JPH01154317A - Film for magnetic recording medium - Google Patents

Film for magnetic recording medium

Info

Publication number
JPH01154317A
JPH01154317A JP31350787A JP31350787A JPH01154317A JP H01154317 A JPH01154317 A JP H01154317A JP 31350787 A JP31350787 A JP 31350787A JP 31350787 A JP31350787 A JP 31350787A JP H01154317 A JPH01154317 A JP H01154317A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
conductive layer
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31350787A
Other languages
Japanese (ja)
Inventor
Shigemi Seki
関 重己
Kenji Tsunashima
研二 綱島
Takashi Mimura
尚 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31350787A priority Critical patent/JPH01154317A/en
Publication of JPH01154317A publication Critical patent/JPH01154317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To decrease noise generation when a magnetic recording medium is formed and to improve the electromagnetic conversion characteristics thereof by using a conductive coating material contg. fine metal oxide powder and forming conductive layers having specific pore voids on a polyester film. CONSTITUTION:The conductive layers consisting of a mixture composed of a conductor essentially consisting of the fine metal oxide powder and an org. high-polymer binder are provided on both faces of the polyester film and a magnetic recording layer is laminated on the surface of at least one conductive layer. The noise generation when the magnetic recording medium is formed is decreased by forming the conductive layers to <=15% pore voids.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気記録媒体用ベースフィルムに関するもの
である。詳しくは、磁気記録媒体とした時のノイズ発生
が少なく、且つ、記録密度の高い磁気記録媒体用ベース
フィルムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a base film for magnetic recording media. Specifically, the present invention relates to a base film for a magnetic recording medium that generates less noise when used as a magnetic recording medium and has a high recording density.

[従来の技術] ポリエステル二軸延伸フィルムは、その機械的性質、寸
法安定性などに優れた特性を有することから磁気記録媒
体ベースとして広く使用されている。しかし、該フィル
ムに磁性層を塗設したバインダー型磁気記録媒体では、
一般的に表面電気抵抗が比較的高いため、磁気テープの
走行中或いは磁気ディスクの回転中に発生した静電気の
帯電によって付着塵を生じるため、記録脱落(ドロップ
アウト)の増大ヤ)S動時のノイズ発生を招いたり、場
合によっては、付着塵埃の転省等により磁気記録媒体の
変形や使用機器の損傷などを引き起こすという欠点が知
られている。このため磁気記録媒体は、静電気防止性を
保持していることが必須となっており従来より種々の検
討がなされている。
[Prior Art] Biaxially stretched polyester films are widely used as a base for magnetic recording media because of their excellent mechanical properties and dimensional stability. However, in a binder-type magnetic recording medium in which a magnetic layer is coated on the film,
In general, since the surface electrical resistance is relatively high, static electricity generated during the running of the magnetic tape or rotation of the magnetic disk causes adhesion of dust, which increases the possibility of recording dropouts. It is known to have drawbacks such as generating noise and, in some cases, causing deformation of the magnetic recording medium and damage to the equipment used due to the transfer of attached dust. For this reason, it has become essential for magnetic recording media to maintain antistatic properties, and various studies have been made in the past.

この様な磁気記録媒体として、導電性金属酸化物微粉末
と有機高分子バインダーを主成分とした組成物からなる
導電性塗料の塗設によって、静電気防止性を付与させた
ポリエステルフィルム基材を使用してなる磁気記録媒体
が知られている。(特願昭60−229332号公報) [発明が解決しようとする問題点] しかし、前述した静電気防止性を有する磁気記録媒体に
は次の様な問題点がある。
For such magnetic recording media, we use a polyester film base material that has been given antistatic properties by coating it with a conductive paint consisting of a composition mainly composed of conductive metal oxide fine powder and an organic polymer binder. A magnetic recording medium made of the following is known. (Japanese Patent Application No. 60-229332) [Problems to be Solved by the Invention] However, the above-mentioned magnetic recording medium having antistatic properties has the following problems.

すなわち、磁気記録媒体は、使用時の環境条件、特に湿
度依存性のない所望の優れた静電気防止性能が得られ高
密度記録化を達成できるが、導電層は金属酸化物微粉末
の含有mが比較的子いため、導電層表面に極微細な細孔
が生じ易く、該導電層上に磁性層を形成し、磁気記録媒
体とした時、ノイズ発生が顕著なものとなり、電磁変換
特性が低下する。
In other words, magnetic recording media can achieve high-density recording by obtaining the desired excellent antistatic performance that is not dependent on the environmental conditions during use, especially humidity. Because it is relatively small, extremely fine pores are likely to form on the surface of the conductive layer, and when a magnetic layer is formed on the conductive layer and used as a magnetic recording medium, noise generation becomes noticeable and electromagnetic conversion characteristics deteriorate. .

本発明は、従来技術の欠点を解消せしめ、磁気記録媒体
とした時、ノイズ発生が少なく、高密度記録化が計れ、
ドロップアウトがなく、静電気防止性に優れた磁気記録
媒体用ベースフィルムを提供せんとするものである。
The present invention solves the drawbacks of the conventional technology, and when used as a magnetic recording medium, generates less noise and achieves high-density recording.
It is an object of the present invention to provide a base film for magnetic recording media that is free from dropouts and has excellent antistatic properties.

[問題点を解決するための手段] 本発明は、ポリエステルフィルムの両面に、金属酸化物
微粉末を主成分とする導電体と有機高分子バインダーの
混合体からなる導電層を設け、少なくとも一方の導電層
の表面に磁気記録層を積層した磁気記録媒体であって、
該導電層は細孔空隙率が15%以下にある磁気記録媒体
用フィルムを要旨とするものである。
[Means for Solving the Problems] The present invention provides conductive layers made of a mixture of a conductor mainly composed of fine metal oxide powder and an organic polymer binder on both sides of a polyester film. A magnetic recording medium in which a magnetic recording layer is laminated on the surface of a conductive layer,
The conductive layer is intended to be a film for magnetic recording media having a pore porosity of 15% or less.

