KR200381016Y1 - Structure for reducing suction loss of rotary compressor - Google Patents
Structure for reducing suction loss of rotary compressor Download PDFInfo
- Publication number
- KR200381016Y1 KR200381016Y1 KR20-2005-0002704U KR20050002704U KR200381016Y1 KR 200381016 Y1 KR200381016 Y1 KR 200381016Y1 KR 20050002704 U KR20050002704 U KR 20050002704U KR 200381016 Y1 KR200381016 Y1 KR 200381016Y1
- Authority
- KR
- South Korea
- Prior art keywords
- cylinder
- vane
- compression chamber
- discharge
- rotary compressor
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/26—Refrigerants with particular properties, e.g. HFC-134a
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/40—Electric motor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S417/00—Pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
본 고안은 로터리 압축기의 흡입손실 저감 구조에 관한 것으로, 케이싱의 내부에 고정 설치하는 환형의 실린더와, 실린더의 상하 양측을 복개하여 함께 내부공간을 형성하고 구동모터의 회전축을 지지하도록 상기한 실린더에 고정하는 복수 개의 베어링과, 실린더의 내부에서 회전축의 편심부에 회전 가능하게 결합하여 편심 회전을 하면서 냉매가스를 이동시키는 롤링피스톤과, 실린더의 내부공간을 압축실과 흡입실로 구분하면서 롤링피스톤의 편심 회전에 따라 반경방향으로 직선운동을 하도록 상기 실린더의 베인슬릿에 설치하는 베인을 포함한 로터리 압축기에 있어서, 베인이 상사점에 도달할 때 실린더의 압축실을 케이싱의 내부에 연통시켜 그 압축실에 잔류하는 냉매를 케이싱의 내부로 배출하도록 잔류냉매 배출유로를 형성하여서 구성함으로써, 압축냉매가 토출되지 않고 압축실에 잔류하는 것을 막아 압축실에서의 재팽창을 미연에 방지하고 이를 통해 압축기의 흡입손실을 줄여 압축기 효율을 높일 수 있다. The present invention relates to a structure for reducing suction loss of a rotary compressor, and includes an annular cylinder fixed to the inside of the casing and an upper and lower sides of the cylinder to form an inner space together to support the rotating shaft of the driving motor. A plurality of bearings to be fixed, a rolling piston rotatably coupled to an eccentric portion of the rotating shaft inside the cylinder to move the refrigerant gas while being eccentrically rotated, and an eccentric rotation of the rolling piston while dividing the inner space of the cylinder into a compression chamber and a suction chamber In a rotary compressor including a vane installed in the vane slit of the cylinder so as to linearly move in a radial direction, the compression chamber of the cylinder communicates with the inside of the casing and remains in the compression chamber when the vane reaches top dead center. Configured by forming residual refrigerant discharge flow path to discharge refrigerant into the casing As, it can prevent the remaining in the compression chamber without being compressed refrigerant is discharged to prevent re-expansion of the compression chamber in advance, and this increase compressor efficiency by reducing the suction loss of the compressor through.
Description
본 고안은 로터리 압축기의 흡입손실 저감 구조에 관한 것으로서, 특히 압축 후 토출되지 못한 잔류가스를 케이싱의 내부로 배출되도록 하여 재팽창으로 인한 흡입손실을 줄이고자 하는 로터리 압축기의 흡입손실 저감 구조에 관한 것이다.The present invention relates to a structure for reducing the suction loss of a rotary compressor, and more particularly, to a structure for reducing the suction loss of a rotary compressor to reduce the suction loss due to re-expansion by discharging residual gas that has not been discharged after compression into the casing. .
일반적으로 로터리 압축기는 전동기구부에 결합한 회전축에 압축기구부의 롤링피스톤을 편심되게 결합하고 롤링피스톤이 원형 실린더의 내부공간 내에서 선회운동을 하면서 냉매를 흡입 압축하여 토출하는 것으로, 도 1은 종래 로터리 압축기의 일례를 보인 종단면도이고, 도 2는 종래 로터리 압축기에서 압축기구부를 보인 평면도이다.In general, a rotary compressor eccentrically couples a rolling piston of a compression mechanism part to a rotating shaft coupled to an electric mechanism part, and the rolling piston sucks and discharges refrigerant while rotating in an inner space of a circular cylinder. FIG. 1 shows a conventional rotary compressor. Figure 2 is a longitudinal sectional view showing an example of, Figure 2 is a plan view showing a compression mechanism in the conventional rotary compressor.
