JPH01155659A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01155659A
JPH01155659A JP31399687A JP31399687A JPH01155659A JP H01155659 A JPH01155659 A JP H01155659A JP 31399687 A JP31399687 A JP 31399687A JP 31399687 A JP31399687 A JP 31399687A JP H01155659 A JPH01155659 A JP H01155659A
Authority
JP
Japan
Prior art keywords
gas
substrate
plasma
emitter
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31399687A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31399687A priority Critical patent/JPH01155659A/en
Publication of JPH01155659A publication Critical patent/JPH01155659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve an hFE and to achieve a high current amplification factor in a HBT by a method wherein a divergent magnetic field type electronic cyclotron resonance unit is used, and by an ECR plasma vapor growth method, beta-SiC is epitaxially grown on an Si4 deg.-off substrate doped with N-type ions. CONSTITUTION:On an Si(111)4 deg.-off substrate 31 placed in a plasma reaction chamber 12 in a divergent magnetic field type electronic cyclotron resonance unit heated to 400-500 deg.C, silicon carbide is grown, which is accomplished by introducing Si2H6 gas or Si3H8 gas into the plasma reaction chamber 12 and C2H2 gas, C2H4 gas, or C3H8 gas into a plasma generating chamber 11, the latter together with hydrogen or helium. With beta-SiC being formed in this way, an HBT emitter may be built at a low temperature, a high-concentration base region 33 is prevented from re-diffusion, while a base junction and an emitter 34 may be formed on a shallow base region 33.

Description

【発明の詳細な説明】 〔概要〕 半導体(シリコン)基板上に炭化硅素(SiC)を低温
で成長し、ヘテロ接合バイポーラトランジスタ(Het
erojunction Bipolar Trans
istorp 、 HBT )を形成する方法に関し、 半導体(シリコン)基板上に従来例よりも低温でSiC
を成長し、それを用いてり、の改善された)IBTを形
成する方法を提供することを目的とし、発散磁場型電子
サイクロトロン共鳴プラズマ気相成長装置を用い400
℃〜500℃に加熱された前記装置のプラズマ反応室に
配置されたシリコン(111)4’オフ基板上に、Si
、H,もしくは5iJsガスをプラズマ反応室に、C,
H,、C2H,もしくはC3IJ 、ガスとを、水素も
しくはヘリウムと共にプラズマ生成室に導入し、前記基
板上に炭化硅素(SiC)を成長することを特徴とする
半導体装置の製造方法を含み構成する。
[Detailed Description of the Invention] [Summary] Silicon carbide (SiC) is grown on a semiconductor (silicon) substrate at low temperature to produce a heterojunction bipolar transistor (Heterojunction bipolar transistor).
erojunction Bipolar Trans
istorp, HBT) on a semiconductor (silicon) substrate at a lower temperature than conventional methods.
The purpose of the present invention is to provide a method for forming IBTs using a divergent magnetic field type electron cyclotron resonance plasma vapor phase epitaxy apparatus.
Si
, H, or 5iJs gas into the plasma reaction chamber, C,
The present invention includes a method for manufacturing a semiconductor device, characterized in that H, C2H, or C3IJ gas is introduced into a plasma generation chamber together with hydrogen or helium to grow silicon carbide (SiC) on the substrate.

〔産業上の利用分野] 本発明は、半導体(シリコン)基板上に炭化硅素(Si
C)を低温で成長し、ペテロ接合バイポーラトランジス
タ(Heterojunction Bipolar 
Transistor、 HBT )を形成する方法に
関する。
[Industrial Application Field] The present invention provides silicon carbide (Si) on a semiconductor (silicon) substrate.
C) is grown at low temperature to form a Heterojunction Bipolar transistor.
Transistor, HBT).

