JPH01155095A - Vane type rotary compressor - Google Patents
Vane type rotary compressorInfo
- Publication number
- JPH01155095A JPH01155095A JP31094387A JP31094387A JPH01155095A JP H01155095 A JPH01155095 A JP H01155095A JP 31094387 A JP31094387 A JP 31094387A JP 31094387 A JP31094387 A JP 31094387A JP H01155095 A JPH01155095 A JP H01155095A
- Authority
- JP
- Japan
- Prior art keywords
- vane
- lubricating oil
- chamber
- type rotary
- rotary compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010687 lubricating oil Substances 0.000 claims abstract description 49
- 239000012530 fluid Substances 0.000 abstract description 16
- 239000003921 oil Substances 0.000 description 15
- 230000002093 peripheral effect Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0854—Vane tracking; control therefor by fluid means
- F01C21/0872—Vane tracking; control therefor by fluid means the fluid being other than the working fluid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ベーン型回転圧縮機に係り、特にベーン型
回転圧縮機の始動開始時に、ベーンをシリンダの内周面
に充分に押圧させ得て、流体を良好に圧縮し得るベーン
型回転圧縮機に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vane type rotary compressor, and particularly to a vane type rotary compressor that can sufficiently press the vane against the inner circumferential surface of a cylinder at the start of startup of the vane type rotary compressor. The present invention relates to a vane-type rotary compressor that can compress fluid well.
回転圧縮機には、ローリングピストン方式のものやスラ
イドベーン方式あるいはターボ方式等のものがある。こ
れら各種方式の回転圧縮機にあって、ベーン型回転圧縮
機は、シリンダ内に円柱状のロータを回転可能に設けて
いる。このロータは、外周面を前記シリンダの内周面に
少なくとも一箇所以上で接して回転し、この外周面にロ
ータ中心に対して略放射方向に形成された溝部内に前記
内周面に慴接するベーンを出没可能に設けている。Rotary compressors include rolling piston type, slide vane type, and turbo type. Among these various types of rotary compressors, the vane type rotary compressor has a cylindrical rotor rotatably provided within a cylinder. The rotor rotates with its outer circumferential surface in contact with the inner circumferential surface of the cylinder at at least one point, and is in full contact with the inner circumferential surface within a groove formed in the outer circumferential surface in a substantially radial direction with respect to the center of the rotor. A vane is provided so that it can appear and appear.
これにより、ベーン型回転圧縮機は、ロータの回転によ
りシリンダの内周面とロータの外周面との間にベーンに
よりロータ回転方向に拡縮しつつ移動する作動室を区画
形成し、この作動室により流体を吸入し圧縮して吐出す
るものである。このベーン型回転圧縮機は、例えば、冷
媒ガス等を圧縮送給する空気調和装置等に使用されてい
る。As a result, the vane type rotary compressor partitions a working chamber between the inner circumferential surface of the cylinder and the outer circumferential surface of the rotor as the rotor rotates, and which moves while expanding and contracting in the rotor rotational direction by the vanes. It sucks in fluid, compresses it, and then discharges it. This vane type rotary compressor is used, for example, in an air conditioner that compresses and supplies refrigerant gas or the like.
〔発明が解決しようとしている問題点〕ところで、ベー
ン型回転圧縮機は、前述の如くロータ回転方向に拡縮し
つつ移動する作動室を区画形成するために、シリンダ内
を回転するロータの溝部内に出没可能にベーンを設けて
いる。このベーンは、ロータの回転による遠心力や溝部
内のベーン基部側に区画形成されるベーン室に導入する
高圧室の高圧流体の背圧等により押進させ、前記シリン
ダの内周面に押圧させることにより流体を圧縮している
。[Problems to be Solved by the Invention] Incidentally, in a vane type rotary compressor, in order to define a working chamber that moves while expanding and contracting in the rotor rotational direction as described above, a rotor that rotates in a cylinder has a groove inside the rotor. A vane is provided so that it can appear. This vane is pushed forward by centrifugal force due to rotation of the rotor, back pressure of high-pressure fluid in a high-pressure chamber introduced into a vane chamber partitioned on the vane base side in the groove, and pressed against the inner circumferential surface of the cylinder. This compresses the fluid.
