JPH01155602A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPH01155602A
JPH01155602A JP62314235A JP31423587A JPH01155602A JP H01155602 A JPH01155602 A JP H01155602A JP 62314235 A JP62314235 A JP 62314235A JP 31423587 A JP31423587 A JP 31423587A JP H01155602 A JPH01155602 A JP H01155602A
Authority
JP
Japan
Prior art keywords
permanent magnet
composition
smtife
phase
compound phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62314235A
Other languages
Japanese (ja)
Inventor
Ken Takahashi
研 高橋
Terunobu Miyazaki
照宣 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd filed Critical Tohoku Tokushuko KK
Priority to JP62314235A priority Critical patent/JPH01155602A/en
Publication of JPH01155602A publication Critical patent/JPH01155602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE:To obtain the title permanent magnet having excellent characteristics by a method wherein the permanent magnet is formed using Sm, Ti and Fe, and the compound phase of SmTiFe is provided inside the permanent magnet. CONSTITUTION:The title permanent magnet consists of the composition in atomic percentage of 4-10%, Ti of 6-11% and Fe of 81-86%, and an SmTiFe11 compound phase is formed inside the permanent magnet. Pertaining to the composition in the vicinity of SmFe5, the Curie temperature goes up to 300 deg.C without lowering a saturated magnetic flux density too much. The SmTiFe11 compound phase is grown in the range in atomic percentage of Sm of 4-10% and Ti of 6-11%, and high coercive force can be obtained. As a result, the permanent magnet having excellent characteristics can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、Fe −Sm系の永久磁石とその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Fe--Sm permanent magnet and a method for manufacturing the same.

(従来の技術) SIII系永久磁石は、SmCo5とSm、Co11系
が代表的な磁石として知られており、小型、効率化が要
求さる電子機器の磁気回路に多用されている。
(Prior Art) SmCo5, Sm, and Co11-based permanent magnets are known as typical SIII-based permanent magnets, and are widely used in magnetic circuits of electronic devices that require small size and high efficiency.

(発明が解決しようとする問題点) しかしながらこの種の永久磁石は、高価なGoを多量に
含むことの他、圧粉・焼結による工程の煩雑さ故にコス
トが高く、そのため価格的に安価な磁石の開発が望まれ
、Sm −Fe系磁石の開発などが試みられているが、
現在までのところ充分な成果を挙げるまでには至ってい
ない。
(Problem to be solved by the invention) However, this type of permanent magnet is expensive because it contains a large amount of expensive Go and the process of powder compaction and sintering is complicated. The development of magnets is desired, and attempts have been made to develop Sm-Fe magnets.
To date, sufficient results have not been achieved.

この発明は、上記の現状に鑑みて開発されたもので、そ
の目的とするところは、高価なCoを含まず、なおかつ
良好な磁気特性とくに優れた保磁力を有する永久磁石を
その有利な製造方法と共に提供することにある。
This invention was developed in view of the above-mentioned current situation, and its purpose is to provide a permanent magnet that does not contain expensive Co and has good magnetic properties, especially excellent coercive force, using an advantageous manufacturing method. The aim is to provide the same.

(問題点を解決するための手段) Sm −Fe系合金においては、従来、通常の焼結製造
法では高保磁力を有する金属間化合物は得られなかった
が、発明者らは、溶融後急速凝固するいわゆる超や、冷
性によれば、通常の方法では得られないSmFe3やS
mzFet等の高保磁力を有する準安定な化合物相を生
成できることを見出した。
(Means for solving the problem) Conventionally, it has not been possible to obtain an intermetallic compound with a high coercive force using a normal sintering production method for Sm-Fe alloys, but the inventors have developed a method for rapidly solidifying Sm-Fe alloys after melting. According to the so-called super or cold property, SmFe3 and S, which cannot be obtained by normal methods, are
It has been found that a metastable compound phase having a high coercive force such as mzFet can be generated.

しかしながら、SmFe5はキューリー温度が低いとい
う欠点があり、一方Sm、Fe、は飽和磁束密度が低い
だけでなく、S重量が多いために高価になるという欠点
があった。
However, SmFe5 has the disadvantage of a low Curie temperature, while Sm and Fe not only have a low saturation magnetic flux density but also have a disadvantage of being expensive due to their large S weight.

