JPH01156034A - Manufacture of multiple aperture tube - Google Patents

Manufacture of multiple aperture tube

Info

Publication number
JPH01156034A
JPH01156034A JP62315736A JP31573687A JPH01156034A JP H01156034 A JPH01156034 A JP H01156034A JP 62315736 A JP62315736 A JP 62315736A JP 31573687 A JP31573687 A JP 31573687A JP H01156034 A JPH01156034 A JP H01156034A
Authority
JP
Japan
Prior art keywords
holes
cross
porous tube
diameter
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62315736A
Other languages
Japanese (ja)
Other versions
JPH072362B2 (en
Inventor
Tsutomu Matsutani
松谷 勉
Kazuo Onishi
和夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62315736A priority Critical patent/JPH072362B2/en
Publication of JPH01156034A publication Critical patent/JPH01156034A/en
Publication of JPH072362B2 publication Critical patent/JPH072362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92619Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable a multiple aperture tube to be manufactured with an excellent dimensional accuracy when the multiple aperture having a plurality of apertures which differ with each other in aperture diameter by varying the gaseous pressure supplied to each of aperture to be formed in accordance with the aperture diameters. CONSTITUTION:At the time when a multiple aperture tube 5 having three apertures 41, 31, 21 of large, middle and small size in its cross-section is molded through an injection molding by a die, the gaseous supplied to each of a plurality of the apertures 41, 31, 21 to be formed from gas conduits 2, 3, 4 of a mandrel 1 via die is varied in accordance with the aperture diameter so as to give gaseous difference to the supplied gas, thereby controlling the diameter of the apertures 21, 31, 41 to be formed with an excellent accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、形成する孔のそれぞれに孔径に応じた圧力の
ガスを供給することにより、孔径の寸法精度に優れる多
孔チューブを押出成形方式で製造する方法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention manufactures a porous tube with excellent dimensional accuracy in pore diameter by extrusion molding by supplying gas at a pressure corresponding to the pore diameter to each of the pores to be formed. Regarding the method.

従来の技術及び問題点 断面に複数の孔を有する多孔チューブはマルチルーメン
カテーテルや内視鏡チューブなどで代表されるよう種々
の分野で用いられている。
Prior Art and Problems Porous tubes having a plurality of holes in their cross section are used in various fields, typified by multi-lumen catheters and endoscope tubes.

従来、ダイを介し形成する孔のそれぞれにガスを供給し
つつ多孔チューブを押出成形方式で製造する方法として
は、形成する複数の孔の孔径がそれぞれ異なる場合にも
同圧のガスを供給する方法が知られていた。しかしなが
ら、ダイに設定した孔径比に精度よく成形できない問題
点があった。
Conventionally, a method of manufacturing a porous tube by extrusion molding while supplying gas to each hole formed through a die is a method of supplying gas at the same pressure even when the holes to be formed have different diameters. was known. However, there was a problem in that it was not possible to precisely form the mold to the hole diameter ratio set in the die.

問題点を解決するための手段 本発明は、形成する孔のそれぞれに供給するガスの圧力
を孔径に応じて変えることにより上記の問題点を克服し
たものである。
Means for Solving the Problems The present invention overcomes the above problems by varying the pressure of the gas supplied to each hole to be formed depending on the hole diameter.

すなわち、本発明は、断面に複数の孔を有する多孔チュ
ーブを押出成形方式で製造するにあたり、形成する孔の
それぞれにガスを独立して供給することができるダイを
用いること、及び形成する孔のそれぞれに供給するガス
の圧力を変えて形成される孔の径を制御することを特徴
とする多孔チューブの製造方法を提供するものである。
That is, the present invention uses a die that can independently supply gas to each of the holes to be formed when manufacturing a porous tube having a plurality of holes in its cross section by extrusion molding, and The present invention provides a method for manufacturing a porous tube characterized by controlling the diameter of the holes formed by changing the pressure of gas supplied to each tube.