ところが、ベーン型回転圧縮機の始動開始時には、高圧
室に吐出される流体の圧力が低いため、ベーンを充分に
押進させることができない。また、ベーンは、始動開始
時には溝部内に潤滑油により粘着している。このため、
回転数を高くして大きい遠心力を得て、この遠心力によ
りベーンを押進させている。しかし、始動開始時に回転
数を高くすることは、圧縮機や、さらにはこの圧縮機を
駆動する内燃機関等の原動機にとって、好ましいことで
はない。However, at the start of the vane-type rotary compressor, the pressure of the fluid discharged into the high-pressure chamber is low, so the vanes cannot be sufficiently pushed forward. Further, the vane is stuck in the groove by lubricating oil at the start of startup. For this reason,
The rotational speed is increased to generate a large centrifugal force, and this centrifugal force pushes the vanes forward. However, increasing the rotational speed at the start of startup is not preferable for the compressor or the prime mover such as the internal combustion engine that drives the compressor.
そこで、例えば、特開昭61−11.8583号公報に
開示の如く、始動開始時には作動室の流体を前記ベーン
室に供給する一方、高圧室が高圧になる定常運転時には
高圧室の潤滑油を前記ベーン室に供給することより、ベ
ーンをシリンダの内周面に押圧させるものがある。Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 61-11.8583, the fluid in the working chamber is supplied to the vane chamber at the start of startup, while the lubricating oil in the high pressure chamber is supplied during steady operation when the pressure in the high pressure chamber is high. Some press the vane against the inner peripheral surface of the cylinder by supplying the vane to the vane chamber.
しかしながら、始動開始時には作動室の圧力があまり高
(ないため、この公報に開示のものばベーンをシリンダ
の内周面に充分に押圧させ得ない不都合がある。この結
果、ベーン型回転圧縮機の始動開始時にベーンをシリン
ダの内周面に充分に押圧させ得す、流体を良好に圧縮し
得ない不都合があった。However, since the pressure in the working chamber is not very high at the start of startup, the method disclosed in this publication has the disadvantage that the vane cannot be sufficiently pressed against the inner circumferential surface of the cylinder.As a result, the vane type rotary compressor There are disadvantages in that the vane may be sufficiently pressed against the inner circumferential surface of the cylinder at the start of startup, and the fluid may not be compressed well.
そこで、この発明の目的は、ベーン型回転圧縮機の始動
開始時に、ベーンをシリンダの内周面に充分に押圧させ
得て、流体を良好に圧縮し得るベーン型回転圧縮機を実
現することにある。Therefore, an object of the present invention is to realize a vane-type rotary compressor that can sufficiently press the vanes against the inner circumferential surface of the cylinder at the start of the vane-type rotary compressor, and can compress the fluid well. be.
この目的を達成するために、この発明は、シリンダとこ
のシリンダ内に回転可能に設けたロータとこのロータの
中心に対して略放射方向に形成した溝部内に出没可能に
設けたベーンとにより前記ロータ回転方向に拡縮しつつ
移動する作動室を区画形成するベーン型回転圧縮機にお
いて、このベーン型回転圧縮機の始動開始時にこのベー
ン型回転圧縮機の潤滑油を前記ロータ溝部内の前記ベー
ン基部側に区画形成されるベーン室に圧送する圧送手段
を設けたことを特徴とする。In order to achieve this object, the present invention utilizes a cylinder, a rotor rotatably provided in the cylinder, and vanes retractably provided in a groove formed substantially radially with respect to the center of the rotor. In a vane-type rotary compressor that partitions and forms a working chamber that moves while expanding and contracting in the rotational direction of the rotor, lubricating oil of the vane-type rotary compressor is transferred to the vane base in the rotor groove when starting the vane-type rotary compressor. It is characterized by providing a pressure-feeding means for force-feeding to a vane chamber partitioned on the side.
この発明の構成によれば、圧送手段によって、ベーン型
回転圧縮機の始動開始時に潤滑油をベーン室に圧送する
ことにより、ベーンはシリンダの内周面に向かって押進
される。これにより、ベーン型回転圧縮機の始動開始時
に、ベーンはシリンダの内周面に充分に押圧される。According to the configuration of the present invention, the vane is pushed toward the inner circumferential surface of the cylinder by forcing the lubricating oil into the vane chamber at the start of startup of the vane type rotary compressor by the pressure feeding means. As a result, the vane is sufficiently pressed against the inner circumferential surface of the cylinder at the start of the vane-type rotary compressor.
次にこの発明の実施例を図に基づいて詳細に説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.
第1・2図は、この発明の一実施例を示すものである。Figures 1 and 2 show an embodiment of this invention.
図において、2はベーン形回転圧縮機、4はシリンダ、
6はロータ、8はベーン、10・12は側板である。前
記シリンダ4は、内部に楕円形状の内周面4aを有し、
両側に2枚の側板10・12を固設している。In the figure, 2 is a vane type rotary compressor, 4 is a cylinder,
6 is a rotor, 8 is a vane, and 10 and 12 are side plates. The cylinder 4 has an elliptical inner peripheral surface 4a inside,
Two side plates 10 and 12 are fixed on both sides.
前記ロータ6は、円形状の外周面6aを有し、前記シリ
ンダ4の内周面4a内に回転可能に設けられている。こ
のロータ6は、外周面6aを前記シリンダ4の内周面4
aに少なくとも1箇所以上で、この実施例においては、
ロータ6はシリンダ4の内周面4aに2箇所で接しつつ
回転するように両側の軸部14・16により夫々前記2
枚の側板10・12に支持されている。このロータ6の
外周面6aには、中心に対して略放射方向に複数の溝部
18を形成している。前記ベーン8は、この溝部18内
にシリンダ4の内周面4aに向って出没可能に設けられ
、溝部18内のベーン8の基部8a側にベーン室20を
区画形成している。The rotor 6 has a circular outer peripheral surface 6a and is rotatably provided within the inner peripheral surface 4a of the cylinder 4. This rotor 6 has an outer circumferential surface 6a connected to an inner circumferential surface 4 of the cylinder 4.
In this example, at least one location in a,
The rotor 6 is rotated by shaft portions 14 and 16 on both sides so as to rotate while contacting the inner circumferential surface 4a of the cylinder 4 at two points.
It is supported by two side plates 10 and 12. A plurality of grooves 18 are formed in the outer peripheral surface 6a of the rotor 6 in substantially radial directions with respect to the center. The vane 8 is provided in the groove 18 so as to be retractable toward the inner circumferential surface 4a of the cylinder 4, and a vane chamber 20 is defined within the groove 18 on the side of the base 8a of the vane 8.
また、前記ロータ6の軸部16には、外端のブー IJ
22との間に駆動力の伝達を断続する電磁クラッチ機
構24が設けられている。この電磁クラッチ機構24は
、ソレノイド26を有している。Further, the shaft portion 16 of the rotor 6 is provided with a boot IJ at the outer end.
22, an electromagnetic clutch mechanism 24 is provided to intermittent transmission of driving force. This electromagnetic clutch mechanism 24 has a solenoid 26.
このソレノイド26は、ベーン形回転圧縮機2を駆動・
停止させる、例えば空気調和装置(図示せず)の作動ス
イッチ28を介して電源3oに接続されている。これに
より、作動スイッチ28を閉成してソレノイド26に通
電し励磁状態にすると、軸部16とプーリ22とを結合
して図示しない内燃機関等の原動機の駆動力を伝達する
。一方、作動スイッチ28を開成してソレノイド26へ
の通電を遮断し非励磁状態にすると、軸部16とプーリ
22とを離脱して駆動力の伝達を遮断する。This solenoid 26 drives the vane type rotary compressor 2.
For example, it is connected to the power source 3o via an activation switch 28 of an air conditioner (not shown). As a result, when the actuation switch 28 is closed and the solenoid 26 is energized and energized, the shaft portion 16 and the pulley 22 are connected to transmit the driving force of a prime mover such as an internal combustion engine (not shown). On the other hand, when the actuation switch 28 is opened to cut off the energization to the solenoid 26 and make it into a non-excited state, the shaft portion 16 and the pulley 22 are separated and the transmission of driving force is cut off.
これらシリンダ4とロータ6とベーン8及び側板10・
12とにより、ロータ6の回転方向(矢印A方向)に拡
縮しっ・っ移動する作動室32を区画形成する。この作
動室32には、吸入口34と吐出口36とが開口して設
けである。吸入口34と吐出口36とは、前記シリンダ
4のロータ6が接する部位のロータ凹転方向前方位置と
後方位置とに夫々設けである。前記吸入口34には吸入
通路38を連通して設けるとともに、前記吐出口36に
は逆流を阻止する吐出弁40を設ける。These cylinder 4, rotor 6, vane 8 and side plate 10.