이에 도시한 바와 같이 종래의 로터리 압축기는, 가스흡입관(SP)과 가스토출관(DP)을 연통 설치하는 케이싱(1)과, 케이싱(1)의 상측에 설치하여 회전력을 발생하는 전동기구부와, 케이싱(1)의 하측에 설치하여 상기 전동기구부에서 발생한 회전력으로 냉매를 압축하는 압축기구부로 구성하고 있다.As shown in the drawing, a conventional rotary compressor includes a casing 1 for communicating gas suction pipes SP and gas discharge pipes DP, an electric mechanism part provided above the casing 1 to generate rotational force, It is provided in the lower part of the casing 1, and is comprised by the compression mechanism part which compresses a refrigerant | coolant by the rotational force which the said electric mechanism part produced.
전동구동부는 케이싱(1)의 내부에 고정하여 외부에서 전원을 인가하는 고정자(Ms)와, 고정자(Ms)의 내부에 일정 공극을 두고 배치하여 상기한 고정자(Ms)와 상호 작용하면서 회전하는 회전자(Mr)로 이루어져 있다.The electric drive unit rotates while interacting with the stator Ms by fixing the inside of the casing 1 to stator Ms for applying power from the outside, and having a predetermined gap inside the stator Ms. It consists of electrons (Mr).
압축기구부는 그 중심부에 내부공간(V)을 구비하여 상기 케이싱(1)에 고정 설치하는 실린더(2)와, 실린더(2)의 상하 양측을 복개하여 함께 내부공간을 이루는 메인베어링(3) 및 서브베어링(4)과, 회전자(2)에 압입하고 메인베어링(3)과 서브베어링(4)에 지지되어 회전력을 전달하는 회전축(5)과, 회전축(5)의 편심부에 회전 가능하게 결합하여 실린더(2)의 내부공간에서 선회하면서 냉매를 압축하는 롤링피스톤(6)과, 롤링피스톤(6)의 외주면에 압접하도록 실린더(2)에 반경방향으로 이동 가능하게 결합하여 상기 실린더(2)의 내부공간(V)을 흡입실과 압축실로 구획하는 베인(7)과, 메인베어링(3)의 토출포트(3a) 선단에 개폐 가능하게 결합하여 압축실에서 토출되는 냉매가스를 제한하는 토출밸브(8)와, 토출밸브(8)를 수용하여 메인베어링(3)의 외측면에 설치하는 머플러(9)로 이루어져 있다.Compressor part has an inner space (V) in the center of the cylinder (2) fixed to the casing (1), the main bearing (3) covering the upper and lower sides of the cylinder (2) to form an inner space together and Rotating shaft 5 which press-fits the sub-bearing 4 and the rotor 2 and is supported by the main bearing 3 and the sub-bearing 4 to transmit the rotational force, and the eccentric portion of the rotating shaft 5 is rotatable. A rolling piston 6 which compresses the refrigerant while pivoting in the inner space of the cylinder 2 and a radially movable coupling to the cylinder 2 so as to be press-contacted to the outer circumferential surface of the rolling piston 6 so that the cylinder 2 And a vane (7) for dividing the inner space (V) in the suction chamber and the compression chamber, and a discharge valve for restricting the refrigerant gas discharged from the compression chamber by opening and closing the vane (7) and the discharge port (3a) of the main bearing (3). (8) and the head which accommodates the discharge valve (8) and is installed on the outer surface of the main bearing (3) It consists of multiple (nine).