〔従来の技術〕[Conventional technology]

従来法では5i)lcl、とC,H,ガスの組み合わせ
を利用し、減圧下(約200 Pa) 、高流速(50
cm/sec以上)で、流量比(C3H8/5i)Ic
 I!、3)0.01〜0.5の範囲、成長温度900
〜1100℃(典型的には1000℃)で、(111)
シリコン基板上にSiCを成長させるもので、より具体
的には、第3図を参照すると、シリコン基板(ウェハ)
41を載置したRFコイル44で加熱される反応炉(石
英管)43をブースタ、ポンプ45とロークリ、ポンプ
46を用いて排気し、前記した成長ガスとキャリアガス
(H2)をマスフローントローラ47を通して供給する
ことによってSiC結晶をウェハ41に成長するもので
ある。なお同図において、48はオツシレータ、49は
気化コントローラである。
The conventional method uses a combination of 5i) lcl, C, H, and gases under reduced pressure (approximately 200 Pa) and at a high flow rate (50
cm/sec or more), flow rate ratio (C3H8/5i)Ic
I! , 3) Range of 0.01 to 0.5, growth temperature 900
~1100°C (typically 1000°C), (111)
It grows SiC on a silicon substrate, and more specifically, referring to Figure 3, it grows SiC on a silicon substrate (wafer).
A reactor (quartz tube) 43 heated by an RF coil 44 mounted with 41 is evacuated using a booster, a pump 45 and a rotary pump 46, and the above-mentioned growth gas and carrier gas (H2) are passed through a mass flow roller 47. The SiC crystal is grown on the wafer 41 by supplying the SiC crystal. In the figure, 48 is an oscillator, and 49 is a vaporization controller.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の方法の実用例としてHBTを形成しようとすると
、前記した如くに成長温度が高いため、ベース領域にお
いて不純物の再拡散が発生し、浅い(shallow 
)ベース領域の形成が困難となり)IBTとしての利点
(電流増幅率(hri)、を生かしきれない問題がある
。また、反応環境が減圧(数T。
When attempting to form an HBT as a practical example of the above method, the growth temperature is high as described above, so re-diffusion of impurities occurs in the base region, resulting in a shallow
) It becomes difficult to form the base region), making it difficult to take full advantage of the advantages of IBT (current amplification factor (hr)).Also, the reaction environment is under reduced pressure (several T).

rr前後)であるので、NOなど他の不純物を取り込む
問題もある。
rr), there is also the problem of incorporating other impurities such as NO.

そこで本発明は、半導体(シリコン)基板上に従来例よ
りも低温でSiCを成長し、それを用いてhFcの改善
されたHBTを形成する方法を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a method of growing SiC on a semiconductor (silicon) substrate at a lower temperature than conventional methods and using the same to form an HBT with improved hFc.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、発散磁場型電子サイクロトロン共鳴プラ
ズマ気相成長装置を用い400℃〜500 ’Cに加熱
された前記装置のプラズマ反応室に配置されたシリコン
(111)4°オフ基板上に、5iJ6もしくは5iJ
sガスをプラズマ反応室にC2H2、C2H4もしくは
C,H,ガスとを、水素もしくはヘリウムと共にプラズ
マ生成室に導入し、前記基板上に炭化硅素(SiC)を
成長することを特徴とする半導体装置の製造方法によっ
て解決される。
The above problem was solved by using a diverging magnetic field type electron cyclotron resonance plasma vapor phase epitaxy apparatus and using a 5iJ6 Or 5iJ
A semiconductor device characterized in that silicon carbide (SiC) is grown on the substrate by introducing s gas into a plasma reaction chamber, C2H2, C2H4, or C, H gas, together with hydrogen or helium, into a plasma generation chamber. The problem is solved by the manufacturing method.

〔作用] 上記した方法では、低温でβ−5iCを形成するので、
HBTのエミッタは低温で作ることができ、高濃度に形
成したベース領域の再拡散が防止され、浅いベース領域
にエミッタ、ベース接合を形成することが可能になる。
[Function] In the above method, β-5iC is formed at low temperature, so
The HBT emitter can be made at a low temperature, preventing re-diffusion of a highly doped base region, and making it possible to form an emitter and base junction in a shallow base region.