この発明は、上記の欠点を改善するために、SmFe5
組成附近の合金系についてSmを他元素で置換すること
を試みた結果、Sm 40〜70%をTiで置換した場
合に高保磁力と飽和磁束密度の大きいSmTiFe、相
が得られるという新規な知見に基づき完成されたもので
ある。
In order to improve the above-mentioned drawbacks, this invention
As a result of trying to replace Sm with other elements in alloy systems with similar compositions, we found a new finding that when 40 to 70% of Sm was replaced with Ti, a SmTiFe phase with high coercive force and high saturation magnetic flux density could be obtained. It has been completed based on the following.

すなわち、この発明の要旨構成は次の通りである。That is, the gist of the present invention is as follows.

(1)原子%でSm : 4〜10%、Ti:6〜11
%、Fe : 81〜86%の組成になり、内部にSm
TiFez化合物Fe上なえることを特徴とする永久磁
石。
(1) Sm: 4-10%, Ti: 6-11 in atomic %
%, Fe: The composition is 81-86%, with Sm inside.
A permanent magnet characterized by a TiFez compound coated with Fe.

(2)原子%でSm : 4〜10%、Ti : 6〜
11%、Fe : 81〜86%の組成になる合成溶湯
を、その合金組成に応じた冷却速度で冷却凝固させて、
内部にSmTtFe++化合物相を析出させることから
なる永久磁石の製造方法。
(2) Sm: 4 to 10%, Ti: 6 to 10% in atomic %
11%, Fe: A synthetic molten metal having a composition of 81 to 86% is cooled and solidified at a cooling rate according to the alloy composition,
A method for producing a permanent magnet, which comprises precipitating an SmTtFe++ compound phase inside.

(3)原子%で5III:4〜10%、Ti : 6〜
11%、Fe : 81〜86%の組成になる合成溶湯
を、急冷凝固させて非晶質またはTbCu型の非平衡相
としたのち、700〜900℃の温度範囲で焼鈍を施し
てSmTiFe+ 1化合物に相変態させることからな
る永久磁石の製造方法。
(3) 5III: 4-10% in atomic %, Ti: 6-10%
A synthetic molten metal having a composition of 11% and 81% to 86% Fe is rapidly solidified to form an amorphous or TbCu type non-equilibrium phase, and then annealed in a temperature range of 700 to 900°C to form an SmTiFe+ 1 compound. A method for producing a permanent magnet, which comprises phase transformation.

(作 用) SmFe、附近の組成について、SmをTiで置換して
行(と飽和磁束密度はあまり低下せずにキューリー温度
が300℃まで上昇する。そして原子%でSm: 4〜
10%、Ti:6〜11%の範囲ではSmTiFe+ 
+化合物相が生成し高保持力が得られるようになる。
(Function) When Sm is replaced with Ti for SmFe, the Curie temperature rises to 300°C without much decrease in the saturation magnetic flux density.
10%, Ti: SmTiFe+ in the range of 6 to 11%
+ Compound phase is generated and high retention power can be obtained.

この化合物相の結晶磁気異方性定数は、発明者が測定し
た結果では5 X10’erg/cm3と非常に大きい
値を呈しており、これが高保磁力に寄与しているものと
考えられる。
The magnetocrystalline anisotropy constant of this compound phase has a very large value of 5 x 10'erg/cm3 as measured by the inventor, and it is thought that this contributes to the high coercive force.

以下この発明の成分組成範囲の限定理由について説明す
る。
The reasons for limiting the component composition range of this invention will be explained below.

Smの含を量が4%に満たないと反強磁性相のTiFe
zが生成し、一方10%を超えるとSmTiFe+ +
相が得られなくなり保持磁力は(氏上する。
When the amount of Sm is less than 4%, TiFe in the antiferromagnetic phase
z is generated, while when it exceeds 10%, SmTiFe+ +
The phase is no longer obtained and the holding magnetic force increases.