실린더(2)는 환형으로 형성하여 상기한 메인베어링(3)과 서브베어링(4)을 상하 양측에서 볼트로 체결 고정하는 것으로, 그 일측에 상기한 베인(7)을 반경방향으로 안내하도록 베인슬릿(2a)을 형성하고, 베인슬릿(2a)의 일측에는 흡입구(2b)를 형성하며, 베인슬릿(2a)의 타측 상단 모서리에는 냉매를 메인베어링(3)의 토출포트(3a)로 안내하도록 토출안내홈(2c)을 형성하고 있다. 또, 베인슬릿(2a)의 후방측에는 그 베인슬릿(2a)에 직각으로 중첩하도록 축방향구멍(2d)을 형성하고, 축방향구멍(2d)의 중앙을 반경방향으로 관통하여 베인스프링(VS)을 삽입할 수 있도록 스프링구멍(2e)을 형성하고 있다.The cylinder (2) is formed in an annular shape to fasten and fix the main bearing (3) and the sub-bearing (4) by bolts on both sides of the upper and lower sides, and vanes slit to guide the vanes (7) on one side thereof in a radial direction. (2a) is formed, the inlet port (2b) is formed on one side of the vane slit (2a), the discharge is discharged to guide the refrigerant to the discharge port (3a) of the main bearing (3) at the other upper corner of the vane slit (2a) The guide groove 2c is formed. An axial hole 2d is formed on the rear side of the vane slit 2a so as to overlap the vane slit 2a at right angles, and the vane spring VS passes through the center of the axial hole 2d in the radial direction. The spring hole 2e is formed so that it may insert.
상기와 같은 종래 로터리 압축기는 다음과 같이 동작한다.The conventional rotary compressor as described above operates as follows.
즉, 전동기구부의 고정자(Ms)에 전원을 인가하여 회전자(Mr)가 회전하면, 압축기구부의 회전축(5)이 회전자(Mr)와 함께 회전하고, 롤링피스톤(6)이 실린더(2)의 내부공간에서 편심 회전하며, 롤링피스톤(6)의 편심 회전에 따라 냉매가스가 흡입실로 흡입되어 일정압력까지 지속적으로 압축되다가 압축실 압력이 케이싱(1)내의 압력보다 고압이 되는 순간 메인베어링(3)의 토출포트(3a)를 통해 머플러(9)와 케이싱(1)으로 토출되었다가 가스토출관(DP)을 통해 냉동사이클장치로 배출되는 것이었다.That is, when the rotor (Mr) is rotated by applying power to the stator (Ms) of the electric mechanism part, the rotating shaft (5) of the compression mechanism part rotates together with the rotor (Mr), and the rolling piston (6) is the cylinder (2). ) Eccentric rotation in the inner space of the main body, the refrigerant gas is sucked into the suction chamber according to the eccentric rotation of the rolling piston (6) continuously compressed to a certain pressure, the moment the compression chamber pressure is higher than the pressure in the casing (1) main bearing It was discharged to the muffler 9 and the casing 1 through the discharge port 3a of (3), and discharged to the refrigeration cycle apparatus through the gaseous discharge pipe DP.
그러나, 상기와 같은 종래 로터리 압축기에 있어서는, 도 2에서와 같이 베인(7)과 토출안내홈(2c) 사이에 잔류하는 압축가스(A)가 미처 배출되지 못하고 다음 흡입행정시 재팽창하여 냉매가스의 흡입량을 저하시키면서 압축기 효율을 떨어뜨리는 문제점이 있었다.However, in the conventional rotary compressor as described above, as shown in FIG. 2, the compressed gas A remaining between the vanes 7 and the discharge guide grooves 2c is not discharged and re-expanded at the next suction stroke, thereby refrigerating the gas. There is a problem of lowering the compressor efficiency while lowering the suction amount of.
본 고안은 상기와 같은 종래 로터리 압축기가 가지는 문제점을 감안하여 안출한 것으로, 토출행정시 베인과 토출안내홈 사이에 잔류하는 압축가스를 원활하게 배출하여 잔류가스의 재팽창으로 인한 압축기의 효율저하를 미연에 방지할 수 있는 로터리 압축기의 흡입손실 저감 구조를 제공하려는데 본 고안의 목적이 있다.The present invention has been made in view of the problems of the conventional rotary compressor as described above, and smoothly discharges the compressed gas remaining between the vane and the discharge guide groove during the discharge stroke, thereby reducing the efficiency of the compressor due to the expansion of the residual gas. It is an object of the present invention to provide a structure for reducing the suction loss of a rotary compressor that can be prevented in advance.
