JPH01157457A - Production of molded body of superconducting ceramic - Google Patents

Production of molded body of superconducting ceramic

Info

Publication number
JPH01157457A
JPH01157457A JP62315679A JP31567987A JPH01157457A JP H01157457 A JPH01157457 A JP H01157457A JP 62315679 A JP62315679 A JP 62315679A JP 31567987 A JP31567987 A JP 31567987A JP H01157457 A JPH01157457 A JP H01157457A
Authority
JP
Japan
Prior art keywords
superconducting
molded body
superconducting ceramic
fine powder
oc4h9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315679A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Yuichi Masuda
裕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62315679A priority Critical patent/JPH01157457A/en
Publication of JPH01157457A publication Critical patent/JPH01157457A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To produce easily a precise superconducting ceramic having a stable composition by molding a mixture consisting of fine powder of a superconducting oxide and an organometallic salt contg. at least one kind of constituting cation, and oxidizing the mixture by heating. CONSTITUTION:A mixture of an organometallic salt (e.g., diethoxy Ba, triethoxy Y, diethoxy Cu) contg. at least one king of constituting cation, with fine powder of superconducting oxide (e.g., fine powder of BaY2Cu3O7) is molded to a desired shape. The obtd. molded body 1 is laid in a quartz muffle 2 and heated with a heating furnace 4, introducing simultaneously O2 into the quartz muffle 2 through a valve 5a, oxidizing at about 600 deg.C, and sintering at about 1000 deg.C. Thus, a molded body of superconducting ceramic is obtd. Fusion of the material at low temp. is possible since an organometallic salt is mixed, so volatilization of Cu, etc., and contamination from a crucible are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超伝導セラミックス成形体の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconducting ceramic molded body.

〔従来の技術〕[Conventional technology]

一従来、超伝導セラミックスは、一般に焼結体として製
造され、その製造方法を説明すれば、以下の通りである
Conventionally, superconducting ceramics are generally manufactured as sintered bodies, and the manufacturing method thereof will be explained as follows.

まず、原料としての酸化バリウム(Ba O)、三酸化
二イツトリウム(Y2O2)、酸化銅(Cu O) 、
三酸化二ランタン(La203)、二酸化ストロンチウ
ム(Sr02)等が秤量・混合されたのち乾燥され、そ
の後、プレス成形されて予備焼結される。ついで、予備
焼結体は再び粉砕されて所定の形状にプレス成形され、
その後、最終焼結されて超伝導セラミックスの焼結体が
製造される。
First, barium oxide (BaO), diyttrium trioxide (Y2O2), copper oxide (CuO) as raw materials,
Dilanthanum trioxide (La203), strontium dioxide (Sr02), etc. are weighed and mixed, dried, and then press-formed and pre-sintered. Next, the preliminary sintered body is crushed again and press-formed into a predetermined shape.
Thereafter, final sintering is performed to produce a sintered body of superconducting ceramics.

ところで、超伝導セラミックスを各種の産業分野におい
て実用に供しようとする場合には、焼結体として供給で
きるだけでなく、その形状を所望に加工できる加工技術
も不可欠とされている。そこで、例えば超伝導セラミッ
クスの線材、パイプ材、シート材などの製造方法の確立
が必要とされる。
By the way, when superconducting ceramics are to be put to practical use in various industrial fields, it is essential to have processing techniques that can not only supply them as sintered bodies but also process them into desired shapes. Therefore, it is necessary to establish a method for manufacturing superconducting ceramic wires, pipes, sheets, etc., for example.

これらの加工技術の例として、上記焼結体を再溶融し、
溶湯を鋳込むことにより所望の形状の超伝導セラミック
スを得る方法、あるいは、超伝導セラミックスの焼結体
を金属シースにより覆うことで超伝導セラミックスを安
定化し、線材を製造する方法等が知られていた。
As an example of these processing techniques, the above sintered body is remelted,
There are known methods such as obtaining superconducting ceramics in a desired shape by casting molten metal, or stabilizing superconducting ceramics by covering a sintered body of superconducting ceramics with a metal sheath, and manufacturing wire rods. Ta.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記の従来の加工技術によれば、いったん焼
結された超伝導セラミックスは、再び溶融されるか、あ
るいは1300℃程度の高温の熱処理を受けるので、C
u、O等の成分が揮散してしまい、安定的に均一な組成
の物品を得ることができなかった。また、1000℃程
度で熱処理すると、せっかくの超伝導相が変質されてし
まうという問題点を有していた。
However, according to the above-mentioned conventional processing technology, once sintered superconducting ceramics are melted again or undergo heat treatment at a high temperature of about 1300°C, C
Components such as u and O were volatilized, making it impossible to stably obtain an article with a uniform composition. Further, there was a problem in that heat treatment at about 1000° C. deteriorates the superconducting phase.