またTi含有量が6%未満ではSmTiFe、 、が生
成せず、一方11%を超えるとTiFezを生成し保持
力が低下するとともに飽和磁気も低下する。
Further, if the Ti content is less than 6%, SmTiFe, , etc. will not be generated, while if it exceeds 11%, TiFez will be generated, and the coercive force and saturation magnetism will also decrease.

残余のFeについては、81%に満たないと飽和磁気が
低くなり、一方86%を超えるとThzNi+を型の化
合物相が得られなくなる。
Regarding the remaining Fe, if it is less than 81%, the saturation magnetism will be low, while if it exceeds 86%, a ThzNi+ type compound phase will not be obtained.

なおこの発明では、特性を維持しながら、キューリー点
の上昇と耐食性を改善するためにCoをFeに対して2
0%まで置換することができる。
In addition, in this invention, in order to raise the Curie point and improve corrosion resistance while maintaining the characteristics, Co is added to Fe by 2.
It can be replaced up to 0%.

さてこの発明に従う永久磁石を製造するに当っては、通
常の溶解−鋳造一粉砕一焼結工程を利用することができ
るが、好適成分組成に溶製した合金溶湯を、急速凝固し
て合金薄帯とするいわゆる急速凝固法が有利に適合する
Now, in manufacturing the permanent magnet according to the present invention, the usual melting-casting-grinding-sintering process can be used, but a molten alloy melted to a suitable composition is rapidly solidified to form an alloy thin film. The so-called rapid solidification method using strips is advantageously suitable.

急速凝固法としては、ガス噴射法など従来公知の方法い
ずれもが実施可能であったが、単ロール法や回転ドラム
法など、溶融金属を高速で回転するロールやドラム外表
面上に供給する方法を適用した場合にとりわけ良好な結
果が得られた。
As a rapid solidification method, any conventionally known method such as a gas injection method can be implemented, but methods such as a single roll method and a rotating drum method in which molten metal is supplied onto the outer surface of a roll or drum that rotates at high speed. Particularly good results were obtained when applying

実験では、直径160 mmの銅製ロールを用いその回
転数により冷却速度を調整したが、ロール周速が20m
/s附近の場合SmTiFe+ r相が生成し高保磁力
が得られた。この点30m/s以上になると非平衡相の
TbCu、型及び非晶質相となりや、冷ままの状態では
高保磁力は得られなくなる。しかしながら30m/s以
上で急速凝固した後、焼鈍を施すことにより600℃附
近から保磁力の増加がはじまり、800℃で安定相のS
mTiFezに相変態すると最高の保磁力が得られるよ
うになった。
In the experiment, a copper roll with a diameter of 160 mm was used and the cooling rate was adjusted depending on the rotation speed.
/s, SmTiFe+ r phase was generated and a high coercive force was obtained. When the speed exceeds 30 m/s, non-equilibrium TbCu, type and amorphous phases occur, and a high coercive force cannot be obtained in a cold state. However, after rapid solidification at 30 m/s or more, the coercive force begins to increase around 600°C by annealing, and at 800°C the stable phase of S
The highest coercive force can be obtained by phase transformation to mTiFez.

従ってこの発明では、焼鈍温度につき、良好な相変態が
達成できる700〜900″Cの範囲に限定したのであ
る。
Therefore, in the present invention, the annealing temperature is limited to a range of 700 to 900''C at which good phase transformation can be achieved.

以上のように凝固速度をコントロールすることにより直
接SmTiFe、相を生成することもできるが、周速3
0m/s以上の急速凝固により非平衡相としたのち、7
00〜900℃の焼鈍によってSmTiFez相を生成
させる方がより制御が容易である。
Although it is possible to directly generate the SmTiFe phase by controlling the solidification rate as described above,
After forming a non-equilibrium phase by rapid solidification at 0 m/s or more, 7
It is easier to control the SmTiFez phase by annealing at 00 to 900°C.

(実施例) 実施例1 表1に示す組成になる合金溶湯をアルゴン雰囲気中で高
周波溶解したのち、0.5 kg/cm”のアルゴンを
溶湯に加圧して内径:0.5mmの石英ノズルから、5
〜42m/sの種々の周速で回転する直径:160胴の
銅製の回転ロール上に噴射し、急速に冷却凝固させて薄
帯を得た。
(Example) Example 1 After high-frequency melting of a molten alloy having the composition shown in Table 1 in an argon atmosphere, 0.5 kg/cm'' of argon was applied to the molten metal and the melt was melted through a quartz nozzle with an inner diameter of 0.5 mm. , 5
The mixture was sprayed onto a copper rotating roll with a diameter of 160 mm rotating at various circumferential speeds of ~42 m/s, and rapidly cooled and solidified to obtain a ribbon.

かくして得られた各薄帯につき、振動形磁力計により、
最大印加磁場18kOeの範囲で磁気特性を測定した。
For each ribbon obtained in this way, a vibrating magnetometer was used to measure the
The magnetic properties were measured in the range of a maximum applied magnetic field of 18 kOe.

得られた結果を表1に併記する。なお表1に示した特性
値は、各合金組成の溶湯をロール周速を変えて作製した
薄帯について得られた最高の値である。
The obtained results are also listed in Table 1. The characteristic values shown in Table 1 are the highest values obtained for ribbons made from molten metal of each alloy composition at different roll speeds.

同表より表らかなように、この発明に従い得られた合金
薄帯(Nα3〜6)はいずれも、高い保磁力が得られ、
またX線デイフラクト法により回折した結果、SmTi
Fe++相が同定された。
As is obvious from the same table, all the alloy ribbons (Nα3 to 6) obtained according to the present invention have high coercive force,
Furthermore, as a result of diffraction using the X-ray diffract method, SmTi
A Fe++ phase was identified.

大旌拠主 表1の発明合金Nα3を実施例1と同様の方法にて、周
速30m/sで薄帯を作製した。ついで得られた薄帯を
500〜900℃の温度で5時間焼鈍したのちの保持力
について調べた結果を表2に示す。
A ribbon was produced from the invention alloy Nα3 shown in Table 1 in the same manner as in Example 1 at a circumferential speed of 30 m/s. Table 2 shows the results of examining the holding power after annealing the obtained ribbon at a temperature of 500 to 900° C. for 5 hours.

表2 加熱温度(至)500  600  700  800
  900iHc(koe) 0.251.02.9 
5.0 2.2薄帯作製ままの状態ではTbCu7型の
非平衡相であったが、700〜900℃の焼鈍を施した
のちは、平衡相であるSmTiFe、 r相が同定され
た。とくに800℃の焼鈍においてとりわけ高いiHc
が得られた。
Table 2 Heating temperature (to) 500 600 700 800
900iHc(koe) 0.251.02.9
5.0 2.2 In the as-prepared state of the ribbon, it was a non-equilibrium phase of TbCu7 type, but after annealing at 700 to 900°C, an equilibrium phase, SmTiFe, r phase was identified. Particularly high iHc during annealing at 800°C
was gotten.

以上実施例では、薄帯形状で測定した特性値を示したが
、結晶磁気異方性は非常に大きく、また薄帯の粉砕は極
めて容易であるので、最適粒度に粉砕し結晶粒の配向度
をそろえて焼結することによって強力な磁石を製造する
こともできる。
In the examples above, the characteristic values measured in the shape of a ribbon were shown, but since the magnetocrystalline anisotropy is very large and the ribbon is extremely easy to crush, it is necessary to crush the ribbon to the optimum particle size and improve the orientation of the crystal grains. Strong magnets can also be manufactured by sintering them.

(発明の効果) この発明磁石は、高価なSmの含有量が少なく、またC
oを全く含有していないので、原料的にSmC。
(Effect of the invention) The magnet of this invention has a low content of expensive Sm and
Since it does not contain any o, it is SmC as a raw material.

系磁石に比し、非常に安価であり、また製造法も簡便で
あるので、優れた特性を有する永久磁石を安価に製造す
ることができ、SmCo系磁石の使用されている用途に
適用して極めて有利である。
Compared to SmCo-based magnets, it is very inexpensive and the manufacturing method is simple, so permanent magnets with excellent properties can be manufactured at low cost and can be applied to applications where SmCo-based magnets are used. Extremely advantageous.

特許出願人 東北特殊鋼株式会社Patent applicant: Tohoku Special Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 1.原子%でSm:4〜10%、 Ti:6〜11%、 Fe:81〜86% の組成になり、内部にSmTiFe_1_1化合物相を
そなえることを特徴とする永久磁石。
1. A permanent magnet having a composition of Sm: 4 to 10%, Ti: 6 to 11%, and Fe: 81 to 86% in atomic %, and having an SmTiFe_1_1 compound phase inside.
2.原子%でSm:4〜10%、 Ti:6〜11%、 Fe:81〜86% の組成になる合成溶湯を、その合金組成に応じた冷却速
度で冷却凝固させて、内部にSmTiFe_1_1化合
物相を析出させることを特徴とする永久磁石の製造方法
2. A synthetic molten metal having a composition of Sm: 4 to 10%, Ti: 6 to 11%, and Fe: 81 to 86% in atomic % is cooled and solidified at a cooling rate according to the alloy composition to form an SmTiFe_1_1 compound phase inside. A method for producing a permanent magnet, characterized by precipitating.
3.原子%でSm:4〜10%、 Ti:6〜11%、 Fe:81〜86% の組成になる合成溶湯を、急冷凝固させて非晶質または
TbCu_7型の非平衡相としたのち、700〜900
℃の温度範囲で焼鈍を施してSmTiFe_1_1化合
物相に相変態させることを特徴とする永久磁石の製造方
法。
3. A synthetic molten metal having a composition of Sm: 4 to 10%, Ti: 6 to 11%, and Fe: 81 to 86% in atomic percent is rapidly solidified to form an amorphous or TbCu_7 type non-equilibrium phase, and then ~900
A method for producing a permanent magnet, which comprises annealing in a temperature range of 0.degree. C. to transform the magnet into a SmTiFe_1_1 compound phase.
JP62314235A 1987-12-14 1987-12-14 Permanent magnet and manufacture thereof Pending JPH01155602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314235A JPH01155602A (en) 1987-12-14 1987-12-14 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314235A JPH01155602A (en) 1987-12-14 1987-12-14 Permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01155602A true JPH01155602A (en) 1989-06-19

Family

ID=18050911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314235A Pending JPH01155602A (en) 1987-12-14 1987-12-14 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01155602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132926A (en) * 2019-02-15 2020-08-31 学校法人千葉工業大学 Samarium-iron-based rare earth permanent magnet material and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132926A (en) * 2019-02-15 2020-08-31 学校法人千葉工業大学 Samarium-iron-based rare earth permanent magnet material and its production method

Similar Documents

Publication Publication Date Title
JP2713404B2 (en) Magnetic material for permanent magnet comprising iron, boron and rare earth metal and method for producing the same
JP4863377B2 (en) Samarium-iron permanent magnet material
JPH04129203A (en) Permanent magnet powder
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
TW554353B (en) Method for producing alloy for formation of rare-earth bonded magnet and rare-earth bonded composition
JPH01155602A (en) Permanent magnet and manufacture thereof
JP4421185B2 (en) Magnet materials and bonded magnets using them
JP3777225B2 (en) Isotropic permanent magnet powder having high magnetic flux density and method for producing the same
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JP3380575B2 (en) RB-Fe cast magnet
Saito et al. Magnetic properties of (Sm, Y) 5Fe17 melt-spun ribbons
JP2007201102A (en) Iron group rare-earth permanent magnet and manufacturing method therefor
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JPH02101710A (en) Permanent magnet and manufacture thereof
JP3997764B2 (en) Exchange spring magnet and manufacturing method thereof
US4134756A (en) Permanent magnet alloys
JPS63153216A (en) Production of high performance magnet material by rapid cooling solidification
JPS6353241A (en) Rare earth-iron-type high-efficiency permanent magnet material foil and its production
JP4107062B2 (en) Low rare earth-containing magnet and manufacturing method thereof
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH05320832A (en) Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet
JPH0483830A (en) Method for improving magnetic characteristic of rare-earth alloy for permanent magnet
JPH02220412A (en) Rare earth alloy powder for bond magnet and bond magnet