본 고안의 목적을 달성하기 위하여, 케이싱의 내부에 고정 설치하는 환형의 실린더와, 실린더의 상하 양측을 복개하여 함께 내부공간을 형성하고 구동모터의 회전축을 지지하도록 상기한 실린더에 고정하는 복수 개의 베어링과, 실린더의 내부에서 회전축의 편심부에 회전 가능하게 결합하여 편심 회전을 하면서 냉매가스를 이동시키는 롤링피스톤과, 실린더의 내부공간을 압축실과 흡입실로 구분하면서 롤링피스톤의 편심 회전에 따라 반경방향으로 직선운동을 하도록 상기 실린더의 베인슬릿에 설치하는 베인을 포함한 로터리 압축기에 있어서, 베인이 상사점에 도달할 때 실린더의 압축실을 케이싱의 내부에 연통시켜 그 압축실에 잔류하는 냉매를 케이싱의 내부로 배출하도록 잔류냉매 배출유로를 형성하여서 된 것을 특징으로 하는 로터리 압축기의 흡입손실 저감 구조를 제공한다.In order to achieve the object of the present invention, a plurality of bearings fixed to the cylinder to form an inner space together with the annular cylinder fixed to the inside of the casing and the upper and lower sides of the cylinder to support the rotating shaft of the drive motor And a rolling piston rotatably coupled to an eccentric portion of the rotating shaft in the cylinder to move the refrigerant gas while eccentric rotation, and radially in accordance with the eccentric rotation of the rolling piston while dividing the inner space of the cylinder into a compression chamber and a suction chamber. In a rotary compressor including a vane installed in the vane slit of the cylinder for linear movement, when the vane reaches the top dead center, the compression chamber of the cylinder communicates with the inside of the casing, and the refrigerant remaining in the compression chamber is stored inside the casing. Rotary compression, characterized in that for forming a residual refrigerant discharge passage to discharge the The structure provides a reduced suction loss.
이하, 본 고안에 의한 로터리 압축기의 흡입손실 저감 구조를 첨부도면에 도시한 일실시예에 의거하여 상세하게 설명한다.Hereinafter, the suction loss reduction structure of the rotary compressor according to the present invention will be described in detail with reference to an embodiment shown in the accompanying drawings.
도 3은 본 고안 로터리 압축기의 일례를 보인 종단면도이고, 도 4는 본 고안 로터리 압축기에서 압축기구부를 보인 평면도이며, 도 5a 및 도 5b는 본 고안 로터리 압축기에서 잔류가스의 누설동작을 보인 사시도이고, 도 6은 본 고안 로터리 압축기에서 잔류냉매 배출유로의 변형예를 보인 사시도이다.Figure 3 is a longitudinal sectional view showing an example of the rotary compressor of the present invention, Figure 4 is a plan view showing a compression mechanism in the rotary compressor of the present invention, Figures 5a and 5b is a perspective view showing the leakage operation of the residual gas in the rotary compressor of the present invention 6 is a perspective view showing a modified example of the residual refrigerant discharge passage in the rotary compressor of the present invention.
도 1을 참조하면 본 고안에 의한 로터리 압축기는, 가스흡입관(SP)과 가스토출관(DP)을 연통 설치하는 케이싱(1)과, 그 케이싱(1)의 내부에 설치하여 회전력을 발생하도록 고정자(Ms)와 회전자(Mr)로 이루어진 전동기구부와, 전동기구부의 회전자(Mr)에 결합하여 그 회전력으로 냉매가스를 흡입 압축하여 토출하는 압축기구부로 구성한다.Referring to FIG. 1, the rotary compressor according to the present invention includes a casing 1 for communicating gas suction pipes SP and gas discharge pipes DP, and a stator installed inside the casing 1 to generate rotational force. And a compressor mechanism portion that is coupled to the rotor portion (Ms) and the rotor (Mr) and sucks and compresses and discharges refrigerant gas by the rotational force thereof.