本発明においていうポリエステルとは、公知のポリエス
テルで、具体的には、例えばテレフタル酸、イソフタル
酸、ナフタレンジカルボン酸、ビス−α、β(2−クロ
ルフェノキシ)エタン−4,4−ジカルボン酸、アジピ
ン酸、セバシン酸等の2官能カルボン酸の少なくとも1
種と、エチレングリコール、トリエチレングリコール、
テトラメチレングリコール、ヘキサメチレングリコール
、デカメチレングリコール等のグリコールの少なくとも
1種とを重縮合して得られるポリエステルを挙げること
ができる。また、該ポリエステルには本発明の目的を阻
害しない範囲内で他種ポリマをブレンドしてもよいし、
酸化防止剤、熱安定剤、滑剤、顔料、紫外線吸収剤等が
含まれていてもよい。ポリエステルの固有粘度(25℃
オルトクロルフェノール中で測定)は0.4〜2.0で
あり、好ましくは0.5〜1.0の範囲のものが通常用
いられる。
The polyester referred to in the present invention is a known polyester, specifically, for example, terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, bis-α,β(2-chlorophenoxy)ethane-4,4-dicarboxylic acid, adipine At least one difunctional carboxylic acid such as acid, sebacic acid, etc.
Seeds, ethylene glycol, triethylene glycol,
Examples include polyesters obtained by polycondensation with at least one glycol such as tetramethylene glycol, hexamethylene glycol, and decamethylene glycol. In addition, other types of polymers may be blended with the polyester within a range that does not impede the purpose of the present invention,
Antioxidants, heat stabilizers, lubricants, pigments, ultraviolet absorbers, etc. may be included. Intrinsic viscosity of polyester (25℃
(measured in orthochlorophenol) is from 0.4 to 2.0, preferably from 0.5 to 1.0.

本発明には、ポリエステルとしてポリエチレンテレフタ
レート、ポリエチレン2,6−ナフタレートを用いる場
合、特に優れた効果が得られる。
In the present invention, particularly excellent effects can be obtained when polyethylene terephthalate or polyethylene 2,6-naphthalate is used as the polyester.

本発明でいう導電層とは、金属酸化物微粉末および有機
高分子バインダーを主体としたものからなる層である。
The conductive layer in the present invention is a layer mainly composed of metal oxide fine powder and an organic polymer binder.

本発明でいう金属酸化物微粉末とは、酸化スズ、酸化ア
ンチモン、酸化インジウム、酸化亜鉛、酸化ビスマスか
ら選ばれた少なくとも1種からなる組成で、かつ、平均
粒子径が0.5μm以下、好ましくは0.3μm以下、
より好ましくは0.2μm以下であることが望ましい。
The metal oxide fine powder as used in the present invention has a composition consisting of at least one selected from tin oxide, antimony oxide, indium oxide, zinc oxide, and bismuth oxide, and has an average particle size of 0.5 μm or less, preferably is 0.3 μm or less,
More preferably, it is 0.2 μm or less.

平均粒子径が0゜5μm以上では導電層表面に細孔が発
生しやすく、細孔空隙率が大きくなるので好ましくない
If the average particle diameter is 0.5 μm or more, pores are likely to be generated on the surface of the conductive layer and the pore porosity becomes large, which is not preferable.

また、金属酸化物微粉末には必要に応じて全金属酸化物
量の10wt%以下の量で酸化アルミニウムや酸化マグ
ネシウムを、また、20wt%以下の旧でアンチモンを
添加してもよい。なお、ここでいう平均粒子径とは、金
属微粉末をエチレングリコールスラリーとして遠心沈降
式粒度分布測定装置(島津製作所@製5A−CP2型)
を用いて測定したものでおる。主成分とはそのものが導
電体中50%以上を占めることをいう。
Moreover, aluminum oxide or magnesium oxide may be added to the metal oxide fine powder in an amount of 10 wt% or less of the total metal oxide amount, and antimony may be added in an amount of 20 wt% or less of the total metal oxide amount. Note that the average particle diameter here refers to a centrifugal sedimentation type particle size distribution measuring device (Model 5A-CP2 manufactured by Shimadzu Corporation) using fine metal powder as an ethylene glycol slurry.
Measured using . The term "main component" means that the component itself occupies 50% or more of the conductor.

本発明でいう有機高分子バインダーとは、熱可塑性樹脂
、熱硬化性樹脂より選択され、水溶性或いは水分散性、
或いは周知の有機溶媒に可溶な樹脂であってもよく、具
体的には、アクリル系、ビニル系、ウレタン系、エポキ
シ系、ポリエステル系、ポリプロピレン系、メラミン系
、シリコーン系、カーボネート系、ブチラール系などが
あげられ、これらの共重合体や混合系などが使用できる
The organic polymer binder in the present invention is selected from thermoplastic resins and thermosetting resins, and is water-soluble or water-dispersible.
Alternatively, resins soluble in well-known organic solvents may be used; specifically, acrylic, vinyl, urethane, epoxy, polyester, polypropylene, melamine, silicone, carbonate, and butyral resins. Copolymers and mixed systems of these can be used.

本発明では、導電層の耐溶剤性、接着性、耐摩耗性、機
械強度などから熱硬化性樹脂を適応するのが好ましく、
更には架橋結合剤として、例えばメラミン系架橋剤、尿
素系架橋剤、エポキシ系架橋剤、イソシアネート系架橋
剤などを併用し架橋密度を高めたものがより好ましい。
In the present invention, it is preferable to use a thermosetting resin in view of the solvent resistance, adhesiveness, abrasion resistance, mechanical strength, etc. of the conductive layer.
More preferably, as a crosslinking agent, for example, a melamine crosslinking agent, a urea crosslinking agent, an epoxy crosslinking agent, an isocyanate crosslinking agent, etc. are used in combination to increase the crosslinking density.

なお、布間溶媒としては、例えば、アルコール系、カル
ボン酸エステル系、ケトン系、脂肪族炭化水素系、脂環
式または芳香族炭化水素系及びこれらの混合系があげら
れるが、本発明では、混合系が好ましく、しかも、低沸
点溶剤(100℃以下)、中沸点溶剤(100℃以上〜
150℃以下)、高沸点溶剤(150℃以上〜200℃
以下)から選択された混合系で、蒸発速度の速くないも
のが好ましい。
In addition, examples of the cloth solvent include alcohols, carboxylic acid esters, ketones, aliphatic hydrocarbons, alicyclic or aromatic hydrocarbons, and mixtures thereof, but in the present invention, A mixed system is preferable, and in addition, a low boiling point solvent (below 100°C), a medium boiling point solvent (above 100°C)
150°C or lower), high boiling point solvent (150°C or higher to 200°C
A mixture system selected from the following) with a low evaporation rate is preferred.

