was press-molded to obtain a molded article in which the voids 1a were filled with ultrafine particles. The molded body is taken out from the mold, and an organic film (Diamid Film 3102 manufactured by Daicel Chemical Industries, Ltd.) is placed on both sides of the molded body as an adhesive layer.
In this way, the board material 2 made of kraft paper was fixed to complete the insulation board. For fixation, soften the film by heating to 170°C and apply a pressure of 5 kg/co! This was done by pressure bonding.

(実施例2) 乾式製法による超微粒子シリカとして、徳山曹達■製、
REOLO5IL (粒径:約5 nm)を使用し、反
応の際の重量比を、超微粒子シリカ:ヘキサメチルジシ
ラザン:ベンゼン=1:0.16:27とした以外は、
実施例1と同様にして、断熱ボードを得た。
(Example 2) As ultrafine particle silica produced by dry process, manufactured by Tokuyama Soda ■,
Except that REOLO5IL (particle size: about 5 nm) was used and the weight ratio during the reaction was ultrafine silica: hexamethyldisilazane: benzene = 1:0.16:27.
A heat insulating board was obtained in the same manner as in Example 1.

(実施例3) 凝集防止処理をした超微粒子として、シリコーン樹脂微
粉末(東芝シリコーン@1製、XC99−702粒径:
約8 nm)を用いた他は、実施例1と同様にして、断
熱ボードを得た。
(Example 3) Silicone resin fine powder (manufactured by Toshiba Silicone@1, XC99-702 particle size:
A heat insulating board was obtained in the same manner as in Example 1, except that a material with a thickness of about 8 nm) was used.

(実施例4) ハニカム構造体1として、アスベストハニカム(昭和飛
行機工業@M  25−A−0)を用い、板材2として
アスベスト紙(オリベスト社製)を用い、接着層4用と
して水ガラス系接着剤を使用し、200℃、圧力5 k
g / cfflで2時間かけて固着させるようにした
他は、実施例1と同様にして、断熱ボードを得た。
(Example 4) As the honeycomb structure 1, asbestos honeycomb (Showa Aircraft Industry @ M 25-A-0) was used, asbestos paper (manufactured by Olivest Co., Ltd.) was used as the plate material 2, and water glass adhesive was used for the adhesive layer 4. 200℃, pressure 5K
A heat insulating board was obtained in the same manner as in Example 1, except that it was fixed for 2 hours at 1 g/cffl.

(実施例5) 実施例1において、超微粒子に、パーライト(宇部興産
■製 パーライト1型FB)をボールミルで24時間粉
砕して得た粒子を混合する以外は、実施例1と同様にし
て、断熱ボードを得た。
(Example 5) In the same manner as in Example 1, except that the ultrafine particles were mixed with particles obtained by grinding perlite (Perlite Type 1 FB manufactured by Ube Industries ■) in a ball mill for 24 hours, Got the insulation board.

(比較例1) 超微粒子の表面に凝集防止処理しない以外は、実施例1
と同様にして、断熱ボードを得た。
(Comparative Example 1) Example 1 except that the surface of the ultrafine particles was not treated to prevent agglomeration.
A heat insulating board was obtained in the same manner as above.

(比較例2) 実施例1で得られた凝集防止処理ずみの超微粒子をその
まま、10kg/c+dの圧力で加圧成形して断熱ボー
ドを得た。
(Comparative Example 2) The anti-aggregation treated ultrafine particles obtained in Example 1 were directly pressure-molded at a pressure of 10 kg/c+d to obtain a heat insulating board.

実施例ならびに比較例の各断熱ボードの熱伝導率ならび
に曲げ強度を測定した。熱伝導率測定は、英弘精機■製
の定常法による熱伝導率測定装置を使用して、ASTM
−C518に準拠した方法で、設定温度20℃と40℃
の条件で行った。また、曲げ強度はJIS A9510
に準拠して測定した。
The thermal conductivity and bending strength of each heat insulating board of Examples and Comparative Examples were measured. Thermal conductivity was measured using a steady-state method thermal conductivity measuring device manufactured by Hideko Seiki.
- Set temperature 20°C and 40°C in accordance with C518
It was conducted under the following conditions. In addition, the bending strength is JIS A9510
Measured according to.

第1表の結果より、この発明の断熱ボードである実施例
は、いずれも、低い熱伝導率を維持しつつ、強度が著し
く高く、より実用的であることが分かる。
From the results in Table 1, it can be seen that all of the examples of the heat insulating boards of the present invention have significantly high strength while maintaining low thermal conductivity, and are more practical.