압축기구부는 케이싱(1)의 내부에 고정하는 실린더(10)와, 실린더(10)의 상하 양측을 복개하여 함께 내부공간(V)을 이루는 메인베어링(20) 및 서브베어링(30)과, 회전자(Mr)에 압입하고 메인베어링(3)과 서브베어링(4)에 지지되어 회전력을 전달하는 회전축(5)과, 회전축(5)의 편심부에 회전 가능하게 결합하여 실린더(10)의 내부공간(V)에서 선회하면서 냉매를 압축하는 롤링피스톤(6)과, 롤링피스톤(6)의 외주면에 압접하도록 실린더(10)에 반경방향으로 이동 가능하게 결합하여 상기 실린더(10)의 내부공간(V)을 흡입실과 압축실로 구획하는 베인(20)과, 메인베어링(3)의 토출포트(3a) 선단에 개폐 가능하게 결합하여 압축실에서 토출되는 냉매가스를 제한하는 토출밸브(8)와, 토출밸브(8)를 수용하여 메인베어링(3)에 설치하는 머플러(9)로 이루어진다.Compressor portion is a cylinder 10 to be fixed to the inside of the casing (1), the main bearing 20 and the sub-bearing (30) which covers the upper and lower sides of the cylinder (10) together to form an inner space (V), The inside of the cylinder 10 is rotatably coupled to an eccentric portion of the rotating shaft 5 and a rotating shaft 5 which is pressed into the electron Mr and supported by the main bearing 3 and the sub bearing 4 to transmit the rotational force. Rolling piston 6 for compressing the refrigerant while turning in the space (V), and radially movably coupled to the cylinder 10 to be pressed against the outer circumferential surface of the rolling piston (6) the internal space of the cylinder ( A vane 20 for dividing V) into a suction chamber and a compression chamber, a discharge valve 8 which couples to the tip of the discharge port 3a of the main bearing 3 so as to be openable and closed, and restricts the refrigerant gas discharged from the compression chamber; It consists of a muffler 9 which accommodates the discharge valve 8 and installs in the main bearing 3.
실린더(10)는 도 4 내지 도 5b에서와 같이 환형으로 형성하여 그 일측에 상기한 베인(20)을 반경방향으로 안내하도록 베인슬릿(11)을 형성하고, 베인슬릿(11)의 일측에는 흡입구(12)를 형성하며, 베인슬릿(11)의 타측 상단 모서리에는 냉매를 메인베어링(3)의 토출포트(3a)로 안내하도록 토출안내홈(13)을 형성하며, 베인슬릿(11)의 후방측에는 그 베인슬릿(11)에 직각으로 중첩하도록 축방향구멍(14)을 형성하고, 축방향구멍(14)의 중앙을 반경방향으로 관통하여 베인스프링(VS)을 삽입할 수 있도록 스프링구멍(15)을 형성한다. 또, 베인슬릿(11)의 일측면에는 후술할 베인(20)이 상사점에 도달할 때 그 베인(20)의 제1 배출홈(21)과 일시적으로 연통하여 압축실에 남은 잔류가스를 실린더(10)의 내부공간(V) 밖으로 배출할 수 있도록 잔류가스 배출유로의 일부를 이루는 제2 배출홈(16)을 형성하되, 이 제2 배출홈(16)은 그 입구단이 베인슬릿(11)의 중간에서 시작하여 출구단이 상기한 축방향구멍(14)에 연통하도록 형성하는 것이 바람직하다.The cylinder 10 is formed in an annular shape as shown in Figures 4 to 5b to form a vane slit 11 to guide the vane 20 in the radial direction on one side thereof, the suction port on one side of the vane slit 11 And a discharge guide groove 13 to guide the refrigerant to the discharge port 3a of the main bearing 3 at the other upper edge of the vane slit 11 and at the rear of the vane slit 11. On the side, an axial hole 14 is formed so as to overlap the vane slit 11 at right angles, and a spring hole 15 is inserted through the center of the axial hole 14 in the radial direction so as to insert the vane spring VS. ). In addition, one side of the vane slit 11 has a residual gas remaining in the compression chamber by temporarily communicating with the first discharge groove 21 of the vane 20 when the vane 20 to be described later reaches a top dead center. A second discharge groove 16 constituting a part of the residual gas discharge flow path is formed so as to be discharged out of the internal space V of the 10, and the second discharge groove 16 has an inlet end thereof with a vane slit 11. It is preferable that the outlet end is formed so as to communicate with the above-described axial hole 14, starting from the middle of the above.