混合比は、塗布性、及び導電層の細孔空隙率、表面粗さ
などに悪影響を及ぼさない範囲で適宜に行なえる。
The mixing ratio can be adjusted as appropriate within a range that does not adversely affect the coating properties, pore porosity, surface roughness, etc. of the conductive layer.

また、導電性塗材には、金属間化物微粉末を有機高分子
バインダーに均一分散させるために界面活性剤、シラン
カップリング剤等の分散剤を使用してもよい。
Further, a dispersant such as a surfactant or a silane coupling agent may be used in the conductive coating material in order to uniformly disperse the intermetallic fine powder in the organic polymer binder.

導電層における金属酸化物微粉末の濃度は、55〜85
W1%が好ましく、65〜75W1%の範囲がより好ま
しい。金属酸化物微粉末の濃度が55wt%未満では、
目的とする表面固有抵抗を有する導電層が得られない。
The concentration of metal oxide fine powder in the conductive layer is 55 to 85
W1% is preferable, and a range of 65 to 75 W1% is more preferable. When the concentration of metal oxide fine powder is less than 55 wt%,
A conductive layer having the desired surface resistivity cannot be obtained.

35wt%を越えるものでは、導電層の細孔空隙率が大
きくなるばかりでなく、導電層表面が顕著に粗れたり、
導電層の耐摩耗性が低下する。
If it exceeds 35 wt%, not only will the pore porosity of the conductive layer increase, but the surface of the conductive layer will become noticeably rough.
The wear resistance of the conductive layer decreases.

本発明フィルムを構成するポリエステルフィルムは、常
法により少なくとも二軸配向させたものでおり厚みは5
〜150μmが好ましく、6〜100μmの範囲がより
好ましく磁気記録媒体用ベースとし実用面での取り扱い
性に優れている。
The polyester film constituting the film of the present invention is at least biaxially oriented by a conventional method and has a thickness of 5.
The thickness is preferably from 150 μm to 150 μm, more preferably from 6 μm to 100 μm, which is excellent in practical handling as a base for magnetic recording media.

また、ポリニステリフィルムの表面粗さは0゜015μ
m以下、好ましくは0.010μm以下であることがフ
ィルム上に形成する導電層の表面粗れを防止する上で好
ましい。
In addition, the surface roughness of polynisteri film is 0°015μ
m or less, preferably 0.010 μm or less, in order to prevent surface roughness of the conductive layer formed on the film.

本発明フィルムを構成する導電層の積層厚みは、ポリエ
ステルフィルムの各面に0.05〜2.0μmが好まし
く、0.1〜1.0μmの範囲がより好ましい。積層厚
みが0.05μm未満では、磁気記録媒体としたとき所
望の表面固有抵抗を有するものが得られない。2.0μ
mを越えるものは、磁気記録媒体としたとき導電層によ
っては取り扱い上の屈曲によって導電層に亀裂を生じる
ことがある。
The laminated thickness of the conductive layer constituting the film of the present invention is preferably in the range of 0.05 to 2.0 μm, more preferably in the range of 0.1 to 1.0 μm on each side of the polyester film. If the laminated thickness is less than 0.05 μm, a magnetic recording medium having the desired surface resistivity cannot be obtained. 2.0μ
When the conductive layer exceeds m, cracks may occur in the conductive layer due to bending during handling when used as a magnetic recording medium.

本発明フィルムの表面粗さは、0.015μm以下、好
ましくは0.010μm以下でおることが望ましい。表
面粗さが0.015μm以上では磁気記録媒体とした時
、保磁力、ドロップアウトが不良となることがあるので
好ましくない。
The surface roughness of the film of the present invention is preferably 0.015 μm or less, preferably 0.010 μm or less. If the surface roughness is 0.015 μm or more, it is not preferable because coercive force and dropout may be poor when used as a magnetic recording medium.

本発明フィルムの表面固有抵抗は、105〜109Ω、
好ましくは106〜108Ωの範囲でおることが望まし
い。
The surface resistivity of the film of the present invention is 105 to 109Ω,
Preferably, it is in the range of 10 6 to 10 8 Ω.

表面固有抵抗が105Ω未満では磁気記録媒体としたと
ぎ表面固有抵抗が低すぎるため、磁性材の保磁力に悪影
響を及ぼしたり、表面が粗れたり、使用機器に過大電流
が流れたりするので好ましくない。一方、109Ωを越
えるものでは磁気記録媒体としたときの表面固有抵抗が
高くなり、使用中に静電気防止性が低下するためゴミな
どの吸着によりドロップアウトが多くなるので好ましく
ない。
If the surface resistivity is less than 105 Ω, the surface resistivity of the magnetic recording medium will be too low, which will adversely affect the coercive force of the magnetic material, roughen the surface, and cause excessive current to flow in the equipment used, which is undesirable. . On the other hand, if it exceeds 10 9 Ω, the surface resistivity becomes high when used as a magnetic recording medium, the antistatic property decreases during use, and dropouts increase due to the adsorption of dust, which is undesirable.

本発明フィルムは、導電層の細孔空隙率が15%以下、
好ましくは10%以下、より好ましくは8%以下でおる
ことが必要である。細孔空隙率が15%以上では磁気記
録媒体とした時、ノイズ発生が顕著となるので好ましく
ない。
The film of the present invention has a conductive layer having a pore porosity of 15% or less,
The content should preferably be 10% or less, more preferably 8% or less. If the pore porosity is 15% or more, noise generation becomes noticeable when used as a magnetic recording medium, which is not preferable.