作用 形成される複数の孔のそれぞれに供給するガスに孔径に
応じた圧力差をもたせることにより、形成される孔径を
制御することができて、断面に孔径の異なる複数の孔を
有する多孔チューブも寸法精度よく成形することができ
る。
The diameter of the pores formed can be controlled by creating a pressure difference in the gas supplied to each of the plurality of pores, depending on the pore diameter. Can be molded with high dimensional accuracy.

また、供給するガスの圧力ないし圧力差を変えることに
より、形成される孔径を変化させることができる。
Furthermore, by changing the pressure or pressure difference of the gas to be supplied, the diameter of the pores formed can be changed.

発明の構成要素の例示 本発明においては形成する複数の孔のそれぞれに独立し
てガスを供給することができるダイが用いられる。
Exemplification of Components of the Invention In the present invention, a die is used that can independently supply gas to each of the plurality of holes formed.

ダイの構造例を第1図に示す。このダイは断面に大中小
の3孔を形成できる構造を有し、マンドレル1は形成さ
れる3孔のそれぞれにガスを独立に供給するためのガス
道2,3.4を有している。
An example of the structure of the die is shown in FIG. This die has a structure in which three large, medium and small holes can be formed in its cross section, and the mandrel 1 has gas paths 2, 3.4 for independently supplying gas to each of the three holes formed.

このダイにより第2図に示した断面形を基本形とする多
孔チューブ5が得られる。
With this die, a porous tube 5 having the basic cross-sectional shape shown in FIG. 2 is obtained.

本発明においては断面に複数の孔を有する多孔チューブ
を押出成形するにあたり、形成される複数の孔のそれぞ
れにダイを介し供給するガスの圧力を孔径に応じ変えて
、供給ガスに圧力差をもたせる。これにより、形成され
る孔径を精度よく制御することができる。
In the present invention, when extrusion molding a porous tube having a plurality of holes in its cross section, the pressure of gas supplied to each of the plurality of holes formed through a die is changed depending on the hole diameter to create a pressure difference in the supplied gas. . Thereby, the diameter of the pores formed can be controlled with high precision.

ガスとしては限定するものではないが通常、空気が用い
られる。形成される孔のそれぞれに独立に供給するガス
の圧力バランスは、形成する孔径の大小、成形樹脂の種
類、押出成形条件などにより適宜に決定される。孔径精
度の点よりは通常の場合、与えるガス圧の差は若干量で
充分である。
Although the gas is not limited, air is usually used. The pressure balance of the gas to be independently supplied to each of the holes to be formed is appropriately determined depending on the size of the hole to be formed, the type of molding resin, extrusion molding conditions, etc. From the point of view of hole diameter accuracy, a slight difference in gas pressure is usually sufficient.

ちなみに、ポリエチレン、ポリ塩化ビニルを通例の押出
成形条件で成形する場合、供給ガスにo、oot〜0.
05 kg / c+#の範囲の圧力差を与えることで
各孔径を±5017In以下の寸法精度で有する多孔チ
ューブを得ることができる。
By the way, when polyethylene or polyvinyl chloride is molded under normal extrusion molding conditions, the supply gas is o, oot to 0.
By applying a pressure difference in the range of 0.05 kg/c+#, a porous tube having each pore diameter with a dimensional accuracy of ±5017 In or less can be obtained.

本発明においては供給ガスの圧力バランスを制御するこ
とにより、断面に孔径の異なる複数の孔を有する多孔チ
ューブを精度よく成形することができるほか、孔径の拡
大操作により同じダイを用いて孔径比の異なる多孔チュ
ーブとすることができる。また、形成される多孔チュー
ブの断面外形を変えることができる。さらに、供給ガス
の圧力バランスを成形途中で変えて、孔径比や断面外形
の異なる多孔デユープを連続的に成形することも可能で
ある。従って、前記の孔径操作により断面における孔の
占有面積を容易に制御することができる。
In the present invention, by controlling the pressure balance of the supplied gas, it is possible to form a porous tube having multiple holes with different diameters in its cross section with high precision. Can be different perforated tubes. Further, the cross-sectional external shape of the porous tube to be formed can be changed. Furthermore, it is also possible to continuously mold porous duplexes with different pore diameter ratios and cross-sectional shapes by changing the pressure balance of the supplied gas during molding. Therefore, the area occupied by the hole in the cross section can be easily controlled by controlling the hole diameter.

第2図は、第1図のダイにより基本形として得られる多
孔チューブ5を示したものであり、大中小の孔21,3
1.41を精度よく成形したものの例である。
FIG. 2 shows a porous tube 5 obtained as a basic shape by the die shown in FIG.
This is an example of 1.41 molded with high precision.

第3図は同じダイを用いて前記の基本形とは異なる孔径
比となるよう成形したものの例である。
FIG. 3 is an example of a die formed using the same die so as to have a hole diameter ratio different from that of the basic shape.

この多孔チューブ6は大孔42に対する供給ガスの圧力
は変えず、小孔22及び中孔32に対する供給ガスの圧
力をさらに高めて、すなわち答礼に対する供給ガスの圧
力差を前記の基本形の場合よりも大きくして成形したも
のである。
This porous tube 6 does not change the pressure of the supply gas to the large hole 42, but further increases the pressure of the supply gas to the small hole 22 and the medium hole 32, that is, the pressure difference of the supply gas in response to the return is made higher than in the case of the basic type. It is made larger and molded.

第4図は同じダイを用いて前記の基本形とは異なる断面
外形となるよう成形したものの例である。
FIG. 4 is an example of a molded product having a cross-sectional shape different from the basic shape described above using the same die.

この多孔チューブ7は概略三角形の断面外形を有°する
。これはさらに答礼に対する供給ガスの圧力差を大きく
し、形成される孔23,33,43が同径となるよう供
給ガスの圧力をバランスさせて成形したものである。
This porous tube 7 has a generally triangular cross-sectional outline. This is done by increasing the pressure difference between the supply gases in response to the greeting and balancing the pressures of the supply gases so that the holes 23, 33, and 43 formed have the same diameter.

第5図〜第8図はそれぞれ概略四角形、楕円形又は瓢箪
形の断面外形を有する多孔チューブ8゜9.10.11
の例を示したものである。これらも同径又は異径の孔を
基本形として成形するダイを用いて、供給ガスの圧力差
をバランスさせることにより得ることができる。
Figures 5 to 8 show porous tubes 8°9, 10, and 11 having approximately square, oval, or gourd-shaped cross-sectional outlines, respectively.
This is an example. These can also be obtained by using a die that basically forms holes with the same diameter or different diameters, and by balancing the pressure difference of the supplied gas.

なお、各図における24,34,44,51゜52.5
3.54,55.56,57,58,59゜60は多孔
チューブの断面における孔である。
In addition, 24, 34, 44, 51°52.5 in each figure
3.54, 55.56, 57, 58, 59°60 are holes in the cross section of the porous tube.

本発明において用いる成形樹脂については特に限定はな
(、通例の押出成形に用いる樹脂を使用することができ
る。また、形成する孔の数についても特に限定はない。
There are no particular limitations on the molding resin used in the present invention (resins used in conventional extrusion molding can be used). There are also no particular limitations on the number of holes to be formed.

通例、断面に2〜10の孔を有する多孔チューブとされ
るが、断面外形が順次変化する多孔チューブを成形する
場合などには20を超える孔数の多孔チューブとされる
こともある。
Usually, it is a porous tube having 2 to 10 holes in its cross section, but in some cases, such as when molding a porous tube whose cross-sectional outside shape changes sequentially, it is sometimes made to be a porous tube with more than 20 holes.

発明の効果 本発明によれば、断面に複数の孔を有する多孔チューブ
を押出成形するにあたり、形成する孔のそれぞれに供給
するガスの圧力を孔径に応じて変えることとしたので、
孔径の異なる複数の孔を有する多孔チューブを成形する
場合にも寸法精度よく製造することができる。
Effects of the Invention According to the present invention, when extruding a porous tube having a plurality of holes in its cross section, the pressure of gas supplied to each of the holes to be formed is changed according to the hole diameter.
Even when molding a porous tube having a plurality of holes with different diameters, it can be manufactured with high dimensional accuracy.

また、同じダイを用いて断面における孔径比の異なる多
孔チューブや、断面外形の異なる多孔チューブとするこ
ともできる。
Furthermore, the same die can be used to produce porous tubes with different pore diameter ratios in cross section and porous tubes with different cross-sectional shapes.

さらに、押出成形途中で供給ガスの圧力バランスを変え
て孔径比、断面外形が部分的に異なる多。
Furthermore, the pressure balance of the supplied gas is changed during extrusion molding, resulting in partially different pore diameter ratios and cross-sectional shapes.

孔チューブとすることもできる。It can also be a perforated tube.

従って、孔の占有面積の大きい、あるいは肉厚と孔径の
バランスがとれ、かつ外径の小さい多孔チューブを効率
的に製造することができると共に、異形押出成形も効率
的に行うことができる。
Therefore, it is possible to efficiently produce a porous tube with a large area occupied by the pores, or a well-balanced wall thickness and pore diameter, and a small outer diameter, and also to efficiently carry out profile extrusion molding.

実施例 実施例1 マンドレルにおける大孔と小孔の孔径比が1.9のダイ
を用い、前記の大孔により形成される孔に対しては0 
、012 kg / cJの圧力で、小孔により形成さ
れる孔に対しては0 、017 kg / cnfの圧
力で空気を供給しつつ、低密度ポリエチレン(MFRl
、O)を押出成形(150°C)し、断面に大小の2孔
を有する外径2 mmの多孔チューブを得た。
Examples Example 1 A die with a hole diameter ratio of 1.9 between the large hole and the small hole in the mandrel is used, and the hole formed by the large hole is 0.
,012 kg/cJ, and low density polyethylene (MFRl) while supplying air at a pressure of 0,017 kg/cnf to the pores formed by the small holes.
, O) was extruded (150°C) to obtain a porous tube with an outer diameter of 2 mm and having two large and small holes in its cross section.

得られた多孔チューブの断面における大小2孔の孔径比
は1.8であった。
The pore diameter ratio of two large and small pores in the cross section of the obtained porous tube was 1.8.

比較例1 大孔及び小孔により形成される孔に対して同じ圧力(0
、007kg / cJ )で空気を供給したほかは実
施例1に準じて多孔チューブを得た。
Comparative Example 1 The same pressure (0
A porous tube was obtained according to Example 1, except that air was supplied at a rate of 0.007 kg/cJ).

得られた多孔チューブの断面における大小2孔の孔径比
は2.3であった。
The pore diameter ratio of two large and small pores in the cross section of the obtained porous tube was 2.3.

実施例2 小孔により形成される孔に対する供給空気圧を0 、0
30 kg / cr&としたほかは実施例1に準じて
多孔チューブを得た。得られた多孔チューブは第8図の
ように瓢箪形の断面外形を有するものであり、断面にお
ける孔の平均外径は1 、0 mmであり、その差は±
30pmであった。
Example 2 Supply air pressure to the hole formed by the small hole is 0,0
A porous tube was obtained according to Example 1 except that the weight was 30 kg/cr&. The obtained porous tube has a gourd-shaped cross-sectional outline as shown in Figure 8, and the average outer diameter of the pores in the cross-section is 1.0 mm, with a difference of ±
It was 30pm.

また、小孔により形成される孔に対する供給空気圧を0
.017kg/cn?又は0.030kg / caに
繰り返し変化させつつ実施例1に準じて連続的に多孔チ
ューブを製造したところ、供給空気圧の変化に対応して
実施例1と同じ形態の多孔チューブ部と、前記の瓢箪形
の多孔チューブ部とを繰り返し状態で有する多孔チュー
ブを得ることができた。
In addition, the supply air pressure to the hole formed by the small hole is set to 0.
.. 017kg/cn? Or, when porous tubes were manufactured continuously according to Example 1 while repeatedly changing the supply air pressure to It was possible to obtain a porous tube having repeating shaped porous tube portions.

実施例3 マンドレルにおける大孔/中孔/小孔の孔径比が3/2
/1のダイを用い、前記の大孔により形成される孔に対
しては0 、003 kg / cnfの圧力で、中孔
により形成される孔に対しては0 、006 kg /
 cnfの圧力で、小孔により形成される孔に対しては
0.008kIr/clI?の圧力で空気を供給しつつ
、実施例1に準じて断面に大中小の3孔を有する多孔チ
ューブを得た。
Example 3 The pore diameter ratio of large holes/medium holes/small holes in the mandrel is 3/2
/1 die, with a pressure of 0,003 kg/cnf for the hole formed by the large hole, and 0,006 kg/cnf for the hole formed by the medium hole.
cnf pressure, 0.008 kIr/clI for the pores formed by the small holes. A porous tube having three large, medium and small holes in its cross section was obtained according to Example 1 while supplying air at a pressure of .

得られた多孔チューブの断面における大孔/中孔/小孔
の孔径比は6/3/2であった。
The pore diameter ratio of large pores/medium pores/small pores in the cross section of the obtained porous tube was 6/3/2.

実施例4 中孔により形成される孔に対する供給空気圧を0 、0
15 kg / cJとし、小孔により形成される孔に
対する供給空気圧を0 、020 kg / cJとし
たほかは実施例3に準じて断面に3孔を有する多孔チュ
ーブを得た。
Example 4 Supply air pressure to the hole formed by the medium hole is 0,0
A porous tube having three holes in its cross section was obtained in accordance with Example 3, except that the air pressure was 15 kg/cJ and the air pressure supplied to the holes formed by the small holes was 0.020 kg/cJ.

得られた多孔チューブは第4図のように概略三角形の断
面外形を有するものであり、断面における3孔の平均外
径は0.70mmであり、その差は±40μmであった
The obtained porous tube had a generally triangular cross-sectional shape as shown in FIG. 4, and the average outer diameter of the three holes in the cross section was 0.70 mm, with a difference of ±40 μm.

実施例5 マンドレルにおける大孔と小孔の孔径比が1.90でそ
の大孔と小孔を交互にそれぞれ2個ずつ有するダイを用
い、前記の大孔により形成される孔に対しては0 、0
14 kg / cn(の圧力で、小孔により形成され
る孔に対しては0 、019 kg / cJの圧力で
空気を供給しつつ、実施例1に準じて大孔小孔を2個ず
つ計4孔を断面に有する多孔チューブを得た。
Example 5 A die having a diameter ratio of 1.90 between the large hole and the small hole in the mandrel and having two large holes and two small holes alternately was used, and the hole formed by the large hole was 0. ,0
While supplying air at a pressure of 14 kg/cn (to the holes formed by the small holes at a pressure of 0.019 kg/cJ), two large holes and two small holes were prepared according to Example 1. A porous tube having four holes in its cross section was obtained.

得られた多孔チューブの断面における大孔小孔の平均孔
径に基づく孔径比は1.38であった。なお、大孔2つ
の孔径差は40μmであり、小孔2つの孔径差は3hm
であった。
The pore size ratio based on the average pore size of large pores and small pores in the cross section of the obtained porous tube was 1.38. The difference in diameter between the two large holes is 40 μm, and the difference in diameter between the two small holes is 3hm.
Met.

比較例2 大孔及び小孔により形成される孔に対して同じ圧力(0
、007kg / cJ )で空気を供給したほかは実
施例5に準じて多孔チューブを得た。
Comparative Example 2 The same pressure (0
A porous tube was obtained according to Example 5, except that air was supplied at a rate of 0.007 kg/cJ).

得られた多孔チューブの断面における大孔小孔の平均孔
径に基づく孔径比は1.75であった。また、大孔2つ
の孔径差は150μ■であり、小孔2つの孔径差は18
0μmであった。
The pore size ratio based on the average pore size of large pores and small pores in the cross section of the obtained porous tube was 1.75. Also, the difference in diameter between the two large holes is 150 μ■, and the difference in diameter between the two small holes is 18
It was 0 μm.

実施例6 小孔により形成される孔に対する供給空気圧を0 、0
35 kg / cn?とじたほかは実施例5に準じて
断面に4孔を有する多孔チューブを得た。
Example 6 Supply air pressure to the hole formed by the small hole is 0,0
35 kg/cn? A porous tube having 4 holes in its cross section was obtained in the same manner as in Example 5 except that it was closed.

得られた多孔チューブは第5図のように概略四角形の断
面外形を有するものであり、断面における4孔の平均外
径は0.70onであり、その差は±401JI11で
あった。
The obtained porous tube had a generally rectangular cross-sectional outline as shown in FIG. 5, and the average outer diameter of the four holes in the cross-section was 0.70 on, and the difference therebetween was ±401JI11.

実施例7 大孔により形成される孔に対する供給空気圧を0 、0
25 kg / c+Jとしたほかは実施例5に準じて
断面に4孔を有する多孔チューブを得た。
Example 7 Supply air pressure to the hole formed by the large hole is 0,0
A porous tube having 4 holes in its cross section was obtained in accordance with Example 5 except that the weight was 25 kg/c+J.

得られた多孔チューブは第7図のように楕円形の断面外
形を有するものであり、断面における大孔の平均外径は
1.ommであり、小孔の平均外径は0.4+amであ
った。
The obtained porous tube has an oval cross-sectional outline as shown in FIG. 7, and the average outer diameter of the large holes in the cross-section is 1. omm, and the average outer diameter of the small pores was 0.4+am.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いられるダイを例示した断面
図、第2図は前記のダイにより得られる基本形の多孔チ
ューブを示した断面図、第3図、第4図は前記のダイに
より得られる異形の多孔チューブを例示した断面図1、
第5図、第6図、第7図、第8図は本発明により得られ
る多孔デユープを例示した断面図である。 1:マンドレル 2.3,4 :ガス道 5.6.7.8.9.lO,11:多孔チューブ21.
22,23,24゜ 31.32,33.34゜ 41.42.43.44゜ 51.52.53.54゜ 55.56.57.58゜ 59.60:多孔チューブの断面における孔特許出願人
 三菱電線工業株式会社
Fig. 1 is a cross-sectional view illustrating a die used in the present invention, Fig. 2 is a cross-sectional view showing a basic porous tube obtained by the above-mentioned die, and Figs. Cross-sectional view 1 illustrating an irregularly shaped porous tube,
FIG. 5, FIG. 6, FIG. 7, and FIG. 8 are cross-sectional views illustrating a porous duplex obtained by the present invention. 1: Mandrel 2.3, 4: Gas path 5.6.7.8.9. lO,11: Porous tube 21.
22, 23, 24° 31.32, 33.34° 41.42.43.44° 51.52.53.54° 55.56.57.58° 59.60: Patent application for holes in cross section of porous tube People Mitsubishi Cable Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、断面に複数の孔を有する多孔チューブを押出成形方
式で製造するにあたり、形成する孔のそれぞれにガスを
独立して供給することができるダイを用いること、及び
形成する孔のそれぞれに供給するガスの圧力を変えて形
成される孔の径を制御することを特徴とする多孔チュー
ブの製造方法。 2、用いるダイが異なる孔径の孔を形成するように作製
したものである特許請求の範囲第1項記載の製造方法。
[Claims] 1. When manufacturing a porous tube having a plurality of holes in its cross section by extrusion molding, a die capable of independently supplying gas to each of the holes to be formed is used, and a die is used to form the holes. A method for manufacturing a porous tube, characterized in that the diameter of the pores formed is controlled by changing the pressure of gas supplied to each of the pores. 2. The manufacturing method according to claim 1, wherein the die used is manufactured to form holes of different diameters.
JP62315736A 1987-12-14 1987-12-14 Perforated tube manufacturing method Expired - Lifetime JPH072362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315736A JPH072362B2 (en) 1987-12-14 1987-12-14 Perforated tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315736A JPH072362B2 (en) 1987-12-14 1987-12-14 Perforated tube manufacturing method

Publications (2)

Publication Number Publication Date
JPH01156034A true JPH01156034A (en) 1989-06-19
JPH072362B2 JPH072362B2 (en) 1995-01-18

Family

ID=18068918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315736A Expired - Lifetime JPH072362B2 (en) 1987-12-14 1987-12-14 Perforated tube manufacturing method

Country Status (1)

Country Link
JP (1) JPH072362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007754A (en) * 2004-05-27 2006-01-12 Seiko Epson Corp Liquid transfer tube and liquid transfer tube manufacturing method
US7654811B2 (en) 2006-02-02 2010-02-02 Seiko Epson Corporation Mold for manufacturing a tube by extraction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200848347A (en) 2007-02-23 2008-12-16 Great Stuff Inc Remote control for valve and hose reel system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007754A (en) * 2004-05-27 2006-01-12 Seiko Epson Corp Liquid transfer tube and liquid transfer tube manufacturing method
US7654811B2 (en) 2006-02-02 2010-02-02 Seiko Epson Corporation Mold for manufacturing a tube by extraction

Also Published As

Publication number Publication date
JPH072362B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US4461323A (en) Bent honeycomb pipe assembly with central pipe
US4655987A (en) Method and apparatus for extruding tubular articles having several conduits
JP2004322583A (en) Corrugated tube production method and the corrugated tube produced thereby
GB2045674A (en) Hollow bones its wall extruding a plastics pipe having longitudinally extending
JP2019531932A (en) Mold for continuously producing textured surface and method for producing the same
WO2020003065A1 (en) Coextruded articles, dies and methods of making the same
EP0740952A4 (en) Composite microporous polyolefin film and process for producing the same
ATE154259T1 (en) METHOD FOR PRODUCING A COMPOSITE BODY CONSISTING OF MICRO SCREEN
JPH01156034A (en) Manufacture of multiple aperture tube
JPS5830804B2 (en) Dies for honeycomb molding
US3954365A (en) Apparatus for the preparation of foamed thermoplastic extruded profiles
JPH069848B2 (en) Perforated tube manufacturing method
US3480996A (en) Spinneret for conjugate spinning
JP3121407B2 (en) Extrusion die for honeycomb structure
JPH0393523A (en) Die for extrusion molding of perforated tube and perforated tube
JPH0489224A (en) Extrusion molding die
JPS55144323A (en) Production of composite wire
JPH05131427A (en) Extrusion molding die for honeycomb structure
JPS58110119A (en) Production of perforated extruded die having plural hollow parts in its inner and outer sides and die for its production
JPH0615713Y2 (en) Die for extrusion molding of ink guide core
JPH09141724A (en) Extrusion molding of curved molded object
JP3747099B2 (en) Sizing die for molding thermoplastic resin mandrels
JP2511942Y2 (en) Manufacturing equipment for foamed resin molding containing core material
KR20070115985A (en) Composite tube
JPH04118212A (en) Extrusion mold