베인(20)은 압축실의 냉매가 누설되는 것을 차단할 수 있도록 상기한 베인슬릿(11)에 밀착하여 형성하되 그 압축실측 측면에는 상기한 제2 배출홈(16)에 일시적으로 연통할 수 있도록 반경방향으로 잔류냉매 배출유로의 일부를 이루는 제1 배출홈(21)을 형성한다. 제1 배출홈(21)은 상기한 베인(20)의 전방단에서 시작하여 상사점에 도달할 때 상기 제2 배출홈(16)에 연통할 수 있도록 중간까지 형성하는 것이 바람직하다.The vane 20 is formed in close contact with the vane slit 11 so as to block the leakage of the refrigerant in the compression chamber, the radius of the compression chamber side so as to be in communication temporarily with the second discharge groove 16 described above. The first discharge groove 21 forming a part of the residual refrigerant discharge passage in the direction. The first discharge groove 21 is preferably formed in the middle so as to communicate with the second discharge groove 16 when reaching the top dead center starting from the front end of the vane 20.
한편, 잔류냉매 배출유로는 도 6에서와 같이 베인(20)과 메인베어링(3)(또는 서브베어링)에 형성할 수도 있다. 즉, 베인(20)의 압축실측 측면에 "니은"자 또는 경사진 모양으로 배출홈(22)을 형성하고, 베인(20)의 상사점 도달시 일시적으로 상기 배출홈(22)에 연통하도록 상기한 메인베어링(3)(또는 서브베어링)에 배출구멍(3b)을 형성하는 것이다.Meanwhile, the residual refrigerant discharge flow path may be formed in the vane 20 and the main bearing 3 (or sub bearing) as shown in FIG. 6. That is, the discharge groove 22 is formed on the side of the compression chamber side of the vane 20 in the shape of "negative" or inclined, and when the top dead center of the vane 20 reaches the top, temporarily communicates with the discharge groove 22. The discharge hole 3b is formed in one main bearing 3 (or sub bearing).
도면중 종래와 동일한 부분에 대하여는 동일한 부호를 부여하였다.In the drawings, the same reference numerals are given to the same parts as in the prior art.
상기와 같은 본 고안 로터리 압축기의 흡입손실 저감 구조가 가지는 작용 효과는 다음과 같다.Effects of the suction loss reduction structure of the present invention rotary compressor as described above are as follows.
즉, 전동기구부의 고정자(Ms)에 전원을 인가하여 회전자(Mr)가 회전하면, 압축기구부의 회전축(5)이 회전자(Mr)와 함께 회전하고, 롤링피스톤(6)이 실린더(10)의 내부공간(V)에서 편심 회전하며, 롤링피스톤(6)의 편심 회전에 따라 냉매가스가 실린더(10)의 흡입실로 흡입되어 일정압력까지 지속적으로 압축되다가 실린더(10)의 압축실 압력이 케이싱(1)내의 압력보다 고압이 되는 순간 토출포트(3a)를 통해 머플러(8)로 토출되어 케이싱(1)으로 배출된다.That is, when the rotor (Mr) is rotated by applying power to the stator (Ms) of the electric mechanism part, the rotary shaft (5) of the compression mechanism unit rotates together with the rotor (Mr), the rolling piston (6) is a cylinder (10) Eccentrically rotates in the inner space (V), and the refrigerant gas is sucked into the suction chamber of the cylinder (10) in accordance with the eccentric rotation of the rolling piston (6) and is continuously compressed to a certain pressure until the compression chamber pressure of the cylinder (10) Instantaneous pressure higher than the pressure in the casing 1 is discharged to the muffler 8 through the discharge port 3a and discharged to the casing 1.