本発明でいう磁性層とは、γ−Fe2O3、Coをドー
プした7−Fe2O3、Cro2などの酸化物系磁性粉
やFe、Co、N iなどの金属系強磁性粉末を補助添
加剤と共に、公知の熱可塑性樹脂、熱硬化性樹脂等の有
機高分子バインダー中に均一分散せしめた、いわゆる塗
布方式によって形成された周知の磁性層である。磁性層
の厚みは0.5〜10μm、好ましくは1〜5μmの範
囲とするのが望ましい。
The magnetic layer in the present invention refers to oxide-based magnetic powder such as γ-Fe2O3, Co-doped 7-Fe2O3, Cro2, etc., or metal-based ferromagnetic powder such as Fe, Co, Ni, etc., together with auxiliary additives, as well as known This is a well-known magnetic layer formed by a so-called coating method in which the magnetic layer is uniformly dispersed in an organic polymer binder such as a thermoplastic resin or a thermosetting resin. The thickness of the magnetic layer is desirably in the range of 0.5 to 10 μm, preferably 1 to 5 μm.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

(1)ポリエステルフィルムの!!A造方法まず、常法
によって重合されたポリエステルのペレットを十分乾燥
した後、公知の押出機、好ましくは圧縮比3.8以上の
溶融押出機に供給し、ペレットが溶融する温度以上、ポ
リマが分解する温度以下の温度でスリット状のダイから
シート状に溶融押出し、静電荷を印加しながら20〜8
0°Cに冷却ぜしめて未延伸フィルムを作る。この際、
未延伸フィルムの固有粘度はフィルム特性から0゜5以
上でおることが望ましい。次に未延伸フィルムを二軸延
伸配向させる。延伸方法は、逐次二軸延伸法、同時二軸
延伸法、あるいはこれらを組合せたものを用いることが
できる。二軸配向条件は特に限定はなく、通常、フィル
ムの長手方向、幅方向とも70〜180’C1好ましく
は90〜150℃の延伸温度で、延伸倍率は、それぞれ
2.0〜7.5倍、好ましくは2.5〜6.0倍である
(1) Polyester film! ! Manufacturing method A: First, polyester pellets polymerized by a conventional method are sufficiently dried, and then fed to a known extruder, preferably a melt extruder with a compression ratio of 3.8 or higher, and the polymer is heated to a temperature higher than the melting temperature of the pellets. Melt-extrude it into a sheet from a slit-shaped die at a temperature below the decomposition temperature, and apply an electrostatic charge to the
An unstretched film is prepared by cooling to 0°C. On this occasion,
The intrinsic viscosity of the unstretched film is desirably 0.5 or higher in view of film properties. Next, the unstretched film is biaxially stretched and oriented. As the stretching method, a sequential biaxial stretching method, a simultaneous biaxial stretching method, or a combination thereof can be used. The biaxial orientation conditions are not particularly limited, and usually the stretching temperature is 70 to 180°C in both the longitudinal and width directions of the film, preferably 90 to 150°C, and the stretching ratio is 2.0 to 7.5 times, respectively. Preferably it is 2.5 to 6.0 times.

また、二軸配向したフィルムを少なくとも一方向にさら
に延伸したポリエステルフィルムは、機械的特性が一段
と向上するのみならず、面内でバランスした特性を示す
のでベースフィルムとしてより好ましいものとなる。こ
の場合の延伸条1イ1は、延伸温度が100〜180℃
で、延伸倍率が長手方向、幅方向ともに1.1〜3.5
倍、好ましくは1.4倍〜3.0倍である。
Furthermore, a polyester film obtained by further stretching a biaxially oriented film in at least one direction not only further improves mechanical properties but also exhibits balanced properties in the plane, making it more preferable as a base film. In this case, the stretched strip 1-1 has a stretching temperature of 100 to 180°C.
The stretching ratio is 1.1 to 3.5 in both the longitudinal and width directions.
times, preferably 1.4 times to 3.0 times.

さらに、二軸配向フィルムは必要に応じて熱処理される
。熱処理条件は温度150〜240’Cで、時間は0.
5〜120秒間、好ましくは1.0〜60秒間が適当で
ある。
Furthermore, the biaxially oriented film is heat treated if necessary. The heat treatment conditions were a temperature of 150 to 240'C and a time of 0.
A suitable time is 5 to 120 seconds, preferably 1.0 to 60 seconds.

(2)導電層の形成方法 上記ポリエステルフィルムに導電層を形成するには、前
記した導電性微粉末を含む塗材をポリエステルフィルム
の両面に塗布し、塗膜を乾燥すればよい。この際、ポリ
エステルフィルムには、事前に公知であるコロナ放電処
理やプラズマ処理(空気中、窒素中、炭酸ガス中など)
を施すことにより、導電層をより強固にフィルム表面上
に形成できる。塗材の塗布方法は、公知であるエアード
クターコート法、エアーナイフコート法、浸漬法、リバ
ースロールコート法、グラビアコート法、キスコート法
、キャストコート法等を適用できるが、塗布厚みの精度
からリバースコート法が好ましい。
(2) Method for forming a conductive layer In order to form a conductive layer on the polyester film, a coating material containing the conductive fine powder described above may be applied to both sides of the polyester film, and the coating film may be dried. At this time, the polyester film is subjected to known corona discharge treatment or plasma treatment (in air, nitrogen, carbon dioxide, etc.).
By applying this, the conductive layer can be formed more firmly on the film surface. The coating material can be applied by the known air doctor coating method, air knife coating method, dipping method, reverse roll coating method, gravure coating method, kiss coating method, cast coating method, etc.; A coating method is preferred.

塗膜乾燥条件では、特に乾燥温度は塗布後、低温、中温
、高温、低温と温度勾配をつけ、しかも乾燥速度は緩慢
にした方が好ましい。また、熱源は遠赤外線と熱風を併
用した方が好ましい。乾燥温度が高くなるとフィルムが
熱変形し平面性を悪化するので悪影響を及ぼさない範囲
で行なうのが望ましい。塗材濃度は、特に限定されるも
のではないが、塗布性、および導電層の細孔空隙率、表
面粗さなどに悪影響を及ぼさない範囲で行なうのが望ま
しい。
Regarding the coating film drying conditions, it is particularly preferable that the drying temperature is set at a temperature gradient of low temperature, medium temperature, high temperature, and low temperature after coating, and that the drying rate is slow. Further, it is preferable to use far infrared rays and hot air together as the heat source. If the drying temperature is high, the film will be thermally deformed and its flatness will deteriorate, so it is desirable to carry out the drying within a range that does not have any adverse effects. The concentration of the coating material is not particularly limited, but it is preferably within a range that does not adversely affect the coating properties, pore porosity, surface roughness, etc. of the conductive layer.