〔実施例〕〔Example〕

以下、本発明を図示の実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

本発明においては、発散磁場型電子サイクロトロン共鳴
(ECR)装置を用い、ECRプラズマ気相成長(CV
O)法にて、N型にイオンドープしたシリコン(111
)4’オフ(OFF )基板にβ−5iCをエピタキシ
ャル成長する。
In the present invention, a divergent magnetic field type electron cyclotron resonance (ECR) device is used, and the ECR plasma vapor phase epitaxy (CV
N-type ion-doped silicon (111
) Epitaxially grow β-5iC on a 4'off (OFF) substrate.

第1図は発散磁場型ECRプラズマCVD装置の概略図
である。
FIG. 1 is a schematic diagram of a divergent magnetic field type ECR plasma CVD apparatus.

このECR−CVD装置は、プラズマ生成室11、およ
びプラズマ反応室12から構成されている。マイクロ波
発振器13で発生された周波数2.45GHzのマイク
ロ波を矩形導波管14よりECRプラズマ生成室11に
導入する。プラズマ生成室11の周りには磁気コイル1
5を配置し、プラズマ生成室11内でECR条件を満た
すようにしている。また、排気構成はプラズマ生成室お
よびプラズマ反応室をターボ分子複合ポンプ(T、M、
P、)16(排気’J ; 18001 /5ec) 
、メカニカルブースターポンプ(M、B、P、) 17
(ルーツポンプ)で排気するシステムとなっている。な
お第1図において、18はプラズマシャッタ、19は試
料、20はヒータ、21はロークリポンプ(R,P、)
、22はマツチング6ボ・ンクスを示す。
This ECR-CVD apparatus includes a plasma generation chamber 11 and a plasma reaction chamber 12. Microwaves with a frequency of 2.45 GHz generated by a microwave oscillator 13 are introduced into the ECR plasma generation chamber 11 through a rectangular waveguide 14. A magnetic coil 1 is installed around the plasma generation chamber 11.
5 is arranged to satisfy ECR conditions within the plasma generation chamber 11. In addition, the exhaust configuration uses turbo molecular compound pumps (T, M,
P, ) 16 (Exhaust 'J; 18001 /5ec)
, mechanical booster pump (M, B, P,) 17
(Roots pump) is used to exhaust the air. In FIG. 1, 18 is a plasma shutter, 19 is a sample, 20 is a heater, and 21 is a rotary pump (R, P,).
, 22 indicate matching 6 boxes.

本発明の実施においては、前記した基板を600〜80
0℃まで加熱しく数秒〜数分間) 、ECRHzガスプ
ラズマにより基板表面の自然酸化膜を除去する(基板ク
リーニング)。
In carrying out the present invention, the above-mentioned substrate is
Heat to 0° C. for several seconds to several minutes) and remove the natural oxide film on the substrate surface using ECRHz gas plasma (substrate cleaning).

基本クリーニングの後に、プラズマ生成室にH2又はH
eとCzHz、C2H,又はC、+1 Ilを導入し、
反応室にSi、H6又は5izHaを導入する。又はプ
ラズマ生成室11にヘリウム(He ) 、プラズマ反
応室12に5izHbもしくは5I3H8、およびC,
H2、CzH,もしくはCJs/H2もしくは)Ieを
導入する。そのときの基板温度は400〜500 ”C
にする。ドーパントガスはシリコン基板をドープする場
合と同様に、P型にはB2H5、N型にはPlhを用い
る。上記した基板の温度条件は、実験によって最適と確
認された条件である。
After basic cleaning, add H2 or H2 to the plasma generation chamber.
Introducing e and CzHz, C2H, or C, +1 Il,
Si, H6 or 5izHa is introduced into the reaction chamber. Or helium (He) in the plasma generation chamber 11, 5izHb or 5I3H8 in the plasma reaction chamber 12, and C,
Introduce H2, CzH, or CJs/H2 or) Ie. The substrate temperature at that time is 400-500"C
Make it. As the dopant gas, B2H5 is used for P type and Plh is used for N type, as in the case of doping a silicon substrate. The temperature conditions for the substrate described above are conditions that have been confirmed to be optimal through experiments.

上記の方法でHBTを形成するには、第2図を参照する
と、シリコン(111)  4°オフのN型にイオンド
ープしたシリコン基板31に通常の技術でN+型領域(
32P+型領域(ベース領域)33を形成し次いでβ−
5iCのエミッタ34を前記した方法で形成すると、4
00〜500℃の温度でベース領域33の不純物の拡散
は発生しないので、浅、く形成したベース領域33の縦
横方向の拡がりが防止され、I(BTの利点が生かされ
、実験によるとhFEは800〜1000の値をとるこ
とができた。なお第2図において、35は5iOz膜、
36.37.38はそれぞれポリシリコンのベース電極
、エミッタ電極、コレクタ電極である。または上記した
方法に代えて、ECRエピタキシャル成長したN0型領
域22にP+型領域(23形成してもよい。
To form an HBT using the above method, referring to FIG.
32P+ type region (base region) 33 is formed and then β-
When the 5iC emitter 34 is formed by the method described above, 4iC emitter 34 is formed by the above method.
Since impurity diffusion in the base region 33 does not occur at a temperature of 00 to 500 degrees Celsius, the vertical and horizontal expansion of the shallowly formed base region 33 is prevented, and the advantages of I (BT) are utilized, and according to experiments, hFE It was possible to take a value of 800 to 1000. In Figure 2, 35 is a 5iOz film;
36, 37, and 38 are a polysilicon base electrode, emitter electrode, and collector electrode, respectively. Alternatively, instead of the above method, a P+ type region (23) may be formed in the N0 type region 22 grown by ECR epitaxial growth.

〔発明の効果] 以上のように本発明によれば、β−3iCを用いたエミ
ッタとベース接合は2.2 eVのワイドギャップをも
って浅いベース領域に形成され、ベースの高濃度を維持
することができるので、HBTにおいてhFEが向上し
、1(BTの高い電流増幅率を得るのに有効である。
[Effects of the Invention] As described above, according to the present invention, an emitter-base junction using β-3iC is formed in a shallow base region with a wide gap of 2.2 eV, and a high base concentration can be maintained. This improves hFE in HBT and is effective in obtaining a high current amplification factor of 1 (BT).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発散磁場型ECRプラズマCVD装置の概略図
、 第2図はβ−5iCをエミッタとする1(BTの断面図
、 第3図は従来のSiC膜成長装置の配置図である。 第1図と第2図において、 11はプラズマ生成室、 12はプラズマ反応室、 13はマイクロ波発振器、 14は矩形導波管、 15は磁気コイル、 16はT、M、P。 17はM、B、P。 18はプラズマシャッタ、 19は試料、 20はヒータ、 21はR,P。 32はN3型領域、 33はベース領域、 34はエミッタ、 35はSin、膜、 36はベース電極、 37はエミッタ電極、 3日はコレクタ電極、 を示す。 特許出願人   富士通株式会社
Fig. 1 is a schematic diagram of a divergent magnetic field type ECR plasma CVD apparatus, Fig. 2 is a cross-sectional view of a 1 (BT) with β-5iC as an emitter, and Fig. 3 is a layout diagram of a conventional SiC film growth apparatus. 1 and 2, 11 is a plasma generation chamber, 12 is a plasma reaction chamber, 13 is a microwave oscillator, 14 is a rectangular waveguide, 15 is a magnetic coil, 16 is T, M, P. 17 is M, B, P. 18 is a plasma shutter, 19 is a sample, 20 is a heater, 21 is R, P. 32 is an N3 type region, 33 is a base region, 34 is an emitter, 35 is a Sin, film, 36 is a base electrode, 37 indicates the emitter electrode, and 3 indicates the collector electrode. Patent applicant: Fujitsu Limited

Claims (2)