これに対して、超伝導セラミックスの焼結体を所定の線
材形状等に成形した後に、成形体を950℃程度の温度
でアニールし、これによって超伝導相にする提案もある
が、アニール時に成形体が破損してしまう。さらに、ア
ニール時に超伝導セラミックスの成分中のCu、O等が
揮散してしまい、かえって均一な組成を保てないことも
あった。
On the other hand, there is a proposal to form a sintered body of superconducting ceramics into a predetermined wire shape, etc., and then anneal the formed body at a temperature of about 950°C, thereby converting it into a superconducting phase. The body will be damaged. Furthermore, Cu, O, etc. contained in the components of the superconducting ceramic volatilize during annealing, making it impossible to maintain a uniform composition.

上記の諸種の問題点により、従来、超伝導セラミックス
を安定に加工し、所望の形状の超伝導セラミックス成形
体を製造することは、きわめて困難とされていた。
Due to the various problems mentioned above, it has conventionally been extremely difficult to stably process superconducting ceramics and produce superconducting ceramic molded bodies of desired shapes.

本発明は、上記の従来技術が有していた問題点を解決す
るためになされたもので、超伝導セラミックスを安定に
加工し、所望の形状の超伝導セラミックス成形体を得る
ことのできる製造方法を提供することを目的とする。
The present invention was made in order to solve the problems of the above-mentioned conventional techniques, and is a manufacturing method that can stably process superconducting ceramics and obtain a superconducting ceramic molded body of a desired shape. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

本発明の超伝導セラミックス成形体の製造方法は、上記
目的を達成するため、超伝導酸化物微粉末に少なくとも
一種の当該構成カチオンを含む有機金属塩を混合したの
ち、所定の形状の成形体を得る成形工程と、成形体を酸
化して当該形状の超伝導セラミックス成形体を得る酸化
工程とを有することを特徴とする。
In order to achieve the above object, the method for producing a superconducting ceramic molded body of the present invention includes mixing an organic metal salt containing at least one constituent cation with a superconducting oxide fine powder, and then forming a molded body in a predetermined shape. and an oxidation step of oxidizing the molded body to obtain a superconducting ceramic molded body having the shape.

〔作用〕[Effect]

本発明は、上記のように構成されたので、超伝導酸化物
微粉末には金属アルコキシドなどの有機金属塩が混合さ
れて所望の形状に形成され、しかる後に酸化される。従
って、低温での融解が可能なのでCuなどの揮散が抑え
られ、また、るつぼや雰囲気からの汚染が防止される。
Since the present invention is configured as described above, the superconducting oxide fine powder is mixed with an organic metal salt such as a metal alkoxide, formed into a desired shape, and then oxidized. Therefore, since it is possible to melt at a low temperature, volatilization of Cu and the like is suppressed, and contamination from the crucible or the atmosphere is prevented.

さらに、熱的な破壊も少ないので、組成が安定して精密
な大型加工物品を得ることができる。
Furthermore, since there is little thermal destruction, large-sized processed articles with stable composition and precision can be obtained.

〔実施例〕〔Example〕

以下、添付図面の第1図を参照して、本発明に係る製造
方法の実施例について説明する。
Embodiments of the manufacturing method according to the present invention will be described below with reference to FIG. 1 of the accompanying drawings.

まず、原料としてのBa O,Y2O3,Cu O。First, BaO, Y2O3, CuO as raw materials.

La  O、S r 02などは、所定の比率に秤量・
混合され、乾燥されたのちプレス成形されて予備焼結さ
れる。予備焼結体は再び粉砕されて所定の形状にプレス
成形され、その後、最終焼結されて超伝導セラミックス
の焼結体が製造される。
La O, S r 02, etc. are weighed and weighed to a predetermined ratio.
After being mixed and dried, it is press-molded and pre-sintered. The preliminary sintered body is crushed again and press-formed into a predetermined shape, and then finally sintered to produce a sintered body of superconducting ceramics.

このような超伝導セラミックスの焼結体は、超伝導酸化
物微粉末に粉砕されたのち、有機金属塩と混合せしめら
れる。有機金属塩には金属アルコキシド、アセチルアセ
トン錯塩あるいはオクチル酸金属塩などがあり、金属ア
ルコキシドの具体例としては、 Ba (OC2H5)2 ジェトキシバフ功ムBa (
OC3H7)2 ジ−ミープロポキシバリウムBa (
OC4H9)2 ジーn−ブトキシバ1功ムY(OCH
)     )リエトキシイットリウムY(OCH) 
   トリーミープロポキシイツトリウムY(OCH)
    トリーローブトキシイツトリウムCu (OC
2H5)2 ジェトキシ銅Cu  (OC3H7) 2
  ジ−ミープロポキシ銅Cu (OC4H9)2 ジ
ーn−ブトキシ銅Zr (OC2H5)4 テトラエト
キシジルコニウムZr  (OCa H7) 4 テト
ラ−1−プロポキシジルコニウムzr (OC4H9)
4 テトラ−n−ブトキシジルコニウムNb (OC2
H5)5 ペンタエトキシニオブNb (OC3H7)
5 ペンタ−1−プロポキシニオブNb (OC4H9
)5 ペンタ−n−ブトキシニオブTa (OC2H5
)5 ペンタエトキシタンタルTa (OC3H7)5
 ベンターミープロポキシタンタルTa (OC4H9
)5 ベンターn−ブトキシタンタルIn (OC2H
5)3  トリエトキシインジウムIn (OC3H7
)3 トリーミープロポキシインジウムIn  (OC
4H9)3  )ジ−n−ブトキシインジウムSn  
(QC2H5) 4 テトラエトシキ錫Sn (OC3
H7)4 テトラ−1−プロポキシ錫Sn (OC4H
9)4 テトラ−n−ブトキシ錫Fe (OC2H5)
3  トリエトキシ鉄Fe (OC3H7)3  トリ
ーミープロポキシ鉄Fe (OC4H9)3  トリー
n−ブトキシ鉄S1 (OC2H5)4 テトラエトキ
シシリコンSi (OC3H7)4 テトラ−1−プロ
ポキシシリコンSl (OC4H9)4 テトラ−n−
ブトキシシリコンGa (OC2H5)3  トリエト
キシランタンGa (OC3H7)3  トリーミープ
ロポキシガリウムGa  (OC4H9) a   F
リーn−ブトキシガリウムSr (OC2H5)2 ジ
ェトキシストロンチウムS r  (OCs H7) 
2  ジ−ミープロポキシストロンチウムS r  (
OC4H9) 2  ジ−n−ブトキシストロンチウム
W(QCH)    へキサエトキシタングステンW(
QCH)    ヘキサ−1−プロポキシタングステン
W(QCH)    ヘキサ−n−ブトキシタングステ
ンMn (OC2H5)2 ジェトキシマンガンMn 
 (OC3H7) 2 ジ−ミープロポキシマンガンM
n (OC4H9)2 ジ−n−ブトキシマンガンco
 (OC2H5)2 ジェトキシコバルトco (OC
3H7)2 ジ−ミープロポキシコバルトco (OC
4H9)2 ジーn−ブト羊ジコバルトzn (OC2
H5)2 ジェトキシ亜鉛zn (OC3H7)2 ジ
−ミープロポキシ亜鉛zn (OC4H9)2 ジ−n
−ブトキシ亜鉛Ni  (OC2H5) 2  ’) 
” トキシニty ’r /l/Nl  (OC3H7
)2  ジ−ミープロポキシニッケルNt  (QC4
H9) 2  ジーn−ブトキシニッケル八g (OC
2H5)3 ジェトキシアルミニウムAI (OC3H
7)3 ジ−ミープロポキシアルミニウムAN  (Q
C,H9) 3 ジ−n−ブトキシアルミニウムLa 
(OC2H5)3  トリエトキシランタンLa (O
C3H7)3  トリー1−プロポキシランタンLa 
(OC4H9)3  トリーローブトキシランタンTI
  (OC2H5)4 テトラエトキシチタニウムTI
 (OC3H7)4 テトラ−1−プロポキシチタニウ
ムT1 (OC4H9)4 テトラ−n−ブトキシチタ
ニウムなどがあり、アセチルアセトン錯酸塩の具体例と
しては、 Ba(C5H702)2(OH2)2 ビスアセチルアセトナトジアコバリウムY(C5H70
2)3 トリスアセチルアセトナドイツトリウムCu(C5H7
O2)2 ビスアセチルアセトナト銅(n) La(C5H702)3 トリスアセチルアセトナトランタン などがあり、またオクチル酸金属塩の具体例としては、 Ba (C7H15COO)2オクチル酸バ1功ムY(
CHC00)3 オクチル酸イツトリウムCu (C7
H15C00)2オクチル酸銅La (C7H15C0
0)3オクチル酸ランタンなどがある。
Such a sintered body of superconducting ceramics is ground into fine superconducting oxide powder, and then mixed with an organic metal salt. Examples of organic metal salts include metal alkoxides, acetylacetone complex salts, and metal octylate salts. Specific examples of metal alkoxides include Ba (OC2H5)2
OC3H7)2 Jimmy propoxy barium Ba (
OC4H9) 2 G-n-butoxiba 1 function Y (OCH
)) Liethoxyyttrium Y (OCH)
Treaty Propoxyyttrium Y (OCH)
Treelobed Toxythtrium Cu (OC
2H5)2 Jetoxy copper Cu (OC3H7) 2
Jimmy propoxy copper Cu (OC4H9)2 Di-n-butoxy copper Zr (OC2H5)4 Tetraethoxyzirconium Zr (OCa H7) 4 Tetra-1-propoxyzirconium zr (OC4H9)
4 Tetra-n-butoxyzirconium Nb (OC2
H5)5 Pentaethoxyniobium Nb (OC3H7)
5 Penta-1-propoxyniobium Nb (OC4H9
)5 Penta-n-butoxyniobium Ta (OC2H5
)5 Pentaethoxytantalum Ta (OC3H7)5
Bentamypropoxytantalum Ta (OC4H9
)5 Venter n-butoxytantalum In (OC2H
5) 3 Triethoxyindium In (OC3H7
)3 Treaty Propoxy Indium (OC
4H9)3) Di-n-butoxyindium Sn
(QC2H5) 4 TetraethoxytinSn (OC3
H7)4 Tetra-1-propoxytin Sn (OC4H
9)4 Tetra-n-butoxytinFe (OC2H5)
3 Triethoxy iron Fe (OC3H7)3 Treaty propoxy iron Fe (OC4H9)3 Tri-n-butoxy iron S1 (OC2H5)4 Tetra-ethoxy silicon Si (OC3H7)4 Tetra-1-propoxy silicon Sl (OC4H9)4 Tetra-n-
Butoxysilicon Ga (OC2H5)3 Triethoxylanthanum Ga (OC3H7)3 Treatypropoxygallium Ga (OC4H9) a F
Li n-butoxygallium Sr (OC2H5)2 Jetoxystrontium Sr (OCs H7)
2 Jimmy propoxystrontium S r (
OC4H9) 2 Di-n-butoxystrontium W (QCH) Hexaethoxytungsten W(
QCH) Hexa-1-propoxytungsten W (QCH) Hexa-n-butoxytungsten Mn (OC2H5)2 Jetoxymanganese Mn
(OC3H7) 2 Jimmy Propoxy Manganese M
n (OC4H9)2 di-n-butoxymanganese co
(OC2H5)2 Jetoxycobalt co (OC
3H7)2 Jimmy propoxy cobalt co (OC
4H9)2 Jean-n-buto-sheep dicobalt zn (OC2
H5)2 Jetoxyzinc zn (OC3H7)2 Jimmy propoxyzinc zn (OC4H9)2 Z-n
-butoxyzinc Ni (OC2H5) 2')
” Toxinity 'r /l/Nl (OC3H7
)2 Jimmy propoxy nickel Nt (QC4
H9) 2 8g of di-n-butoxynickel (OC
2H5)3 Jetoxyaluminum AI (OC3H
7) 3 Jimmy propoxy aluminum AN (Q
C, H9) 3 di-n-butoxyaluminum La
(OC2H5)3 Triethoxylanthanum La (O
C3H7)3 Tory-1-propoxylanthanum La
(OC4H9)3 Treelobe Toxylanthanum TI
(OC2H5)4 Tetraethoxytitanium TI
(OC3H7)4 Tetra-1-propoxytitanium T1 (OC4H9)4 Tetra-n-butoxytitanium, etc. Specific examples of acetylacetone complex salts include Ba(C5H702)2(OH2)2 Bisacetylacetonatodiaco Barium Y (C5H70
2) 3 Tris acetylacetonate German thorium Cu (C5H7
O2)2 Bisacetylacetonatocopper (n) La(C5H702)3 Trisacetylacetonatotranthane, etc., and specific examples of octylate metal salts include Ba (C7H15COO)2 octylate base Y(
CHC00)3 Yttrium octylate Cu (C7
H15C00) Copper 2-octylate La (C7H15C0
0) Lanthanum 3-octylate, etc.

このような有機金属塩を含む超伝導酸化物微粉末は円柱
形状のロッド1に成形され、第1図のようにバルブ5a
、5bを有する石英マツフル2内に入れられる。そして
、円柱状ロッド1はバルブ5a、5bを介して導入され
た酸素(0□)雰囲気中で、加熱炉4により600℃程
度に加熱されて酸化され、更に1000℃程度の温度で
焼成される。これにより、円柱形状の超伝導セラミック
ス成形体を得ることができる。
The superconducting oxide fine powder containing the organic metal salt is formed into a cylindrical rod 1, and as shown in FIG.
, 5b. The cylindrical rod 1 is then heated to about 600°C in a heating furnace 4 to be oxidized in an oxygen (0□) atmosphere introduced through valves 5a and 5b, and then fired at a temperature of about 1000°C. . Thereby, a cylindrical superconducting ceramic molded body can be obtained.

本発明者は発明の有効性を確認するため、次のような実
験を行なった。
The inventor conducted the following experiment in order to confirm the effectiveness of the invention.

まず、原料である超伝導酸化物微粉末としてB a Y
  Cu a Orを100g用意し、金属アルコトキ
シドとして、 Ba(QCH)  :2モル Y(QCH)    :1モル Cu(QCH)  :3モル をこの超伝導酸化物微粉末に混合した。そして、600
℃で酸化させた後に、1000℃以下の温度で30分間
の焼成を行ない、円柱状のロッドを得た。
First, as a superconducting oxide fine powder that is a raw material, B a Y
100 g of Cu a Or was prepared, and as a metal alkotoxide, Ba(QCH): 2 mol Y(QCH): 1 mol Cu(QCH): 3 mol was mixed with this superconducting oxide fine powder. And 600
After being oxidized at 1000° C., it was fired for 30 minutes at a temperature of 1000° C. or lower to obtain a cylindrical rod.

次に、本発明者は得られた超伝導セラミックス成形体の
構造解析を粉末X線回折法により行った。
Next, the present inventor conducted a structural analysis of the obtained superconducting ceramic molded body by powder X-ray diffraction method.

その結果、この構造はKNtF4構造であり、高温超伝
導セラミックスの代表的構造と一致することが判明した
。さらに、液体窒素温度(77°K)で超伝導特性を示
した。
As a result, it was found that this structure was a KNtF4 structure, which corresponded to a typical structure of high-temperature superconducting ceramics. Furthermore, it exhibited superconducting properties at liquid nitrogen temperature (77°K).

以上、本発明の°実施例について説明したが、本発明は
種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention can be modified in various ways.

例えば、本発明はBa −Y−Cu −0系の超伝導セ
ラミックスだけでなく、スカンジウム(Sc ) 、L
a sベリリウム(Be ) 、7グネシウム(Mg 
) 、ストロチウム(Sr )等が添加された超伝導セ
ラミックスについても有効である。
For example, the present invention applies not only to Ba-Y-Cu-0 based superconducting ceramics but also to scandium (Sc), L
as Beryllium (Be), 7gnesium (Mg
), strotium (Sr), etc., are also effective for superconducting ceramics.

また、実施例の説明では超伝導セラミックスをKNiF
4構造として例示したが、酸素欠損三重ペロブスカイト
構造の超伝導セラミックスについても適用できる。さら
に、超伝導セラミックス成形体はパイプ状、平板状、テ
ープ状などいかなる形状であってもよい。また、酸化あ
るいは焼成の温度は、原料に応じて適宜に設定されるも
のであり、実施例の数値に限られるものではない。
In addition, in the explanation of the embodiment, the superconducting ceramic is KNiF.
4 structure, but it can also be applied to superconducting ceramics with an oxygen-deficient triple perovskite structure. Further, the superconducting ceramic molded body may have any shape such as a pipe shape, a flat plate shape, or a tape shape. Further, the oxidation or firing temperature is appropriately set depending on the raw material, and is not limited to the values in the examples.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の超伝導セラミックス成形体の製造
方法は、上記のように構成されたので、超伝導酸化物微
粉末には金属アルコキシドなどの有機金属塩が混合され
て所望の形状に形成され、しかる後に酸化される。従っ
て、低温での融解が可能なのでCuなどの揮散が抑えら
れ、また、るつぼや雰囲気からの汚染が防止される。さ
らに、熱的な破壊も少ないので、組成が安定して精密な
大型加工物品を得ることができる。従って、超伝導セラ
ミックスを安定に加工し、所望の形状の超伝導セラミッ
クス成形体を得ることができるという効果を奏する。
As described above, since the method for producing a superconducting ceramic molded body of the present invention is configured as described above, the superconducting oxide fine powder is mixed with an organic metal salt such as a metal alkoxide and formed into a desired shape. and then oxidized. Therefore, since it is possible to melt at a low temperature, volatilization of Cu and the like is suppressed, and contamination from the crucible or the atmosphere is prevented. Furthermore, since there is little thermal destruction, large-sized processed articles with stable composition and precision can be obtained. Therefore, it is possible to stably process superconducting ceramics and obtain a superconducting ceramic molded body having a desired shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る製造方法に用いられる装
置の構造を示す断面図である。 1・・・超伝導セラミックスのロッド、2・・・石英マ
ツフル、4・・・加熱炉、5a、5b・・・バルブ。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹第1図
FIG. 1 is a sectional view showing the structure of an apparatus used in a manufacturing method according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Rod of superconducting ceramics, 2... Quartz matzuru, 4... Heating furnace, 5a, 5b... Valve. Patent Applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshiki Hase Figure 1

Claims (2)

【特許請求の範囲】[Claims] 1. 超伝導酸化物微粉末に少なくとも一種の当該構成
カチオンを含む有機金属塩を混合したのち、所定の形状
の成形体を得る成形工程と、前記成形体を酸化して当該
形状の超伝導セラミックス成形体を得る酸化工程とを有
することを特徴とする超伝導セラミックス成形体の製造
方法。
1. A molding step of mixing an organic metal salt containing at least one of the constituent cations into a superconducting oxide fine powder to obtain a molded body having a predetermined shape, and a superconducting ceramic molded body having the shape by oxidizing the molded body. 1. A method for producing a superconducting ceramic molded body, comprising: an oxidation step for obtaining the following:
2. 前記成形および酸化が1000℃以下の温度でな
されることを特徴とする特許請求の範囲第1項記載の超
伝導セラミックス成形体の製造方法。
2. 2. The method for producing a superconducting ceramic molded body according to claim 1, wherein said molding and oxidation are performed at a temperature of 1000° C. or lower.
JP62315679A 1987-12-14 1987-12-14 Production of molded body of superconducting ceramic Pending JPH01157457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315679A JPH01157457A (en) 1987-12-14 1987-12-14 Production of molded body of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315679A JPH01157457A (en) 1987-12-14 1987-12-14 Production of molded body of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01157457A true JPH01157457A (en) 1989-06-20

Family

ID=18068258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315679A Pending JPH01157457A (en) 1987-12-14 1987-12-14 Production of molded body of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01157457A (en)

Similar Documents

Publication Publication Date Title
JPH01144689A (en) Formation of superconducting circuit
JPH01157457A (en) Production of molded body of superconducting ceramic
JPH02225367A (en) Production of dielectric ceramics
Wang et al. Fabrication of High‐Curie‐Point Barium‐Lead Titanate PTCR Ceramics
JPH05319904A (en) Preparation of high-temperature super- conductive body
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPH01242406A (en) Production of superconductor
JPH01160860A (en) Production of sintered material of oxide superconductor
JPH01167289A (en) Production of oxide superconductor
JPH02120227A (en) Production of bi-based oxide superconductor
JPH01167225A (en) Production of superconducting oxide powder
JP2512409B2 (en) Manufacturing method of oxide superconducting bulk
JPH0193483A (en) Production of superconductive material
JPH01157451A (en) Production of oxide superconducting sintered body
JPS63256563A (en) Production of superconductive ceramic
JPS63291815A (en) Production of superconductor
JPH01103975A (en) Production of ceramic superconductor
JPH01208360A (en) Production of superconductor
JPH01176268A (en) Production of high-temperature superconductor
JPS63274027A (en) Manufacture of superconductive material
JPH01212226A (en) Production of oxide superconducting material
JPS63242961A (en) Production of ceramics superconductor
JPH02149462A (en) Production of oxide superconductor
JPH0193484A (en) Production of superconductive material
JPH01226703A (en) Production of oxide superconductor