[評価法コ 本発明の特性値は、次の測定方法、評価基準による。[Evaluation method code] The characteristic values of the present invention are based on the following measurement method and evaluation criteria.

(1)表面固有抵抗 表面固有抵抗が106Ω以上のものは、川口電機製作所
(体製゛′超絶縁計VE−40型″を用いて測定した。
(1) Surface specific resistance Those with a surface specific resistance of 106 Ω or more were measured using a super megohmmeter VE-40 manufactured by Kawaguchi Electric Seisakusho (Tai).

表面固有抵抗値が106Ω未満のものは、開用絶縁計の
電極” P −601型゛′とタケダ理研工業■製DI
GITAL HULTIMETER“’TR−6855
″を用いて測定した。
For those with a surface resistivity value of less than 106 Ω, use the open insulation meter electrode "P-601 type" and Takeda Riken Kogyo's DI.
GITAL HULTIMETER"'TR-6855
''.

〈2)表面粗さRa J l5−8−0601に従って、1.1小坂研究所製
触針弐表面粗さ計ET−10を用いて測定した。なお、
カットオノは0.25mm、測定長は4mmとした。
(2) Surface roughness Ra Measured using a stylus 2 surface roughness meter ET-10 manufactured by Kosaka Institute in accordance with 1.1 J15-8-0601. In addition,
The cut-on was 0.25 mm, and the measurement length was 4 mm.

(3)耐ブロッキング性 導電層のブロッキング性は、JIS−Z−0219に準
じて50℃、80〜90%RH中で荷重500g/l 
2cITfをかけ24時間後のブロッキング性を評価し
た。判定基準は、○:良好、△:やや劣る、X;不良と
した。
(3) Blocking resistance The blocking property of the conductive layer is measured at a load of 500 g/l at 50°C and 80 to 90% RH according to JIS-Z-0219.
2cITf was applied and the blocking property was evaluated after 24 hours. The evaluation criteria were ◯: good, △: slightly poor, and X: poor.

(4〉接着力 導電層/ベースフィルムの接着力は、該導電層上にクロ
スカット(100ケ/ af+ >を入れ、該クロスカ
ット面に対し45°にセロテープ;0丁−24にチバン
■製)を貼ったのち、ハンドローラを用いて約5kaの
加重をかけ、長さ方向(約10cm)に10回往復して
圧着させ、セロテープを手で引き剥し、導電層の剥離度
合を観察し評価した。判定基準はO;良好(剥離面積5
%未1)、△;やや劣る(剥離面積5%以上20%未満
)、X;不良(剥離面積20%以上)とした。
(4> Adhesive force The adhesive force of the conductive layer/base film is determined by making cross cuts (100 pieces/af+) on the conductive layer and using cellophane tape at 45 degrees to the cross cut surface; ), apply a load of approximately 5 ka using a hand roller, press back and forth 10 times in the length direction (approximately 10 cm), peel off the sellotape by hand, and observe and evaluate the degree of peeling of the conductive layer. Judgment criteria were O; good (peeling area 5
% not 1), Δ: Slightly poor (peeled area of 5% or more and less than 20%), X: Poor (peeled area of 20% or more).

(5)耐溶剤性 導電層表面に、有機溶剤として、酢酸エチル、トルエン
、メチルエチルケトン、アセトン、イソプロパツールの
各々について、該溶剤を適度に含浸させた綿棒で2回、
5回、10回(往復回数)こすり表面状態の変化を肉視
及び拡大鏡/または微分干渉顕微鏡で観察し、その表面
変化を未処理品と相対比較し、次のごとく判定した。
(5) Apply each of the organic solvents ethyl acetate, toluene, methyl ethyl ketone, acetone, and isopropanol twice to the surface of the solvent-resistant conductive layer using a cotton swab impregnated with the appropriate solvent.
The changes in surface condition after rubbing 5 times and 10 times (number of reciprocations) were observed visually and with a magnifying glass/or differential interference microscope, and the surface changes were compared relative to the untreated product and judged as follows.

○;導電層が溶解しない。○: The conductive layer does not dissolve.

Δ;導電層がわずか溶解する。Δ: The conductive layer is slightly dissolved.

X:導電層がかなり溶解する。X: The conductive layer is considerably dissolved.

(6)帯電防止性 5HISHID(Il製゛′スタチツクオネストメータ
”S−4104型を用いて測定した。
(6) Antistatic properties Measured using 5HISHID (Static Honest Meter, Model S-4104 manufactured by Il).

判定基準は、O:良好(1秒以下)、△:やヤ劣る(2
〜30秒)、X;不良(30秒以上)とした。
The judgment criteria are O: Good (1 second or less), △: Fairly poor (2 seconds or less).
30 seconds), X: Defective (30 seconds or more).

(7)導電層の細孔空隙率 ゛′ポロシメータ”2000(CARLOERBA製)
を用いて細孔分布特性(累積細孔曲線、ヒストグラム等
)を測定し、次式で求めた。
(7) Pore porosity of conductive layer ``Porosimeter'' 2000 (manufactured by CARLOERBA)
The pore distribution characteristics (cumulative pore curve, histogram, etc.) were measured using the following formula.

空隙率(%)= 導電層IQ゛りの圧入された容L<1o。Porosity (%) = Press-fitted volume L<1o of the conductive layer IQ.

導電層1q当りの体積 尚、導電層1g当りの体積は、次式によって求められる
Volume per 1 q of conductive layer The volume per 1 g of conductive layer is determined by the following equation.