여기서, 실린더(10)의 토출안내홈(또는 메인베어링의 토출포트)(13)과 베인(20)의 사이에 압축된 냉매의 일부가 잔류할 우려가 있었으나, 도 5b에서와 같이 베인(20)이 상사점에 도달하는 순간 그 베인(20)의 압축측 측면에 구비한 제1 배출홈(21)이 베인슬릿(11)에 구비한 제2 배출홈(16)과 연통하면서 실린더(10)의 압축실에 잔류하는 냉매가 상기한 제1 배출홈(21)과 제2 배출홈(16)을 통해 실린더(10)의 내부공간(V) 밖으로 배출되는 것이다. 이후 상기한 베인(20)이 롤링피스톤(6)의 선회운동에 따라 다시 축방향으로 전진을 하는 경우에는 도 5a에서와 같이 제1 배출홈(21)과 제2 배출홈(16)이 분리되어 압축실의 냉매가 누설되지 않고 정상적으로 압축되도록 하는 것이다. Here, there is a possibility that some of the compressed refrigerant may remain between the discharge guide groove (or the discharge port of the main bearing) 13 of the cylinder 10 and the vane 20, but the vane 20 as shown in FIG. 5B. As soon as the top dead center is reached, the first discharge groove 21 provided on the side of the compression side of the vane 20 communicates with the second discharge groove 16 provided in the vane slit 11. The refrigerant remaining in the compression chamber is discharged out of the internal space V of the cylinder 10 through the first discharge groove 21 and the second discharge groove 16. Since the vane 20 moves forward in the axial direction again according to the pivoting motion of the rolling piston 6, the first discharge groove 21 and the second discharge groove 16 are separated as shown in FIG. 5A. The refrigerant in the compression chamber is to be compressed normally without leakage.
한편, 도 6의 경우에도 전술한 일실시예와 동일하다. 즉, 롤링피스톤(6)이 토출행정을 마치고 흡입행정을 시작하려는 시점인 베인(20)이 상사점에 도달하는 순간 그 베인(20)과 실린더(10)의 토출안내홈(13) 사이에 잔류하려던 냉매는 상기한 베인(20)의 배출홈(22)과 메인베어링(3)의 배출구멍(3b)이 연통함에 따라 압력차에 따라 신속하게 실린더(10)의 내부공간(V) 밖으로 배출되어 압축실에서의 재팽창을 미연에 방지하고 이를 통해 압축기의 흡입손실을 줄여 압축기 효율을 높일 수 있다.6 is also the same as the above-described embodiment. That is, the moment the vane 20 reaches the top dead center after the rolling piston 6 finishes the discharge stroke and starts the suction stroke, it remains between the vane 20 and the discharge guide groove 13 of the cylinder 10. The refrigerant to be discharged is quickly discharged out of the inner space V of the cylinder 10 according to the pressure difference as the discharge groove 22 of the vane 20 and the discharge hole 3b of the main bearing 3 communicate with each other. It is possible to prevent the re-expansion in the compression chamber in advance, thereby increasing the compressor efficiency by reducing the suction loss of the compressor.
본 고안에 의한 로터리 압축기의 흡입손실 저감 구조는, 베인이 상사점에 도달하는 순간 실린더의 압축실에 잔류하는 냉매를 실린더 밖으로 배출할 수 있도록 잔류냉매 배출유로를 형성함으로써, 압축냉매가 토출되지 않고 압축실에 잔류하는 것을 막아 압축실에서의 재팽창을 미연에 방지하고 이를 통해 압축기의 흡입손실을 줄여 압축기 효율을 높일 수 있다. The suction loss reduction structure of the rotary compressor according to the present invention forms a residual refrigerant discharge passage so that the refrigerant remaining in the compression chamber of the cylinder can be discharged out of the cylinder as soon as the vane reaches the top dead center, whereby the compressed refrigerant is not discharged. By preventing the remaining in the compression chamber to prevent re-expansion in the compression chamber in advance, thereby reducing the suction loss of the compressor can increase the compressor efficiency.
도 1은 종래 로터리 압축기의 일례를 보인 종단면도,1 is a longitudinal sectional view showing an example of a conventional rotary compressor;
도 2는 종래 로터리 압축기에서 압축기구부를 보인 평면도,Figure 2 is a plan view showing a compression mechanism in the conventional rotary compressor,
도 3은 본 고안 로터리 압축기의 일례를 보인 종단면도,3 is a longitudinal sectional view showing an example of the present invention rotary compressor;
도 4는 본 고안 로터리 압축기에서 압축기구부를 보인 평면도,Figure 4 is a plan view showing a compression mechanism in the rotary compressor of the present invention,
도 5a 및 도 5b는 본 고안 로터리 압축기에서 잔류가스의 누설동작을 보인 사시도,5a and 5b are perspective views showing the leakage operation of the residual gas in the rotary compressor of the present invention,
도 6은 본 고안 로터리 압축기에서 잔류냉매 배출유로의 변형예를 보인 사시도.Figure 6 is a perspective view showing a modification of the residual refrigerant discharge passage in the present invention rotary compressor.
** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **
1 : 케이싱 3 : 메인베어링1: Casing 3: Main Bearing
3b : 배출구멍 5 : 회전축3b: discharge hole 5: rotating shaft
6 : 롤링피스톤 10 : 실린더6: rolling piston 10: cylinder
11 : 베인슬릿 12 : 흡입구11: vaneslit 12: suction port
13 : 토출안내홈 14 : 축방향구멍13: discharge guide groove 14: axial hole
15 : 스프링삽입홈 16 : 제2 배출홈15: spring insertion groove 16: the second discharge groove
20 : 베인 21 : 제1 배출홈20: vane 21: the first discharge groove
22 : 배출홈22: discharge groove
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2005-0002704U KR200381016Y1 (en) | 2005-01-28 | 2005-01-28 | Structure for reducing suction loss of rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2005-0002704U KR200381016Y1 (en) | 2005-01-28 | 2005-01-28 | Structure for reducing suction loss of rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200381016Y1 true KR200381016Y1 (en) | 2005-04-08 |
Family
ID=43682620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20-2005-0002704U KR200381016Y1 (en) | 2005-01-28 | 2005-01-28 | Structure for reducing suction loss of rotary compressor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200381016Y1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100839957B1 (en) * | 2007-02-14 | 2008-06-19 | 삼성전자주식회사 | Rotary compressor |
CN102477985A (en) * | 2010-11-26 | 2012-05-30 | 上海日立电器有限公司 | Integratedly designed rotary compressor structure |
CN102477990A (en) * | 2010-11-26 | 2012-05-30 | 上海日立电器有限公司 | Air suction structure of rotor type compressor |
-
2005
- 2005-01-28 KR KR20-2005-0002704U patent/KR200381016Y1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100839957B1 (en) * | 2007-02-14 | 2008-06-19 | 삼성전자주식회사 | Rotary compressor |
CN102477985A (en) * | 2010-11-26 | 2012-05-30 | 上海日立电器有限公司 | Integratedly designed rotary compressor structure |
CN102477990A (en) * | 2010-11-26 | 2012-05-30 | 上海日立电器有限公司 | Air suction structure of rotor type compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4516121B2 (en) | Capacity changing device for rotary compressor and operation method of air conditioner provided with the same | |
US8602755B2 (en) | Rotary compressor with improved suction portion location | |
JP2005299653A (en) | Rolling piston and rotary compressor gas leakage preventing device equipped therewith | |
US7588428B2 (en) | Rotary fluid device performing compression and expansion of fluid within a common cylinder | |
KR200381016Y1 (en) | Structure for reducing suction loss of rotary compressor | |
US11448072B2 (en) | Rotary compressor | |
US20220349405A1 (en) | Rotary compressor with selective oil communication | |
KR101161440B1 (en) | Rotary compressor | |
US20060177339A1 (en) | Horizontal type orbiting vane compressor | |
KR102608742B1 (en) | Rotary compressor | |
KR200171578Y1 (en) | Structure for discharging active gas in rotary compressor | |
KR100575804B1 (en) | Gas discharge guide structure for rotary compressor | |
KR100575833B1 (en) | Device for reducing noise of rotary compressor | |
KR100234777B1 (en) | Structure for reducing compression loss of hermetic rotary compressor | |
KR100360860B1 (en) | Discharge valve apparatus of rotary compressor | |
KR100343727B1 (en) | Structure for supporting crankshaft of scroll compressor | |
KR100332782B1 (en) | Structure for reduction of noise in rotary compressor | |
KR101161441B1 (en) | Structure for reducing noise of twin rotary compressor | |
KR101179731B1 (en) | Rotary compressor | |
KR20030083808A (en) | Rotary comrressor | |
KR101203865B1 (en) | motor for compressor | |
KR100645820B1 (en) | Inverter type orbiting vane compressor | |
KR100531284B1 (en) | Rotary compressor | |
KR20090040152A (en) | Rotary compressor | |
KR100360862B1 (en) | Discharge valve apparatus of rotary compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REGI | Registration of establishment | ||
T201 | Request for technology evaluation of utility model | ||
T701 | Written decision to grant on technology evaluation | ||
G701 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20080218 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |