JPH01157084A - Ceramic heating element and its manufacture - Google Patents
Ceramic heating element and its manufactureInfo
- Publication number
- JPH01157084A JPH01157084A JP31575987A JP31575987A JPH01157084A JP H01157084 A JPH01157084 A JP H01157084A JP 31575987 A JP31575987 A JP 31575987A JP 31575987 A JP31575987 A JP 31575987A JP H01157084 A JPH01157084 A JP H01157084A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- carbide
- resistance wire
- silicon nitride
- silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 49
- 239000000919 ceramic Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 40
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 35
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 20
- 239000010937 tungsten Substances 0.000 claims abstract description 20
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 18
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052575 non-oxide ceramic Inorganic materials 0.000 claims abstract description 15
- 239000011225 non-oxide ceramic Substances 0.000 claims abstract description 15
- 150000004767 nitrides Chemical class 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 6
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 16
- 239000000470 constituent Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 abstract 1
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- -1 carbide Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000691 Re alloy Inorganic materials 0.000 description 3
- 238000005524 ceramic coating Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、絶縁性のセラミック内に電気抵抗線を埋設
し、この抵抗線に通電し発熱させるセラミック発熱体に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ceramic heating element in which an electric resistance wire is embedded in an insulating ceramic, and the resistance wire is energized to generate heat.
[従来の技術]
窒化珪素質焼結体中にタングステン、タングステン−レ
ニウム合金等の発熱抵抗線を埋設してなるセラミック発
熱体は、焼成中に発熱抵抗線とセラミックとの境界面で
反応が生じ反応物質が生成し、使用による熱履歴を受け
ると両者の熱膨張差のため境界面で剥離が生じたり微小
なりラックが発生する。とくに電極の取り出しのため、
発熱抵抗線がセラミックの外周に露出している部分に電
気端子を兼ねた金属製外筒をろう付けすると、熱履歴を
受けた際外筒によって電極部が引っ張られ、発熱抵抗線
の断線が生じ易い。[Prior Art] Ceramic heating elements are made by embedding a heating resistance wire of tungsten, tungsten-rhenium alloy, etc. in a silicon nitride sintered body, and a reaction occurs at the interface between the heating resistance wire and the ceramic during firing. When a reactant is generated and subjected to thermal history due to use, the difference in thermal expansion between the two causes peeling or small racks to occur at the interface. Especially for removing the electrodes.
If a metal outer cylinder that also serves as an electrical terminal is brazed to the exposed part of the heating resistance wire on the outer periphery of the ceramic, the electrode section will be pulled by the outer cylinder when subjected to thermal history, causing the heating resistance wire to break. easy.
この境界面での剥離や微小なりラックの発生を防止する
ため、特開昭61−179084号公報には、発熱抵抗
線とセラミックとの境界面に、窒化チタン(TiN)、
窒化炭化チタン(TiCN)、窒化アルミニウム(Af
JN) 、窒化ホウ素(BN)、炭化珪素(SiC>、
立方晶窒化ホウ素(CBN) 、ホウ化チタン(TiB
2)などの非酸化物セラミックの被膜を介在させたセラ
ミックヒータが提案されている。In order to prevent the occurrence of peeling and minute racks at the interface, JP-A-61-179084 discloses that titanium nitride (TiN) is added to the interface between the heating resistance wire and the ceramic.
Titanium nitride carbide (TiCN), aluminum nitride (Af
JN), boron nitride (BN), silicon carbide (SiC>,
Cubic boron nitride (CBN), titanium boride (TiB)
Ceramic heaters with a non-oxide ceramic coating such as 2) have been proposed.
[発明が解決しようとする問題点コ
しかるに、上記セラミックヒータは、発熱抵抗線と非酸
化物セラミック被膜との間の結合強度について十分な考
慮がなされていないので、セラミックと発熱抵抗線との
結合強度が十分でなく、長期間の熱履歴に耐える耐久性
を備えていない。また上記セラミックヒータでは、非酸
化物セラミック被膜と窒化珪素質焼結体との一体化につ
いても配慮がなく、この接合面の接合強度も不十分であ
った。[Problems to be Solved by the Invention] However, in the above ceramic heater, sufficient consideration has not been given to the bonding strength between the heating resistance wire and the non-oxide ceramic coating. It is not strong enough and does not have the durability to withstand long-term thermal history. Further, in the above ceramic heater, no consideration was given to the integration of the non-oxide ceramic coating and the silicon nitride sintered body, and the bonding strength of this bonding surface was also insufficient.
この発明者は、発熱抵抗線とセラミック焼結体との境界
面の結合強度は、この境界面に発熱抵抗線の主な構成元
素と同一の金属元素を所定の割合で含ませた中間層を介
在させると著しく増大でき、さらにこの中間層にセラミ
ック焼結体と同一のセラミック材を所定の割合で含ませ
ると、上記結合強度がさらに増大できるとの知見に基づ
き、熱履歴に対し永続的耐久性を備えるセラミック発熱
体を提供せんとするものである。The inventor discovered that the bonding strength of the interface between the heat generating resistance wire and the ceramic sintered body can be improved by adding an intermediate layer containing a predetermined proportion of the same metal element as the main constituent element of the heat generating resistance wire to this interface. Based on the knowledge that the above-mentioned bonding strength can be increased significantly by intervening the ceramic material in the intermediate layer, and further increasing the bonding strength by including the same ceramic material as the ceramic sintered body in a predetermined ratio in this intermediate layer, we have developed a structure that can withstand permanent durability against thermal history. It is an object of the present invention to provide a ceramic heating element with high properties.
[問題点を解決するための手段]
上記目的達成のため、本発明のセラミック発熱体は、
窒化珪素質焼結体中に、タングステン、モリブデン、レ
ニウム等の高融点金属またはその合金からなる発熱抵抗
線を埋設してなるセラミック発熱体において、
イ)前記抵抗線を構成する該抵抗線の表面に、該抵抗線
の主な構成金属元素と同一金属元素またはその窒化物、
炭化物、珪化物、珪化炭化物などの非酸化物セラミック
よりなる中間層を形成させる構成、
口)前記抵抗線の表面に、該抵抗線の主な構成金属元素
と同一金属元素またはその炭化化合物、珪化化合物、珪
化炭化化合物などの非酸化物セラミックと、窒化珪素質
材料の混合材よりなる中間層を形成させる構成
を採用した。[Means for Solving the Problems] In order to achieve the above object, the ceramic heating element of the present invention includes a heating resistor made of a high melting point metal such as tungsten, molybdenum, rhenium, or an alloy thereof in a silicon nitride sintered body. In a ceramic heating element formed by embedding a wire, a) on the surface of the resistance wire constituting the resistance wire, the same metal element as the main constituent metal element of the resistance wire or its nitride;
A configuration in which an intermediate layer is formed of a non-oxide ceramic such as carbide, silicide, or silicified carbide. A configuration is adopted in which an intermediate layer is formed of a mixture of a non-oxide ceramic such as a compound or a silicified carbide compound, and a silicon nitride material.
またこのセラミック発熱体を製造するため、ハ)タング
ステン、モリブデン、レニウム等の高融点金属またはそ
の合金からなる発熱抵抗線の表面に、該抵抗線の主な構
成金属元素と同一金属元素の金属の粉末またはその窒化
物、炭化物、珪化物、珪化炭化物などの非酸化物セラミ
ックの粉末20〜100(重量〉%と、窒化珪素質粉末
O〜80(重量)%とからなる混合粉末を被着し、この
被着体を窒化珪素質粉末の成形体中に埋設し、ホットプ
レス焼成する方法を採用した。In addition, in order to manufacture this ceramic heating element, c) a metal of the same metal element as the main constituent metal element of the resistance wire is coated on the surface of the heating resistance wire made of a high melting point metal such as tungsten, molybdenum, rhenium, or an alloy thereof. A mixed powder consisting of 20 to 100% (by weight) of powder or non-oxide ceramic powder such as its nitride, carbide, silicide, or silicided carbide, and 0 to 80% (by weight) of silicon nitride powder is deposited. A method was adopted in which this adherend was embedded in a molded body of silicon nitride powder and hot press fired.
なおこの発明において窒化珪素質とは、窒化珪素に0〜
30重量%の酸化アルミニウム粉末(Aρzoi)、M
化イツトリウム(Y 20.)などの焼結助剤を含むも
のを言う。In this invention, silicon nitride refers to silicon nitride with a content of 0 to 0.
30% by weight aluminum oxide powder (Aρzoi), M
Contains a sintering aid such as yttrium chloride (Y20.).
[作用および発明の効果コ
本発明のセラミック発熱体は、窒化珪素質焼結体と、そ
の中に埋設させたタングステン、モリブデン、レニウム
などの高融点金属またはその合金からなる発熱抵抗線と
の境界面に、該発熱抵抗線の主要構成金属元素と同一金
属元素またはその炭化物、珪化物、珪化炭化物などの非
酸化物セラミックよりなる中間層を介在させているので
、焼成時に発熱抵抗線とセラミックとの反応酸化物の発
生が防止できるとともに、発熱抵抗線の主な構成元素と
、中間層に含まれた同一金属元素とが溶は込み合って一
体化するこれにより中間層と発熱抵抗線との結合強度が
極めて強くできる。また中間層と窒化珪素質焼結体とは
、ともにセラミックであるため相性がよく緊密に接合す
る。よってこの中間層の作用で、発熱抵抗線とセラミッ
クとの結合が緊密にでき、セラミックの熱履壓に対し永
続的耐久性が得られる。さらに中間層に、発熱抵抗線の
主な構成金属元素と同一金属元素またはその炭化物、珪
化物、珪化炭化物などの非酸化物セラミックと窒化珪素
質材料との混合材を用いることにより、中間層の窒化珪
素と窒化珪素焼結体の窒化珪素とが一体化するため、さ
らに前記結合強度が増大でき、熱履歴に対する耐久性が
一層向上できる。[Function and Effects of the Invention] The ceramic heating element of the present invention has a heat generating resistance wire formed from a high melting point metal such as tungsten, molybdenum, and rhenium or an alloy thereof buried therein. Since an intermediate layer made of a non-oxide ceramic such as the same metal element as the main constituent metal element of the heating resistance wire or its carbide, silicide, or silicided carbide is interposed on the surface, the heating resistance wire and the ceramic do not mix during firing. In addition to preventing the generation of reactive oxides, the main constituent elements of the heat-generating resistance wire and the same metal elements contained in the intermediate layer are melted together and integrated.This allows the bond between the intermediate layer and the heat-generating resistance wire to be integrated. It can be extremely strong. Furthermore, since the intermediate layer and the silicon nitride sintered body are both ceramics, they have good compatibility and are closely bonded. Therefore, due to the action of this intermediate layer, the heat-generating resistance wire and the ceramic can be closely bonded, and permanent durability can be obtained against the ceramic heat shoe. Furthermore, by using a mixture of a silicon nitride material and a non-oxide ceramic such as the same metal element as the main constituent metal element of the heating resistance wire or its carbide, silicide, or silicide carbide, for the intermediate layer. Since the silicon nitride and the silicon nitride of the silicon nitride sintered body are integrated, the bonding strength can be further increased, and the durability against thermal history can be further improved.
[実施例]
つぎにこの発明を第1図および第2図に示す実施例に基
づき説明する。[Example] Next, the present invention will be explained based on an example shown in FIGS. 1 and 2.
本発明のセラミック発熱体1は、電気絶縁性セラミック
である窒化珪素質焼結体2と、この窒化珪素質焼結体2
中に埋設された発熱抵抗線3と、窒化珪素質焼結体2と
発熱抵抗線3との境界面に介在させた中間層4とからな
る。The ceramic heating element 1 of the present invention includes a silicon nitride sintered body 2 which is an electrically insulating ceramic, and a silicon nitride sintered body 2 that is an electrically insulating ceramic.
It consists of a heating resistance wire 3 buried therein, and an intermediate layer 4 interposed at the interface between the silicon nitride sintered body 2 and the heating resistance wire 3.
窒化珪素質焼結体2は、先端2Aが半球状とされた外径
3.5mm、全長60mm程度の円柱状を呈する。The silicon nitride sintered body 2 has a cylindrical shape with a hemispherical tip 2A, an outer diameter of 3.5 mm, and a total length of about 60 mm.
発熱抵抗線3は、前記焼結体2の後側部22に並行的に
埋設されている一対のタングステン製電極取出し線31
および32と、この電極取出し線の各々の先端にその後
端がそれぞれ接続されて、前記焼結体2の先側部23に
略U字型に埋設された発熱コイル33とからなる。電極
取出し線31および32は、線径0.3mmのタングス
テン線、発熱コイル33は、タングステン−レニウム合
金製で線径0.22mmの細線を内径0.3mmの巻径
に螺旋巻きしである。電極取出し線31の後端は窒化珪
素質焼結体2の後端部21の側壁に露出面31aで露出
され、電極取出し線32の後端は窒化珪素質焼結体2の
中央よりやや後端よりの壁に露出面32a′″C露出さ
れている。The heating resistance wire 3 is a pair of tungsten electrode lead wires 31 buried in parallel in the rear side 22 of the sintered body 2.
and 32, and a heating coil 33 whose rear end is connected to the tip of each of the electrode lead wires and which is embedded in the front side portion 23 of the sintered body 2 in a substantially U-shape. The electrode lead wires 31 and 32 are tungsten wires with a wire diameter of 0.3 mm, and the heating coil 33 is made of a tungsten-rhenium alloy and is a thin wire with a wire diameter of 0.22 mm spirally wound with an inner diameter of 0.3 mm. The rear end of the electrode lead wire 31 is exposed at the exposed surface 31a on the side wall of the rear end portion 21 of the silicon nitride sintered body 2, and the rear end of the electrode lead line 32 is slightly behind the center of the silicon nitride sintered body 2. The exposed surface 32a'''C is exposed on the wall near the end.
中間層4は、この実施例では、露出面31a。In this embodiment, the intermediate layer 4 has an exposed surface 31a.
32aに近い部分の前記電極取出し線31.32と、窒
化珪素質焼結体2との境界面に設けられている。It is provided at the interface between the electrode lead line 31, 32 and the silicon nitride sintered body 2 in a portion close to the electrode lead line 32a.
この中間層4に使用する材料は、
(イ)前記電極取出し線31.32の主要構成金属元素
であるタングステンまたは、タングステンの窒化物、珪
化物、炭化物、珪化炭fヒ物などの非酸化物セラミック
100(重量)%、
(ロ)前記構成金属元素であるタングステン20〜1o
O(重量)%と、窒化珪素質材料が微量〜80(重量)
%、
(ハ)前記構成金属元素であるタングステンの窒化物、
珪化物、炭化物、珪化炭化物などの非酸化物セラミック
20〜100未満(重量)%と、窒化珪素質材料が微量
〜80(重量)%。The materials used for this intermediate layer 4 are: (a) Tungsten, which is the main constituent metal element of the electrode lead wires 31 and 32, or non-oxides such as tungsten nitrides, silicides, carbides, and silicide carbons; 100% (by weight) of ceramic; (b) 20 to 1 o of tungsten, which is the constituent metal element;
O (weight)% and silicon nitride material in trace amounts ~ 80 (weight)
%, (c) nitride of tungsten, which is the constituent metal element;
20 to less than 100% (by weight) of non-oxide ceramics such as silicides, carbides, and silicided carbides, and trace amounts to 80% (by weight) of silicon nitride materials.
(ニ)前記構成金属元素であるタングステンと、タング
ステンの窒化物、珪化物、炭化物、珪化炭化物などの非
酸化物セラミックとの混合体が20〜100未満(重量
)%と、窒化珪素質材料が微量〜80(重量)%、
の4通りがある。(d) A mixture of tungsten, which is the constituent metal element, and a non-oxide ceramic such as tungsten nitride, silicide, carbide, or silicided carbide is 20 to less than 100% (by weight), and the silicon nitride material is There are four types: trace amount to 80% (by weight).
すなわち、上記の構成において、中間層4に使用する材
料のどれにも、電極取出し線31.32の金属元素と同
一の金属元素を含むため、ホットプレス焼成時において
、互いに溶は込み合い強固に結合できる。That is, in the above configuration, since all of the materials used for the intermediate layer 4 contain the same metal element as the metal element of the electrode lead wires 31 and 32, they are melted together and firmly bonded to each other during hot press firing. can.
また、中間層4は、窒化珪素質材料と、電極取出し線3
1.32との中間の熱膨張率をとるので、熱履歴を受け
たとき発生する応力を緩和する。Further, the intermediate layer 4 is made of a silicon nitride material and the electrode lead wire 3.
Since it has a coefficient of thermal expansion between 1.32 and 1.32, it alleviates the stress that occurs when subjected to thermal history.
また、窒化珪素質材料が含まれる場合は、ホットプレス
焼成時において、中間層4中の窒化珪素質材料が窒化珪
素質焼結体2中に侵入して、焼成一体止するため、電極
取出し線31.32と窒化珪素質焼結体2との結合強度
も極めて強力となる。In addition, if a silicon nitride material is included, the silicon nitride material in the intermediate layer 4 enters the silicon nitride sintered body 2 during hot press firing and prevents the firing from occurring. The bonding strength between 31.32 and the silicon nitride sintered body 2 is also extremely strong.
また、中間層に窒化珪素質材料を含まない場合でも、窒
化珪素質材料中に含まれる焼結助剤がガラス層を形成し
、中間層4中に拡散浸透するため、電極取出し線31.
32と窒化珪素質焼結体2との結合強度はより強力とな
る。Further, even when the intermediate layer does not contain a silicon nitride material, the sintering aid contained in the silicon nitride material forms a glass layer and diffuses into the intermediate layer 4, so that the electrode lead wire 31.
The bonding strength between 32 and the silicon nitride sintered body 2 becomes stronger.
つぎに本発明のセラミック発熱体1の製造方法を説明す
る。Next, a method for manufacturing the ceramic heating element 1 of the present invention will be explained.
(あ)所定の長さに切断したタングステン線を折り曲げ
て電極取出し線31.32を形成し、この電極取出し線
31.32の先端にタングステン−レニウム合金製発熱
コイル33の両端を差し込み発熱抵抗線3を製造する。(A) Bend the tungsten wire cut to a predetermined length to form electrode lead wires 31 and 32, and insert both ends of the tungsten-rhenium alloy heating coil 33 into the tips of the electrode lead wires 31 and 32 to wire the heating resistance wire. 3 is manufactured.
(い)電極取出し線31.32の主要構成金属元素であ
るタングステンまたは、タングステンの窒化物、珪化物
、炭化物、珪化炭化物などの粉末に、アセトン、有機バ
インダーを加えて混練してペーストを製造し、電極取出
し線31.32にこのペーストを塗布し乾燥させる。(b) A paste is produced by adding acetone and an organic binder to powder of tungsten, which is the main constituent metal element of the electrode lead wires 31 and 32, or tungsten nitride, silicide, carbide, silicide carbide, etc. This paste is applied to the electrode lead wires 31 and 32 and dried.
(う)窒化珪素質粉末をプレス成型により、発熱抵抗線
が中に埋設された成型体を得た後仮焼を行う。(c) Silicon nitride powder is press-molded to obtain a molded body in which a heat-generating resistance wire is embedded, and then calcined.
くえ)非酸素雰囲気中で1800℃で30分間、ホット
プレス圧力300kg/cm”にてホットプレス焼成を
行う。) Hot press firing is performed at 1800° C. for 30 minutes at a hot press pressure of 300 kg/cm” in a non-oxygen atmosphere.
(お)研磨により形状整形および電極露出を行う。(E) Shape shaping and electrode exposure by polishing.
(実験例1)
平均粒径0.8μmのタングステンの粉末700g、平
均粒径1.0μmの窒化珪素粉末270g、平均粒径0
.8μmの酸化アルミニウム粉末15g、平均粒径1.
5μmの酸化イツトリウム粉末15gにアセトン、有機
バインダーを加え、中間層となるペーストを製造し、タ
ングステンの電極取出し線31.32に前記ペーストを
厚さを変えて塗布した。(Experiment Example 1) 700 g of tungsten powder with an average particle size of 0.8 μm, 270 g of silicon nitride powder with an average particle size of 1.0 μm, and an average particle size of 0
.. 15 g of 8 μm aluminum oxide powder, average particle size 1.
Acetone and an organic binder were added to 15 g of 5 μm yttrium oxide powder to produce a paste to serve as an intermediate layer, and the paste was applied to tungsten electrode lead wires 31 and 32 in varying thicknesses.
7種の塗布厚さ(4μm〜450μm)、ホットプレス
後の中間層4の厚さ(1,7μm〜255μm)と、比
較のための塗布しないものとの接合強度測定テストと熱
サイクルテストを行い、以下の第1表の如く、中間層の
厚さは、2.0μm〜200μm好ましくは10μm〜
50μmが最適であるとの結果を得た。A bonding strength measurement test and a thermal cycle test were conducted with seven types of coating thickness (4 μm to 450 μm), the thickness of the intermediate layer 4 after hot pressing (1.7 μm to 255 μm), and a non-coated one for comparison. , as shown in Table 1 below, the thickness of the intermediate layer is 2.0 μm to 200 μm, preferably 10 μm to
The result was that 50 μm was optimal.
[第1表]
★・・・1/100本断線
(実験例2)
平均粒径0.8μmの炭化タングステン(WC)の粉末
にアセトン、有機バインダーを加え、中間層4となるペ
ーストを製造し、タングステンの電極取出し線31.3
2に前記ペーストを100μmの厚さに塗布した。[Table 1] ★...1/100 wire breakage (Experiment example 2) Acetone and an organic binder were added to tungsten carbide (WC) powder with an average particle size of 0.8 μm to produce a paste that would become the intermediate layer 4. , tungsten electrode lead wire 31.3
The above paste was applied to No. 2 to a thickness of 100 μm.
このセラミック発熱体1は、接合強度測定テストでは、
平均の強度は1.88kg/mm2であり、熱サイクル
テストでは抵抗値の変化は見られず、良好な結果を得た
。In the bonding strength measurement test, this ceramic heating element 1
The average strength was 1.88 kg/mm2, and no change in resistance was observed in the thermal cycle test, giving good results.
(実験例3)
平均粒径1.2μmの珪化タングステン(WSiz)の
粉末にアセトン、有機バインダーを加え中間層4となる
ペーストを製造し、タングステンの電極取出し線31.
32に前記ペーストを100μmの厚さに塗布した。(Experimental Example 3) Acetone and an organic binder were added to tungsten silicide (WSiz) powder with an average particle size of 1.2 μm to produce a paste that would become the intermediate layer 4, and a tungsten electrode lead wire 31.
The paste was applied to No. 32 to a thickness of 100 μm.
このセラミック発熱体1は接合強度測定テストでは、平
均の強度は1.93kg/mm’であり、熱サイクルテ
ストでは抵抗値の変化は見られず、良好な結果を得た。This ceramic heating element 1 had an average strength of 1.93 kg/mm' in a joint strength measurement test, and no change in resistance was observed in a thermal cycle test, giving good results.
以上の実施例では、電極取出し線に中間層を形成させた
場合の効果について記述してきたが、本発明にかかる中
間層を発熱コイル部に形成させた場合、加熱による熱履
歴に対しても十分な耐久性の効果があることは言うまで
もない。In the above embodiments, the effect of forming the intermediate layer on the electrode lead wire has been described, but when the intermediate layer according to the present invention is formed on the heating coil part, it is sufficient to withstand the thermal history caused by heating. Needless to say, it has a great durability effect.
接合強度測定テストは、セラミック発熱体1の電極取出
し線31.32の露出部31a、32aにニッケル(N
i)ワイヤーをろう付けし、引っ張り荷重をかけて、切
断時の荷重測定値を電極線露出面積で割った値を接合強
度とした。In the bonding strength measurement test, nickel (N
i) Wires were brazed, a tensile load was applied, and the value obtained by dividing the measured load at cutting by the exposed area of the electrode wire was defined as the bonding strength.
熱サイクルテストは、前記ペーストを各厚さに塗布した
セラミック発熱体1の電極露出部31a。The thermal cycle test was performed on the exposed electrode portion 31a of the ceramic heating element 1 to which the paste was applied to various thicknesses.
32aに金属外筒を嵌着させ、1分通電〜1分非通電し
を1万回行った9通電時の最大温度は約1200℃、窒
化珪素質焼結体2の電極露出部32aは約350℃にな
った。32a was fitted with a metal outer cylinder and energized for 1 minute to de-energized for 1 minute 10,000 times.The maximum temperature when energized was approximately 1200°C, and the exposed electrode portion 32a of the silicon nitride sintered body 2 was approximately 10,000 times. The temperature reached 350℃.
第3図および第4図は、本発明にかかるセラミック発熱
体1を用いたディーゼル機関のグロープラグ100を示
す。このグロープラグ100は、筒状の取付金具20の
先端部に、金属製支持筒3Oを内嵌し、この支持筒30
内に前記セラミック発熱体1の中央部11を嵌め込み、
取付金具2゜内の軸心を挿通してコイル状中心電極40
を配するとともに、その先端の密巻き部50をセラミッ
ク発熱体1の後端部21に嵌着させてなり、取付金具2
0の外周に取付けねじ24および六角状の頭部25が形
成され、ディーゼル機関のシリンダーヘッドに取付けら
れる。3 and 4 show a glow plug 100 for a diesel engine using the ceramic heating element 1 according to the present invention. This glow plug 100 has a metal support tube 3O fitted inside the tip of a cylindrical mounting fitting 20, and this support tube 30
Fitting the central part 11 of the ceramic heating element 1 into the
Insert the shaft center within the mounting bracket 2° and insert the coiled center electrode 40.
is arranged, and the tightly wound part 50 at the tip is fitted into the rear end part 21 of the ceramic heating element 1, and the mounting bracket 2
A mounting screw 24 and a hexagonal head 25 are formed on the outer periphery of the cylinder 0, and is mounted to the cylinder head of a diesel engine.
第1図は、本発明のセラミック発熱体の正面断面図、第
2図は、そのA−B断面図、第3図は、本発明のセラミ
ック発熱体を用いたディーゼル機関のグロープラグの断
面図、第4図は、その要部拡大図である。
図中 1・・・セラミック発熱体 2・・・窒化珪素質
焼結体 3・・・発熱抵抗線 4・・・中間層代理人
弁理士 石 黒 健 二
第1図
第2図
第3図
2,41図FIG. 1 is a front cross-sectional view of the ceramic heating element of the present invention, FIG. 2 is a cross-sectional view taken along the line A-B, and FIG. 3 is a cross-sectional view of a glow plug for a diesel engine using the ceramic heating element of the present invention. , FIG. 4 is an enlarged view of the main part. In the figure 1...Ceramic heating element 2...Silicon nitride sintered body 3...Heating resistance wire 4...Intermediate layer agent
Patent Attorney Kenji Ishiguro Figure 1 Figure 2 Figure 3 Figures 2 and 41
Claims (1)
デン(Mo)、レニウム(Re)等の高融点金属または
その合金からなる発熱抵抗線を埋設してなるセラミック
発熱体において、 前記抵抗線の表面に、該抵抗線の主な構成金属元素と同
一金属元素またはその窒化物、炭化物、珪化物、珪化炭
化物などの非酸化物セラミックよりなる中間層を形成さ
せたことを特徴とするセラミック発熱体。 2)窒化珪素質焼結体中にタングステン、モリブデン、
レニウム等の高融点金属またはその合金からなる発熱抵
抗線を埋設してなるセラミック発熱体において、 前記抵抗線の表面に、該抵抗線の主な構成金属元素と同
一金属元素またはその窒化物、炭化物、珪化物、珪化炭
化物などの非酸化物セラミックと、窒化珪素質材料との
混合材よりなる中間層を形成させたことを特徴とするセ
ラミック発熱体。 3)タングステン、モリブデン、レニウム等の高融点金
属またはその合金からなる発熱抵抗線の表面に、該抵抗
線の主な構成金属元素と同一金属元素の金属粉末または
その窒化物、炭化物、珪化物、珪化炭化物などの非酸化
物セラミック粉末と窒化珪素質粉末との混合粉末を被着
し、 この被着体を窒化珪素質粉末の成形体中に埋設し、 ホットプレス焼成することを特徴とするセラミック発熱
体の製造法。[Claims] 1) A ceramic heat generating device in which a heat generating resistance wire made of a high melting point metal such as tungsten (W), molybdenum (Mo), rhenium (Re) or an alloy thereof is embedded in a silicon nitride sintered body. In the body, an intermediate layer made of a non-oxide ceramic such as the same metal element as the main constituent metal element of the resistance wire or its nitride, carbide, silicide, or silicide carbide is formed on the surface of the resistance wire. A ceramic heating element featuring 2) Tungsten, molybdenum,
In a ceramic heating element formed by embedding a heating resistance wire made of a high melting point metal such as rhenium or an alloy thereof, the surface of the resistance wire is coated with the same metal element as the main constituent metal element of the resistance wire, or its nitride or carbide. A ceramic heating element characterized in that an intermediate layer is formed of a mixture of a non-oxide ceramic such as a silicide or a silicided carbide, and a silicon nitride material. 3) Metal powder of the same metal element as the main constituent metal element of the resistance wire, or its nitride, carbide, silicide, A ceramic characterized by depositing a mixed powder of non-oxide ceramic powder such as silicide carbide and silicon nitride powder, embedding this adherend in a molded body of silicon nitride powder, and hot press firing. Method of manufacturing heating elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31575987A JPH01157084A (en) | 1987-12-14 | 1987-12-14 | Ceramic heating element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31575987A JPH01157084A (en) | 1987-12-14 | 1987-12-14 | Ceramic heating element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01157084A true JPH01157084A (en) | 1989-06-20 |
Family
ID=18069201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31575987A Pending JPH01157084A (en) | 1987-12-14 | 1987-12-14 | Ceramic heating element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01157084A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182087A (en) * | 1989-12-12 | 1991-08-08 | Matsushita Electric Ind Co Ltd | Heater element |
JP2007064621A (en) * | 2006-10-06 | 2007-03-15 | Sumitomo Electric Ind Ltd | Glow plug |
JP2015106556A (en) * | 2013-12-03 | 2015-06-08 | 京セラ株式会社 | Ceramic body with built-in electrode and heater using the same |
-
1987
- 1987-12-14 JP JP31575987A patent/JPH01157084A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182087A (en) * | 1989-12-12 | 1991-08-08 | Matsushita Electric Ind Co Ltd | Heater element |
JP2007064621A (en) * | 2006-10-06 | 2007-03-15 | Sumitomo Electric Ind Ltd | Glow plug |
JP2015106556A (en) * | 2013-12-03 | 2015-06-08 | 京セラ株式会社 | Ceramic body with built-in electrode and heater using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5261103B2 (en) | Ceramic heater | |
JP4751392B2 (en) | Brazing structure, ceramic heater and glow plug | |
PL185328B1 (en) | Ceramic heating element and method of making same | |
JPS60216484A (en) | Ceramic heater | |
US4931619A (en) | Glow plug for diesel engines | |
EP1139693A2 (en) | Ceramic heater and method for manufacturing the same | |
JP3658770B2 (en) | Ceramic glow plug | |
WO2023029465A1 (en) | Heating element and preparation method therefor | |
JPH0617272B2 (en) | Silicon nitride-alumina composite ceramics and method for producing the same | |
JPH01157084A (en) | Ceramic heating element and its manufacture | |
JP3121985B2 (en) | Silicon nitride ceramic heater | |
JP2616931B2 (en) | Glow plug heater support | |
WO2006011520A1 (en) | Ceramic heater and heating iron using it | |
JP3886699B2 (en) | Glow plug and manufacturing method thereof | |
JP3078418B2 (en) | Ceramic heating element | |
JPH0546674B2 (en) | ||
JP2534847B2 (en) | Ceramic Heater | |
JP2002124365A (en) | Ceramic heater and its manufacturing method | |
JP2537606B2 (en) | Ceramic Heater | |
JP3701046B2 (en) | Manufacturing method of ceramic heater | |
WO2014003093A1 (en) | Heater and glow plug equipped with same | |
JP3807813B2 (en) | Ceramic heater and ceramic glow plug | |
JP2998999B2 (en) | Ceramic heater | |
JP3874581B2 (en) | Ceramic heater and glow plug using the same | |
JPH01121626A (en) | Glow plug for diesel engine |