Vm/Q=1/Faxφm 但し、Vmlo : I C1当りの導電層の体積φm
  ;導電層の体積分率 Pa  ;試料の密度 Ta  :試料の厚さ Tf  :ベースフィルムの厚さ (a)vi1気記録媒体の保磁力 試料フィルムに塗布方式で下記組成の磁性材を塗布し、
乾燥して2.5μm厚みの磁性層を形成し磁気記録媒体
とした。この磁気記録媒体の磁気特性を試料撮動型磁力
計で測定し、そのヒステリス曲線から保磁力を求めた。
Vm/Q=1/Faxφm However, Vmlo: Volume of conductive layer per IC1 φm
;Volume fraction Pa of the conductive layer ;Density of the sample Ta :Thickness of the sample Tf :Thickness of the base film (a) Coercive force of the recording medium A magnetic material having the following composition is applied to the sample film by a coating method,
It was dried to form a 2.5 μm thick magnetic layer, which was used as a magnetic recording medium. The magnetic properties of this magnetic recording medium were measured using a sample-capturing magnetometer, and the coercive force was determined from the hysteresis curve.

判定基準は、保磁力が500工ルステツド以上を良好、
500工ルステツド未満を不良とした。
The criteria for judgment is that a coercive force of 500 or more is good;
Less than 500 machining steps were considered defective.

(m性材の組成) ・T−Fe203粉末     68重量部・カーボン
ブラック       7重量部・塩化ビニル−酢酸ビ
ニル− ビニルアルコール共重合体 26重量部・アクリロニト
リル− ブタジェン共重合体     5重量部・ポリイソシア
ネート      2重量部・メチルイソブチルケトン
   75重量部・トルエン          75
重世部(9)磁気記録媒体のドロップアウト ■ 磁気テープ 上記(8)項で作った磁気テープ原反を1/2インチに
マイクロスリットして磁気テープとした。
(Composition of m-type material) - T-Fe203 powder 68 parts by weight - Carbon black 7 parts by weight - Vinyl chloride-vinyl acetate-vinyl alcohol copolymer 26 parts by weight - Acrylonitrile-butadiene copolymer 5 parts by weight - Polyisocyanate 2 Parts by weight/Methyl isobutyl ketone 75 parts by weight/Toluene 75
Heavy World Section (9) Dropout of Magnetic Recording Medium ■Magnetic Tape The original magnetic tape fabricated in item (8) above was micro-slit into 1/2 inch pieces to obtain a magnetic tape.

この磁気テープを家庭用VTR(ヘリカルスキトン)で
連続100時間走行させる。そのテープを40℃で48
時間保持したのち常温にもどしたテープを記録・再生さ
せ、ドロップアウトカウンターを用いて信号出力50%
以下のものを数えた。
This magnetic tape is run continuously for 100 hours on a household VTR (helical skittle). The tape was heated to 48℃ at 40℃.
Record and playback the tape that has been returned to room temperature after being held for a period of time, and use a dropout counter to increase the signal output to 50%.
I counted the following:

なお、測定は1/2インチ幅、780mを1巻として1
0巻の測定を行ない、1巻あたりの個数が2個未満の場
合をドロップアウト:良好、2個以上の場合をドロップ
アウト:不良と判定した。
In addition, the measurement is 1/2 inch width and 780 m as one roll.
Measurement was performed for 0 rolls, and when the number of pieces per roll was less than 2, it was determined that dropout was good, and when there were 2 or more pieces, it was determined that dropout was poor.

■ 磁気ディスク 上記(8)項で作った磁気テープ原反を円盤上に打ち扱
いて直径8インチの磁気ディスクとした。
■Magnetic disk The original magnetic tape prepared in the above (8) was rolled onto a disk to form a magnetic disk with a diameter of 8 inches.

この磁気ディスクをフロッピーディスク駆動装置にかけ
記録・再生し、RF低信号包絡線検波して、選択回路で
波形整形を行ない、単位時間あたりのドロップアウトの
数を測定した。なお、測定はドロップアウトが10個/
分以下が良好である。
This magnetic disk was used for recording and reproduction by a floppy disk drive, RF low signal envelope detection was performed, waveform shaping was performed by a selection circuit, and the number of dropouts per unit time was measured. In addition, the measurement is based on 10 dropouts/
Minutes or less is good.

θ0〉ノイズ(S/N比) 上記(9)項で作った磁気テープ、磁気ディスクを市販
V HS方式VIPにおいて、50%ホワイトベル信号
を最適電流で記録し、再生信号と雑音比を2浦測定器9
25D/1で測定したもので、基準として公知技術のベ
ースフィルムによる市販磁気テープ、磁気ディスクをO
dbとして比較した。判定基準は、−’1.Odb未満
を不良、−1゜Odb以上を良好とした。
θ0〉Noise (S/N ratio) A 50% white bell signal was recorded at the optimum current on the magnetic tape or magnetic disk made in the above (9) on a commercially available VHS system VIP, and the playback signal and noise ratio were Measuring device 9
Measured at 25D/1, using commercially available magnetic tapes and magnetic disks with base films of known technology as standards.
Comparison was made as db. The criterion is -'1. Less than Odb was considered poor, and -1°Odb or more was considered good.

[発明の作用] 本発明は、ポリエステルフィルム上に、金属酸化物微粉
末を含む導電性塗材を用いて、特定の細孔空隙率を有す
る導電層を形成したので、導電層と磁性層が特異な相互
作用を示し、次のような優れた効果を得ることができた
[Operation of the invention] In the present invention, a conductive layer having a specific pore porosity is formed on a polyester film using a conductive coating material containing fine metal oxide powder. They demonstrated a unique interaction and were able to obtain the following excellent effects.

[発明の効果] (1)磁気記録媒体としたとき、ノイズ発生が少ないの
で電磁変換特性(感度、再生出力)に優れたものが得ら
れる。
[Effects of the Invention] (1) When used as a magnetic recording medium, it generates less noise and thus has excellent electromagnetic conversion characteristics (sensitivity, reproduction output).

(2)磁気記録媒体としたとき、記録密度の高いものが
)ワられるので、磁気記録媒体のコンパクト化、及び磁
気記録時間の長時間化がはかれる。
(2) When used as a magnetic recording medium, since the magnetic recording medium has a high recording density, it is possible to make the magnetic recording medium more compact and to lengthen the magnetic recording time.

<3)la磁気記録媒体したとき、静電気防止性が優れ
、しかも外部の温度や湿度の影響をうけずに、長時間に
わたって安定して得られるので付着塵埃等によるドロッ
プアウトが少ない。
<3) When used as a la magnetic recording medium, it has excellent anti-static properties and can be stably obtained over a long period of time without being affected by external temperature or humidity, resulting in less dropouts due to attached dust.