〔発明の効果〕〔Effect of the invention〕

この発明の断熱ボードは、以上に詳述したとおりであり
、ハニカム構造体の空間部に、凝集防止処理が施された
超微粒子が充填されてなるものであるため、優れた断熱
性があり、しかも、実用に耐え得る機械的強度を有する
The heat insulating board of the present invention is as described in detail above, and since the space of the honeycomb structure is filled with ultrafine particles treated to prevent agglomeration, it has excellent heat insulating properties. Furthermore, it has mechanical strength that can withstand practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の断熱ボードの一実施例の内部構造
をあられす図であって、同図(alはその正面断面図、
同図(b)は図(a)のX−x断面図、第2図は、ハニ
カム構造体の空間部に充填された超微粒子の充填状態の
一例を説明する説明図、第3図は、ハニカム構造体の空
間部に充填された超微粒子の充填状態の他の例を説明す
る説明図、第4図は、微粒子間の空隙状態の一例を説明
する説明図、第5図は、超微粒子間の空隙状態の参考例
を説明する説明図である。 1・・・ハニカム構造体 1a・・・空間部 A・・・
超微粒子 B・・・微粒子 代理人 弁理士  松 本 武 空 筒1 図 (a)   ・ :?41j 第2図 第3因 第4図 第5図
FIG. 1 is a diagram showing the internal structure of an embodiment of the heat insulating board of the present invention.
Figure (b) is a sectional view taken along the line X-x in figure (a), Figure 2 is an explanatory diagram illustrating an example of the filling state of ultrafine particles filled in the space of the honeycomb structure, and Figure 3 is An explanatory diagram illustrating another example of the filling state of ultrafine particles filled in the spaces of the honeycomb structure, FIG. 4 is an explanatory diagram illustrating an example of the state of voids between the microparticles, and FIG. It is an explanatory view explaining a reference example of the gap state between. 1...Honeycomb structure 1a...Space part A...
Ultrafine particles B...Fine particle agent Patent attorney Takeshi Matsumoto Sky tube 1 Figure (a) ・ :? 41j Figure 2 Cause 3 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)ハニカム構造体の空間部に超微粒子が充填されて
なる断熱ボードであって、前記超微粒子の表面には凝集
防止処理が施されていることを特徴とする断熱ボード。
(1) A heat insulating board in which the space of a honeycomb structure is filled with ultrafine particles, the surface of the ultrafine particles being treated to prevent agglomeration.
(2)充填された粒子間に形成される空隙の大きさが1
nm〜60nmである特許請求の範囲第1項記載の断熱
ボード。
(2) The size of the void formed between the filled particles is 1
The heat insulating board according to claim 1, which has a thickness of 60 nm to 60 nm.
(3)凝集防止処理がシラン化合物を用いてなされてい
る特許請求の範囲第1項または第2項記載の記載の断熱
ボード。
(3) The heat insulating board according to claim 1 or 2, wherein the agglomeration prevention treatment is performed using a silane compound.
(4)空間部には超微粒子よりも径が大きな微粒子も共
に充填されている特許請求の範囲第1項から第3項まで
のいずれかに記載の断熱ボード。
(4) The insulation board according to any one of claims 1 to 3, wherein the space is also filled with fine particles having a larger diameter than the ultrafine particles.
JP31262687A 1987-12-10 1987-12-10 Heat-insulating board Pending JPH01153896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31262687A JPH01153896A (en) 1987-12-10 1987-12-10 Heat-insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31262687A JPH01153896A (en) 1987-12-10 1987-12-10 Heat-insulating board

Publications (1)

Publication Number Publication Date
JPH01153896A true JPH01153896A (en) 1989-06-16

Family

ID=18031465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31262687A Pending JPH01153896A (en) 1987-12-10 1987-12-10 Heat-insulating board

Country Status (1)

Country Link
JP (1) JPH01153896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100603C (en) * 1998-12-31 2003-02-05 中国科学院沈阳应用生态研究所 Adsorptive asbestos and mineral wool fiber material
JP2010501794A (en) * 2006-08-24 2010-01-21 エーリンクリンゲル アクチエンゲゼルシャフト Shielding member, especially heat shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100603C (en) * 1998-12-31 2003-02-05 中国科学院沈阳应用生态研究所 Adsorptive asbestos and mineral wool fiber material
JP2010501794A (en) * 2006-08-24 2010-01-21 エーリンクリンゲル アクチエンゲゼルシャフト Shielding member, especially heat shield

Similar Documents

Publication Publication Date Title
JP7488877B2 (en) Improved Laminates Including Reinforced Aerogel Composites - Patent application
JP4237253B2 (en) Fiber web / airgel composites containing bicomponent fibers, their production and use
TW202135373A (en) Aerogel-based components and systems for electric vehicle thermal management
JP4361602B2 (en) Aerogel-containing composite material, production method thereof and use thereof
JP4120992B2 (en) COMPOSITE MATERIAL CONTAINING AIRGEL AND ADHESIVE, ITS MANUFACTURING METHOD, AND USE THEREOF
US3353975A (en) Low density insulation bonded with colloidal inorganic materials
JP4338788B2 (en) Multilayer composite material having at least one airgel containing layer and at least one polyethylene terephthalate fiber containing layer, process for its production and use thereof
JP3288666B2 (en) Microporous molded article, method for producing the same, catalyst and use of molded article
KR20130024542A (en) Vaccum insulation panel using getter composites
WO1988007503A1 (en) Method for manufacturing fine porous member
CN109715892A (en) Heat-barrier material arranges body
US9370915B2 (en) Composite material
TW200521370A (en) Vacuum heat insulating material and refrigerating apparatus including the same
JPH01153896A (en) Heat-insulating board
TW202140629A (en) Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
JP2756366B2 (en) Method for producing hydrophobic airgel
JP2018203565A (en) Adiabatic material and vacuum heat insulation material
JPH01164773A (en) Production of porous body having minute pore
JPH0569063B2 (en)
JPH01199095A (en) Insulation board
KR20200129925A (en) Aerogel based flexible heat insulator and method for preparing thereof
JPH01157473A (en) Fine porous body
JPH03140718A (en) Heater device
JPH0566341B2 (en)
JPH03247577A (en) Heat insulating material