【特許請求の範囲】[Claims] (1)発散磁場型電子サイクロトン共鳴プラズマ気相成
長装置を用い、 400℃〜500℃に加熱されて前記のプラズマ反応室
(12)に配置されたシリコン(111)4゜オフ基板
上に、 Si_2H_6もしくはSi_3H_8ガスをプラズマ
反応室C_2H_2、C_2H_4もしくはC_3H8
_ガスとを、水素もしくはヘリウムと共にプラズマ生成
室に導入し、 前記基板上に炭化硅素(SiC)を成長することを特徴
とする半導体装置の製造方法。
(1) Using a divergent magnetic field type electron cycloton resonance plasma vapor phase epitaxy apparatus, on a silicon (111) 4° off substrate heated to 400°C to 500°C and placed in the plasma reaction chamber (12), Si_2H_6 or Si_3H_8 gas is transferred to plasma reaction chamber C_2H_2, C_2H_4 or C_3H8.
_ gas is introduced into a plasma generation chamber together with hydrogen or helium, and silicon carbide (SiC) is grown on the substrate.
(2)N型シリコン(111)4゜オフ基板(31)に
形成したN^+型領域(32)内にベース領域(33)
を形成しSiCのエミッタ(34)をベース領域(33
)上に形成しベース領域とコンタクトをとるベース電極
(36)エミッタ(34)に接するエミッタ電極(37
)、N^+領域(32)とコンタクトをとるコレクタ電
極38を形成することを特徴とする特許請求の範囲第1
項記載の方法。
(2) Base region (33) in N^+ type region (32) formed on N-type silicon (111) 4° off substrate (31)
is formed and the SiC emitter (34) is connected to the base region (33).
) and making contact with the base region; and an emitter electrode (37) in contact with the emitter (34).
), forming a collector electrode 38 in contact with the N^+ region (32).
The method described in section.
JP31399687A 1987-12-14 1987-12-14 Manufacture of semiconductor device Pending JPH01155659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31399687A JPH01155659A (en) 1987-12-14 1987-12-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31399687A JPH01155659A (en) 1987-12-14 1987-12-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01155659A true JPH01155659A (en) 1989-06-19

Family

ID=18047969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31399687A Pending JPH01155659A (en) 1987-12-14 1987-12-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01155659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372304B1 (en) * 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372304B1 (en) * 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD

Similar Documents

Publication Publication Date Title
JP4060580B2 (en) Heterojunction bipolar transistor
CN106711022B (en) A kind of preparation method of growth doped interface clearly silicon carbide epitaxial film
JPH0744189B2 (en) In-situ doped n-type silicon layer deposition method and NPN transistor
JP4391069B2 (en) Hetero bipolar transistor and manufacturing method thereof
JPS58201358A (en) Method of producing transistor having shallow emitter structure
JP3079575B2 (en) Method for manufacturing semiconductor device
JP3914064B2 (en) Method and apparatus for growing mixed crystal film
JP2002064105A (en) HETERO BIPOLAR TRANSISTOR AND METHOD OF FORMING SiGeC MIXED-CRYSTAL FILM
CN104264219A (en) Epitaxial preparation method for base region gradually doped silicon carbide film
JPH01155659A (en) Manufacture of semiconductor device
EP0800705B1 (en) Manufacture of a semiconductor device with selectively deposited semiconductor zone
JPH1041321A (en) Manufacture of bipolar transistor
WO2002099890A1 (en) Semiconductor layer and forming method therefor, and semiconductor device and production method therefor
JP2560038B2 (en) Method for manufacturing semiconductor device
CN104233465A (en) Preparation method for controlling epitaxial growth of heavily doped pressure N-type silicon carbide film
JP2003514394A (en) Method of manufacturing semiconductor device having SiGe heterojunction bipolar transistor
JP3505892B2 (en) Manufacturing method of bipolar transistor
Huang et al. Growth of graded SiGe films by novel UHV/CVD system
JPH0529332A (en) Heterojunction bipolar transistor and manufacture thereof
CN117238758A (en) Method for passivating SiC MOS interface defects by sacrificial oxidation NANO-P doping EPI
Huang et al. Growth of SiGe film by using a single-wafer rapid thermal processing UHV/CVD system
GB1156004A (en) Gas Etching for Semiconductor Material.
JPH01128425A (en) Manufacture of semiconductor device
CN117476756A (en) Silicon carbide IGBT with trench emitter and preparation method
Ruddell et al. Carbon doped silicon emitters fabricated using limited reaction processing