(4)磁気記録媒体を製造するとき、磁性層が導電層上
に強固に形成され、しかも磁性層表面が平滑となるので
、磁気記録媒体としたとき、電磁変換特性に優れ、ドロ
ップアウトが少ないものとなる。
(4) When manufacturing magnetic recording media, the magnetic layer is firmly formed on the conductive layer, and the surface of the magnetic layer is smooth, so when used as a magnetic recording medium, it has excellent electromagnetic conversion characteristics and fewer dropouts. Become something.

[発明品の用途] 本発明の磁気記録媒体用ベースフィルムは、コンピュー
ター、オーディオ、ビデオ、計測用等に使用されている
磁気テープ、磁気ディスク、磁気カードなどの磁気記録
媒体用ベースフィルムに適用できるが、特に磁気ディス
ク用として用いるのが好ましい。
[Applications of the invention] The base film for magnetic recording media of the present invention can be applied to base films for magnetic recording media such as magnetic tapes, magnetic disks, and magnetic cards used for computers, audio, video, measurement, etc. However, it is particularly preferable to use it for magnetic disks.

[実施例] 次に、実施例にもとづいて本発明の実施態様を説明する
[Example] Next, embodiments of the present invention will be described based on Examples.

実施例1 常法によって製造されたポリエチレンテレフタレートの
ホモポリマーベレット(固有粘度0.62、融点259
℃)を180℃で2時間減圧乾燥(3mmHg)シた。
Example 1 A homopolymer pellet of polyethylene terephthalate (intrinsic viscosity 0.62, melting point 259) produced by a conventional method
°C) was dried under reduced pressure (3 mmHg) at 180 °C for 2 hours.

このチップを280℃で圧縮比3.8のスクリューを有
した押出機に供給し、Tを口金からシート状にして溶融
押出し、静電印加法を用いて表面温度20℃の冷却ドラ
ムに巻きつけて冷却固化せしめ、未延伸フィルムを得た
This chip was fed to an extruder equipped with a screw with a compression ratio of 3.8 at 280°C, and the T was melt-extruded from the die into a sheet, and wound around a cooling drum with a surface temperature of 20°C using an electrostatic application method. The mixture was cooled and solidified to obtain an unstretched film.

次に、該フィルムを90℃でロール延伸法によって長手
方向に3.3倍延伸した後、テンター延伸法によって幅
方向に3.5倍延伸し、220℃で5秒間熱処理をして
厚さ33μmの、二軸配向フィルムを得た。
Next, the film was stretched 3.3 times in the longitudinal direction by a roll stretching method at 90°C, then 3.5 times in the width direction by a tenter stretching method, and heat treated at 220°C for 5 seconds to a thickness of 33 μm. A biaxially oriented film was obtained.

次に、トルエン/メチルイソブチルケトン/シクロヘキ
サノン(混合比: 3/3/4)を溶媒とし、これにア
ンチモンを7重量%ドープさせた平均粒子径0.18μ
mの酸化スズからなる金属酸化物微粉末゛エルコム″(
触媒化成■製)と、アクリルウレタン樹脂からなるバイ
ンダーを重量固型分比60:40とし、さらに硬化剤と
してバインダーの固形分当り10重量部のへキサメチレ
ンジイソシアネートを添加した組成で均一分散させ、濃
度15重間%の塗材を作った。この塗材を前記二軸配向
フィルムの両面にリバースコート法で塗布し、塗膜を5
0〜120’Cで乾燥させ、各面の導電層厚みが1.0
μmの導電性フィルムを得た。
Next, toluene/methyl isobutyl ketone/cyclohexanone (mixing ratio: 3/3/4) was used as a solvent, and antimony was doped at 7% by weight to form particles with an average particle diameter of 0.18μ.
Fine metal oxide powder "ELCOM" (
(manufactured by Catalyst Kasei ■) and a binder made of acrylic urethane resin at a weight solids ratio of 60:40, and further added with 10 parts by weight of hexamethylene diisocyanate per solid content of the binder as a curing agent, and uniformly dispersed. A coating material with a concentration of 15% by weight was made. This coating material was applied to both sides of the biaxially oriented film using a reverse coating method to form a coating film of 5.
Dry at 0-120'C, conductive layer thickness on each side is 1.0
A µm conductive film was obtained.

かくして得られた導電層の細孔空隙率は6%、表面粗さ
は0.007μm、表面固有抵抗は6X106Ωでめっ
た。さらに導電層は、接着性、耐溶剤性、耐ブロッキン
グ性、帯電防止性が共に優れているものであった。この
フィルムを磁気テープとしたときの特性は表1に示した
とおりで、ノイズ発生が少なく、保磁力、ドロップアウ
トが共に良好なものであった。
The conductive layer thus obtained had a pore porosity of 6%, a surface roughness of 0.007 μm, and a surface resistivity of 6×10 6 Ω. Furthermore, the conductive layer had excellent adhesiveness, solvent resistance, blocking resistance, and antistatic property. The properties of this film when used as a magnetic tape are shown in Table 1, with little noise generation and good coercive force and dropout.

実施例2、比較例1〜2 実施例1と同じ二軸配向フィルムを使って、該フィルム
に実施例1にもとづいて、若干、塗材(粒子径)、塗布
条件等を変更し、導電層の細孔空隙率をかえたフィルム
を作った。
Example 2, Comparative Examples 1 to 2 Using the same biaxially oriented film as in Example 1, a conductive layer was formed on the film by slightly changing the coating material (particle size), coating conditions, etc. based on Example 1. We created films with different pore porosity.

これらのフィルムを磁気記録媒体としたときの特性を表
1に示した。フィルム特性が本発明の範囲内におる場合
(実施例2)には、ノイズ発生が少なく、保磁力、ドロ
ップアウトが共に良好な磁気テープが得られた。しかし
、本発明外である場合(比較例1,2)では、ノイズ発
生の少ない磁気テープは得られなかった。
Table 1 shows the properties of these films when used as magnetic recording media. When the film properties were within the range of the present invention (Example 2), a magnetic tape with little noise generation and good coercive force and dropout was obtained. However, in cases outside the invention (Comparative Examples 1 and 2), magnetic tapes with less noise generation could not be obtained.

実施例3 実施例1と同じ原料ポリマを使って、製膜条件を変更し
て配向バランスの良い厚さ75μmの二軸延伸フィルム
を1qだ。次に、該フィルムの両面に実施例1と同じ導
電塗材を同手法で塗布し、厚さ0.9μmの導電層を形
成した。このフィルムの細孔空隙率は7%、表面粗さは
o、oosμm、表面固有抵抗は8X106Ωであった
。゛ざらに導電層は、接着性、耐溶剤性、耐ブロッキン
グ性、帯電防止性に優れていた。このフィルムを磁気デ
ィスクとした時の特性は表1に示したとおりで、ノイズ
発生が少なく、保磁力、ドロップアウトともに良好であ
った。
Example 3 Using the same raw material polymer as in Example 1 but changing the film forming conditions, 1q of biaxially stretched film with a thickness of 75 μm with good orientation balance was produced. Next, the same conductive coating material as in Example 1 was applied to both sides of the film using the same method to form a conductive layer having a thickness of 0.9 μm. The pore porosity of this film was 7%, the surface roughness was o, oos μm, and the surface resistivity was 8×10 6 Ω. In general, the conductive layer had excellent adhesiveness, solvent resistance, blocking resistance, and antistatic properties. The properties of this film when used as a magnetic disk are shown in Table 1, with little noise generation and good coercive force and dropout.

Claims (4)

【特許請求の範囲】[Claims] (1)ポリエステルフィルムの両面に、金属酸化物微粉
末を主成分とする導電体と有機高分子バインダーの混合
体からなる導電層を設け、少なくとも一方の導電層の表
面に磁気記録層を積層した磁気記録媒体であって、該導
電層は細孔空隙率が15%以下であることを特徴とする
磁気記録媒体用フィルム。
(1) Conductive layers made of a mixture of a conductor mainly composed of fine metal oxide powder and an organic polymer binder were provided on both sides of the polyester film, and a magnetic recording layer was laminated on the surface of at least one of the conductive layers. 1. A film for a magnetic recording medium, wherein the conductive layer has a pore porosity of 15% or less.
(2)金属酸化物微粉末が酸化スズ、酸化アンチモン、
酸化インジウム、酸化亜鉛、酸化ビスマスから選ばれた
少なくとも一種であって、平均粒子径が0.5μm以下
であることを特徴とする特許請求の範囲第(1)項記載
の磁気記録媒体用フィルム。
(2) Metal oxide fine powder is tin oxide, antimony oxide,
The film for magnetic recording media according to claim 1, characterized in that the film is at least one selected from indium oxide, zinc oxide, and bismuth oxide, and has an average particle size of 0.5 μm or less.
(3)導電層の表面粗さ(Ra)が0.015μm以下
であることを特徴とする特許請求の範囲第(1)項記載
の磁気記録媒体用フィルム。
(3) The film for magnetic recording media according to claim (1), wherein the conductive layer has a surface roughness (Ra) of 0.015 μm or less.
(4)導電層の表面固有抵抗が10^5〜10^9Ωで
あることを特徴とする特許請求の範囲第(1)項記載の
磁気記録媒体用フィルム。
(4) The film for magnetic recording media according to claim (1), wherein the conductive layer has a surface resistivity of 10^5 to 10^9 Ω.
JP31350787A 1987-12-10 1987-12-10 Film for magnetic recording medium Pending JPH01154317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31350787A JPH01154317A (en) 1987-12-10 1987-12-10 Film for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31350787A JPH01154317A (en) 1987-12-10 1987-12-10 Film for magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01154317A true JPH01154317A (en) 1989-06-16

Family

ID=18042141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31350787A Pending JPH01154317A (en) 1987-12-10 1987-12-10 Film for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01154317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742204A1 (en) * 2005-07-04 2007-01-10 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2016500733A (en) * 2012-10-26 2016-01-14 ビーワイディー カンパニー リミテッド COATING COMPOSITION, COMPOSITE MATERIAL PREPARED BY USING THE COATING COMPOSITION, AND METHOD FOR PREPARING THE SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742204A1 (en) * 2005-07-04 2007-01-10 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2016500733A (en) * 2012-10-26 2016-01-14 ビーワイディー カンパニー リミテッド COATING COMPOSITION, COMPOSITE MATERIAL PREPARED BY USING THE COATING COMPOSITION, AND METHOD FOR PREPARING THE SAME
EP2912211A4 (en) * 2012-10-26 2016-11-23 Byd Co Ltd Coating composition, composite prepared by using the coating composition and method for preparing the same
US10085351B2 (en) 2012-10-26 2018-09-25 Byd Company Limited Coating composition, composite prepared by using the coating composition and method for preparing the same

Similar Documents

Publication Publication Date Title
JP3359813B2 (en) Laminated biaxially oriented polyester film
US4780366A (en) Magnetic recording medium for image recording
JP3920008B2 (en) Laminated biaxially oriented polyester film
US5532049A (en) Magnetic recording medium having a calendered polyester layer with a specified deformation ratio
JP3056575B2 (en) Polyethylene-2,6-naphthalate film
JP3923176B2 (en) Laminated biaxially oriented polyester film
JPH01154317A (en) Film for magnetic recording medium
JPH05189747A (en) Base film for digital compact cassette
JPH0766520B2 (en) Magnetic recording medium
JP2723213B2 (en) Film for magnetic recording media
JP3056574B2 (en) Base film for magnetic recording tape
JPH0680525B2 (en) Magnetic recording tape
JP2705398B2 (en) Biaxially oriented laminated film
JP3945839B2 (en) Laminated biaxially oriented polyester film
JP3053950B2 (en) Magnetic recording tape
JP3373043B2 (en) Magnetic tape cassette
JP2581582B2 (en) Magnetic recording media
JPS60150230A (en) Magnetic recording body
JP3211363B2 (en) Laminated polyethylene-2,6-naphthalate film
JP3147544B2 (en) Biaxially oriented laminated polyester film
JP3584127B2 (en) Magnetic recording tape
JP4169389B2 (en) Laminated polyester film
JPS6113429A (en) Magnetic recording medium
JPS62240549A (en) Laminated polyester film
JP2002225198A (en) Biaxially oriented laminated thermoplastic resin film