12 define a working chamber 32 that expands and contracts in the rotational direction of the rotor 6 (in the direction of arrow A). This working chamber 32 is provided with an inlet port 34 and a discharge port 36 which are open thereto. The suction port 34 and the discharge port 36 are provided at a front position and a rear position, respectively, in the rotor concave rotation direction of the portion of the cylinder 4 that contacts the rotor 6. A suction passage 38 is provided in communication with the suction port 34, and a discharge valve 40 for preventing backflow is provided in the discharge port 36.
また、前記シリンダ4は、被包体42により被包されて
いる。この被包体42には、流体の入口ポート44と出
口ボート46とを設けである。前記電磁クラソヂ機構2
4のソレノイド26に通電して軸部16とプーリ22と
を結合し、駆動力の伝達によりロータ6を回転させると
、ベーン8はシリンダ4の楕円形状の内周面4aに接触
しつつ摺動して作動室32を拡張・収縮しつつロータ回
転方向に移動させる。この作動室32の拡縮により、入
口ボート44から吸入通路38に流入した流体たる例え
ば冷媒ガスは、吸入口34がら作動室32に吸入されて
圧縮された後に、吐出口36から吐出弁40を押開けて
吐出される。吐出口36から吐出された流体は、油分離
器48により潤滑油を分離されて被包体42内の吐出空
間である高圧室50に吐出され、出口ボート46から所
望の部位、例えば、空気調和装置のコンデンサ等に供給
される。Furthermore, the cylinder 4 is covered by a covering body 42 . The enclosure 42 is provided with a fluid inlet port 44 and an outlet boat 46. Said electromagnetic cladding mechanism 2
When the solenoid 26 of the cylinder 4 is energized to connect the shaft portion 16 and the pulley 22 and the rotor 6 is rotated by transmitting the driving force, the vane 8 slides while contacting the elliptical inner peripheral surface 4a of the cylinder 4. The working chamber 32 is moved in the rotor rotational direction while expanding and contracting. Due to this expansion and contraction of the working chamber 32, fluid such as refrigerant gas that has flowed into the suction passage 38 from the inlet boat 44 is sucked into the working chamber 32 through the suction port 34 and compressed, and then pushes the discharge valve 40 from the discharge port 36. It is opened and discharged. The fluid discharged from the discharge port 36 is separated from lubricating oil by an oil separator 48 and discharged into a high pressure chamber 50, which is a discharge space within the envelope 42, and is then discharged from the outlet boat 46 to a desired site, such as an air conditioner. Supplied to equipment capacitors, etc.
前記油分離器48により分離された潤滑油は、高圧室5
0下部の貯油室52に貯留され、潤滑油通路54により
各摺動部位に供給される。即ち、前記貯油室52側の側
板10には、貯油室52内に設けた潤滑油口56に始端
開口する第1潤滑油通路54aを設けるとともにこの第
1潤滑油通路54aの終端側を第2潤滑油通路54bと
第3潤滑油通路54cとに分岐して設ける。前記第2潤
滑油通路54 bは、軸部14周囲に設けた油溝58に
連絡して設ける。前記第3潤滑油通路54Cは、シリン
ダ4に設けた第4潤滑油通路54dを介して貯油室52
と反対側の側板12に設けた第5潤滑油通路54eに連
絡して設け、この第5潤滑油通路54eは軸部16周囲
に設けた油溝60に連絡して設ける。また、前記側板1
0には、第2潤滑油通路54bから第6潤滑油通路54
fを分岐して設ける。この第6潤滑油通路54fは、軸
部14の接する部位のロータ6側面に設けた環状の連絡
溝62により前記各ベーン室20に連絡して設ける。The lubricating oil separated by the oil separator 48 is transferred to the high pressure chamber 5.
The lubricating oil is stored in the oil storage chamber 52 at the bottom of the 0, and is supplied to each sliding portion through the lubricating oil passage 54. That is, the side plate 10 on the side of the oil storage chamber 52 is provided with a first lubricating oil passage 54a whose starting end opens at a lubricating oil port 56 provided in the oil storage chamber 52, and a terminal end of this first lubricating oil passage 54a is provided with a second lubricating oil passage 54a. The lubricating oil passage 54b and the third lubricating oil passage 54c are branched and provided. The second lubricating oil passage 54b is provided in communication with an oil groove 58 provided around the shaft portion 14. The third lubricating oil passage 54C is connected to the oil storage chamber 52 via a fourth lubricating oil passage 54d provided in the cylinder 4.
This fifth lubricating oil passage 54e is provided in communication with an oil groove 60 provided around the shaft portion 16. In addition, the side plate 1
0, the second lubricating oil passage 54b to the sixth lubricating oil passage 54
f is branched and provided. The sixth lubricating oil passage 54f is provided in communication with each of the vane chambers 20 through an annular communication groove 62 provided on the side surface of the rotor 6 at a portion in contact with the shaft portion 14.
これにより、貯油室52に貯留された潤滑油は、前記第
1〜第5潤滑油通路54a〜54eにより油溝58・6
0に供給されて各軸部14・16と側板10・12との
摺動部位を潤滑し、また、前記第2潤滑油通路54bか
ら分岐した第6潤滑油通路54fを介し連絡462によ
り各ベーン室20に供給されて溝部18とベーン8との
摺動部位を潤滑する。Thereby, the lubricating oil stored in the oil storage chamber 52 is transferred to the oil grooves 58 and 6 by the first to fifth lubricating oil passages 54a to 54e.
0 to lubricate the sliding parts between the respective shaft parts 14 and 16 and the side plates 10 and 12, and also to each vane through communication 462 through a sixth lubricating oil passage 54f branched from the second lubricating oil passage 54b. It is supplied to the chamber 20 and lubricates the sliding portion between the groove portion 18 and the vane 8.
このベーン室20に潤滑油を供給する第1潤滑油通路5
4aの途中には、ベーン型回転圧縮機2の始動開始時に
潤滑油をベーン室20に圧送する圧送手段64を設ける
。この圧送手段64は、第1潤滑油通路54aの一部を
拡張して形成した圧送室66と、この圧送室66内のピ
ストン68と、このピストン68に連結したロンドア0
と、このロンドア0を介してピストン68を元の位置か
ら押進すべく通電により励磁状態になるソレノイド72
と、前記ピストン68を元の位置に復帰させる戻しバネ
74と、ベーン型回転圧縮機2の始動開始時に前記ソレ
ノイド72に通電して励磁状態にさせるべく、例えば高
圧室50の圧力値が設定圧力値未満の場合に閉成する圧
カスイソチア6と、を有している。この圧カスイソチア
6は、前記べ−ン形回転圧縮機2を駆動・停止させる作
動スイッチ28を介して電源30に接続されている。な
お、符号78は、前記圧送室66の貯油室52側の第1
潤滑油通路54aに設けた絞り部である。A first lubricating oil passage 5 that supplies lubricating oil to this vane chamber 20
In the middle of 4a, a pressure feeding means 64 is provided for pumping lubricating oil to the vane chamber 20 when the vane type rotary compressor 2 starts to be started. This pressure-feeding means 64 includes a pressure-feeding chamber 66 formed by expanding a part of the first lubricating oil passage 54a, a piston 68 in this pressure-feeding chamber 66, and a Rondo door 0 connected to this piston 68.
Then, the solenoid 72 becomes energized by being energized to push the piston 68 from its original position via this Ron door 0.
A return spring 74 returns the piston 68 to its original position, and a pressure value in the high pressure chamber 50 is adjusted to a set pressure, for example, in order to energize the solenoid 72 and bring it into an energized state at the start of starting the vane type rotary compressor 2. It has a pressure cassothiae 6 which closes when the pressure is less than the value. The pressure gas isothia 6 is connected to a power source 30 via an operation switch 28 for driving and stopping the vane-type rotary compressor 2. Incidentally, the reference numeral 78 denotes the first portion of the pressure feeding chamber 66 on the oil storage chamber 52 side.
This is a constricted portion provided in the lubricating oil passage 54a.
次に作用を説明する。Next, the effect will be explained.
前記ベーン型回転圧縮機2を駆動すべく、作動スイッチ
28を閉成すると、電磁クラッチ機構24のソレノイド
26は通電により励磁状態になり、軸部16とプーリ2
2とを結合し、図示しない内燃機関等の原動機の駆動力
を伝達する。この駆動力によりロータ6は回転を開始し
、ベーン8はシリンダ4の楕円形状の内周面4aに接触
しつつ摺動して作動室32を拡張・収縮しつつロータ回
転方向に移動する。この作動室32の拡縮により、人口
ボート44から吸入通路38に流入した流体たる例えば
冷媒ガスは、吸入口34から作動室32に吸入されて圧
縮された後に、吐出口36から旧出弁40を押開けて被
包体42内の高圧室50に吐出される。When the operating switch 28 is closed in order to drive the vane type rotary compressor 2, the solenoid 26 of the electromagnetic clutch mechanism 24 is energized and excited, and the shaft portion 16 and the pulley 2 are energized.
2 to transmit the driving force of a prime mover such as an internal combustion engine (not shown). This driving force causes the rotor 6 to start rotating, and the vanes 8 slide in contact with the elliptical inner peripheral surface 4a of the cylinder 4, expanding and contracting the working chamber 32 while moving in the rotor rotational direction. Due to the expansion and contraction of the working chamber 32, fluid such as refrigerant gas that has flowed into the suction passage 38 from the artificial boat 44 is sucked into the working chamber 32 from the suction port 34 and compressed, and then passes through the old outlet valve 40 from the discharge port 36. It is pushed open and discharged into the high pressure chamber 50 inside the envelope 42 .
このベーン型回転圧縮機2の始動開始時においては、高
圧室50の圧力値が低く、設定圧力値未満になっており
、圧送手段64の圧カスイソチア6は閉成している。こ
れにより、ベーン型回転圧縮機2を駆動すべく、作動ス
イッチ28を閉成すると、圧力スイッチ76の閉成によ
りソレノイド72は通電されて励磁状態になり、ロッド
7゜により圧送室66内のピストン68を元の位置から
押進させる。このピストン68を押進により、圧送室6
6内の潤滑油は圧縮されて第1潤滑油通路54aから第
2・第3潤滑油通路54b・54C方向に送給される。At the start of the vane type rotary compressor 2, the pressure value in the high pressure chamber 50 is low and less than the set pressure value, and the pressure gas isothia 6 of the pressure feeding means 64 is closed. As a result, when the actuation switch 28 is closed in order to drive the vane type rotary compressor 2, the solenoid 72 is energized and energized by the closing of the pressure switch 76, and the piston in the pressure feeding chamber 66 is 68 from its original position. By pushing this piston 68, the pressure feeding chamber 6
The lubricating oil in 6 is compressed and fed from the first lubricating oil passage 54a toward the second and third lubricating oil passages 54b and 54C.
このとき、貯油室52側の第1潤滑油通路54aは、絞
り部78を設けるとともに押進するピストン6Bにより
閉鎖されるので、圧縮された潤滑油が貯油室52側に送
給されることはない。At this time, the first lubricating oil passage 54a on the oil storage chamber 52 side is closed by the piston 6B that is provided with the throttle portion 78 and is pushed forward, so that the compressed lubricating oil is not fed to the oil storage chamber 52 side. do not have.
前記圧送室66から圧縮して供給される潤滑油は、第2
潤滑油通路54. bから分岐した第6潤滑油通路54
fを介し連絡溝62により各ベーン室20に供給され、
ベーン8に背圧として作用してシリンダ4の内周面4a
に向かって押進させる。The lubricating oil compressed and supplied from the pressure feeding chamber 66 is
Lubricating oil passage 54. A sixth lubricating oil passage 54 branched from b
is supplied to each vane chamber 20 via the communication groove 62 via f,
The inner peripheral surface 4a of the cylinder 4 acts as a back pressure on the vane 8.
push towards.
このため、ベーン型回転圧縮機2の始動開始時に、ベー
ン8をシリンダ4の内周面4aに充分に押圧させること
ができ、これにより流体を良好に圧縮することができる
ものである。また、従来の如く、ベーン型回転圧縮機2
の始動開始時に、遠心力によりベーンを押進させてベー
ン8をシリンダ4の内周面4aに押圧すべく回転数を高
くする必要がなく、圧縮機2や、さらにはこの圧縮機2
を駆動する内燃機関等の原動機の燃料節約を果すことが
できる。さらに、圧送室66から圧縮して供給される潤
滑油は、前記第1〜第5潤滑油通路54a〜546によ
り油溝58・60に供給されので、ベーン型回転圧縮機
2の始動開始時に、各軸部14・16と側板10・12
との摺動部位を良好に潤滑することができることにより
、機械的損失を減少することができるものである。Therefore, at the start of the vane type rotary compressor 2, the vane 8 can be sufficiently pressed against the inner circumferential surface 4a of the cylinder 4, and thereby the fluid can be compressed well. In addition, as in the past, the vane type rotary compressor 2
When starting the compressor 2, there is no need to increase the rotation speed to push the vane forward by centrifugal force and press the vane 8 against the inner circumferential surface 4a of the cylinder 4.
It is possible to save fuel for the prime mover such as the internal combustion engine that drives the engine. Furthermore, since the lubricating oil compressed and supplied from the pumping chamber 66 is supplied to the oil grooves 58 and 60 through the first to fifth lubricating oil passages 54a to 546, when starting the vane type rotary compressor 2, Each shaft part 14, 16 and side plate 10, 12
By being able to satisfactorily lubricate the sliding parts between the two parts, mechanical loss can be reduced.
圧縮された流体が被包体42内の高圧室50に吐出され
ることにより、高圧室50の圧力値が設定圧力値以上に
なると、圧力スイッチ76は開成する。この圧カスイソ
チア6の開成により、ツレノイド72は通電を遮断され
て非励磁状態になり、圧送室66内のピストン68は戻
しバネ74により元の位置に復帰される。これにより、
定常運転状態においては、高圧室50内の圧力により潤
滑油が供給され、各部を潤滑する。When the compressed fluid is discharged into the high pressure chamber 50 within the envelope 42 and the pressure value of the high pressure chamber 50 becomes equal to or higher than the set pressure value, the pressure switch 76 opens. When the pressure gas isothiae 6 is opened, the trenoid 72 is de-energized and becomes a non-excited state, and the piston 68 in the pressure feeding chamber 66 is returned to its original position by the return spring 74. This results in
In a steady operating state, lubricating oil is supplied by the pressure within the high pressure chamber 50 to lubricate each part.
このように、この発明によれば、圧送手段によって、ベ
ーン型回転圧縮機の始動開始時に潤滑油をベーン室に圧
送することにより、ベーンはシリンダの内周面に向かっ
て押進される。As described above, according to the present invention, the vane is pushed toward the inner circumferential surface of the cylinder by force-feeding lubricating oil into the vane chamber by the pressure-feeding means at the start of startup of the vane-type rotary compressor.
これにより、ベーン型回転圧縮機の始動開始時に、ベー
ンをシリンダの内周面に充分に押圧させ得て、流体を良
好に圧縮し得るものである。また、従来の如く、ベーン
型回転圧縮機の始動初期に遠心力によりベーンを押進さ
せてベーンをシリンダ内周面に押圧すべく回転数を高く
する必要がなく、圧縮機や、さらにはこの圧縮機を駆動
する内燃機関等の原動機の燃料節約を果し得て、さらに
、各摺動部位に潤滑油を圧送し得て、これによりベーン
型回転圧縮機の始動開始時に各摺動部位を良好に潤滑す
ることができるものである。Thereby, at the start of the vane type rotary compressor, the vane can be sufficiently pressed against the inner peripheral surface of the cylinder, and the fluid can be favorably compressed. In addition, unlike conventional vane-type rotary compressors, there is no need to push the vanes forward by centrifugal force and increase the rotation speed to press the vanes against the inner peripheral surface of the cylinder at the initial stage of startup of the vane-type rotary compressor. It is possible to save fuel for the prime mover such as the internal combustion engine that drives the compressor, and it is also possible to pump lubricating oil to each sliding part, so that each sliding part is It can be well lubricated.
【図面の簡単な説明】
第1・2図はこの発明の一実施例を示すものであり、第
1図はベーン型回転圧縮機の一部切欠き断面図、第2図
はベーン型回転圧縮機のロータ部分の断面図である。
図において、2はベーン形回転圧縮機、4はシリンダ、
6はロータ、8はベーン、18は溝部、20はベーン室
、24は電磁クラッチ機構、28は作動スイッチ、30
は電源、32は作動室、34は吸入口、36は吐出口、
42は被包体、50は高圧室、52は貯油室、54a〜
54fは夫々第1〜第6潤滑油通路、62は連絡溝、6
4は圧送手段、66は圧送室、68はピストン、70は
ロンド、72はソレノイド、74は戻しハネ、76は圧
力スイフチ、78は絞り部である。
特許出願人 鈴木自動車工業株式会社代理人 弁理
士 西 郷 義 美[Brief Description of the Drawings] Figures 1 and 2 show an embodiment of the present invention, with Figure 1 being a partially cutaway sectional view of a vane type rotary compressor, and Figure 2 being a partially cutaway sectional view of a vane type rotary compressor. FIG. 3 is a cross-sectional view of the rotor portion of the machine. In the figure, 2 is a vane type rotary compressor, 4 is a cylinder,
6 is a rotor, 8 is a vane, 18 is a groove, 20 is a vane chamber, 24 is an electromagnetic clutch mechanism, 28 is an actuation switch, 30
is a power source, 32 is an operating chamber, 34 is an intake port, 36 is a discharge port,
42 is an envelope, 50 is a high pressure chamber, 52 is an oil storage chamber, and 54a~
54f are the first to sixth lubricating oil passages, 62 are communication grooves, and 6
4 is a pressure feeding means, 66 is a pressure feeding chamber, 68 is a piston, 70 is a rond, 72 is a solenoid, 74 is a return spring, 76 is a pressure switch, and 78 is a constriction portion. Patent applicant: Suzuki Automobile Industry Co., Ltd. Agent: Yoshimi Nishigo, patent attorney
Claims (1)
とこのロータの中心に対して略放射方向に形成した溝部
内に出没可能に設けたベーンとにより前記ロータ回転方
向に拡縮しつつ移動する作動室を区画形成するベーン型
回転圧縮機において、このベーン型回転圧縮機の始動開
始時にこのベーン型回転圧縮機の潤滑油を前記ロータ溝
部内の前記ベーン基部側に区画形成されるベーン室に圧
送する圧送手段を設けたことを特徴とするベーン型回転
圧縮機。A working chamber that moves while expanding and contracting in the rotor rotational direction is formed by a cylinder, a rotor rotatably installed in the cylinder, and a vane retractably installed in a groove formed approximately radially to the center of the rotor. In a vane-type rotary compressor that is partitioned, at the start of startup of the vane-type rotary compressor, the lubricating oil of the vane-type rotary compressor is forced into a vane chamber that is partitioned and formed on the vane base side in the rotor groove. A vane type rotary compressor characterized by being provided with means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31094387A JPH01155095A (en) | 1987-12-10 | 1987-12-10 | Vane type rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31094387A JPH01155095A (en) | 1987-12-10 | 1987-12-10 | Vane type rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01155095A true JPH01155095A (en) | 1989-06-16 |
Family
ID=18011255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31094387A Pending JPH01155095A (en) | 1987-12-10 | 1987-12-10 | Vane type rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01155095A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1394417A2 (en) * | 2002-08-30 | 2004-03-03 | Seiko Instruments Inc. | Rotary vane gas compressor |
RU2804163C1 (en) * | 2023-01-20 | 2023-09-26 | Владислав Петрович Сладкевич | Multifunctional ellipsoidal three-blade rotor machine |
-
1987
- 1987-12-10 JP JP31094387A patent/JPH01155095A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1394417A2 (en) * | 2002-08-30 | 2004-03-03 | Seiko Instruments Inc. | Rotary vane gas compressor |
EP1394417A3 (en) * | 2002-08-30 | 2004-03-31 | Seiko Instruments Inc. | Rotary vane gas compressor |
RU2804163C1 (en) * | 2023-01-20 | 2023-09-26 | Владислав Петрович Сладкевич | Multifunctional ellipsoidal three-blade rotor machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2912812B2 (en) | Multi-stage rotary compressor | |
JPH1047285A (en) | Two-cylinder rotary compressor | |
JP3024743B2 (en) | Rotary compressor | |
EP0683321B1 (en) | Swinging rotary compressor | |
US4717321A (en) | Vane compressor with vane back pressure adjustment | |
JPH07145785A (en) | Trochoid type refrigerant compressor | |
US5577903A (en) | Rotary compressor | |
JPH01155095A (en) | Vane type rotary compressor | |
JPH01155096A (en) | Vane type rotary compressor | |
JP2000073975A (en) | Vacuum pump | |
JP3470385B2 (en) | Compressor | |
JP2583944B2 (en) | Compressor | |
KR200381016Y1 (en) | Structure for reducing suction loss of rotary compressor | |
US4135865A (en) | Rotary vane compressor with outlet check valve for start-up pressure on lubricant system | |
JPH08200268A (en) | Vane pump | |
JPH0121358B2 (en) | ||
JPS5851425Y2 (en) | Vane type rotary compressor | |
JPS6122151B2 (en) | ||
JP3108018B2 (en) | Rotary compressor | |
JP2004190510A (en) | Gas compressor | |
JP2004108339A (en) | Scroll compressor | |
KR0182390B1 (en) | Dual vane compressor | |
JPH01313688A (en) | Variable displacement rotary compressor | |
JP2001342980A (en) | Compressor | |
JPH01155093A (en) | Variable displacement rotary compressor |