JPH01154129A - Image forming medium - Google Patents

Image forming medium

Info

Publication number
JPH01154129A
JPH01154129A JP31214687A JP31214687A JPH01154129A JP H01154129 A JPH01154129 A JP H01154129A JP 31214687 A JP31214687 A JP 31214687A JP 31214687 A JP31214687 A JP 31214687A JP H01154129 A JPH01154129 A JP H01154129A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
scattering
polymer liquid
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31214687A
Other languages
Japanese (ja)
Inventor
Akihiro Mori
明広 毛利
Kazuo Isaka
井阪 和夫
Shuzo Kaneko
金子 修三
Kazuo Yoshinaga
和夫 吉永
Toshiichi Onishi
敏一 大西
Yoshi Toshida
土志田 嘉
Yutaka Kurabayashi
豊 倉林
Gakuo Eguchi
江口 岳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31214687A priority Critical patent/JPH01154129A/en
Priority to DE3855346T priority patent/DE3855346T2/en
Priority to EP88120652A priority patent/EP0320011B1/en
Publication of JPH01154129A publication Critical patent/JPH01154129A/en
Priority to US07/535,978 priority patent/US5059000A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/132Thermal activation of liquid crystals exhibiting a thermo-optic effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To intensify the scattering of light and to increase contrast so that an image having good visibility is obtd. with an image forming medium for which a high-polymer liquid crystal 1 is used by adding one kind of fluorescent agent into the high-polymer liquid crystal compsn. CONSTITUTION:The high-polymer liquid crystal into which the fluorescent agent 3 is incorporated is coated on a substrate 1 to form the high-polymer liquid crystal layer 2 which is a stable optical scattering film. The light projected to the high-polymer liquid crystal layer 2 is absorbed by the fluorescent brightening dye 3 in a scattering state 301 and the light having the wavelength longer than the wavelength of the absorbed light is emitted. The light which is not absorbed is scattered to form the scattered light. Namely, not only the scattered light but the individual fluorescent brightening dyes 3 emit light to improve the efficiency of scattering in the scattering state. On the other hand, the optical scattering film forms an amorphous state 302 and acts to transmit or scatter the light when said film is heated to the transparent point of the high-polymer liquid crystal or above. The scattering of the light is thereby intensified and the contrast is improved by the emitted light. The image having the good visibility is thus formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、像形成媒体に関し、特に高分子液晶性化合物
を含有する高分子液晶層を有する像形成媒体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an image forming medium, and particularly to an image forming medium having a polymer liquid crystal layer containing a polymer liquid crystal compound.

[従来の技術] 従来、テレビやVTRによる動画出力やコンピューター
との対話作業における出力は、CRTやTN(ツィステ
ッドネマチック)液晶等のデイスプレィモニターに表示
され、またワードプロセットサーやファクシミリ等によ
る文書9図形等の高精細画像は、ハードコピーとして紙
に出力表示されてきた。
[Prior Art] Conventionally, video output from a television or VTR or output from interaction with a computer is displayed on a display monitor such as a CRT or TN (twisted nematic) liquid crystal display, and is also displayed on a word processor, facsimile, etc. High-definition images such as document 9 graphics have been output and displayed on paper as hard copies.

ところで、CRTは上記の動画出力に対しては美しい画
像を出力するが、長時間静止した画像に対してはフリッ
カや解像度不足による走査績等が視認性を低下させる。
Incidentally, although a CRT outputs a beautiful image when outputting a moving image, the visibility of an image that remains stationary for a long period of time is degraded due to flicker and scan results due to insufficient resolution.

また上記のTN液晶等の従来の液晶デイスプレィにおい
ては装置の薄型化を実現してはいるが、ガラス基板に液
晶をサンドイッチする等の作製上の手間や、画面が暗い
等の問題点があった。
Furthermore, although conventional liquid crystal displays such as the above-mentioned TN liquid crystal have achieved thinner devices, they have had problems such as the labor involved in manufacturing them, such as sandwiching the liquid crystal between glass substrates, and the screen being dark. .

さらに、CRTやTN液晶では上記した静止画像の出力
中においても安定した画像メモリーがないために、常に
ビームや画素電圧をアクセスしていなければならない等
の欠点がある。
Furthermore, CRTs and TN liquid crystals have drawbacks such as the fact that they do not have a stable image memory even while outputting the above-mentioned still image, so the beam and pixel voltage must be constantly accessed.

これに対してペーパーに出力された画像は高精細に、ま
た安定したメモリー画像として得られるが、これを多く
使用すると整理にスペースを要し、また大量に廃棄する
ことによる資源の無駄使いも馬鹿にならない等の問題点
がある。
On the other hand, images output on paper can be obtained as high-definition and stable memory images, but if you use a large number of them, it takes space to organize them, and it is also a waste of resources to discard large quantities. There are problems such as not being able to do so.

一方、写真、 TV両画像 VTR画像9文書、データ
類など各種の情報は近年ますます増大し、これらの伝達
、蓄積、加工のための各種要素技術及びシステム化の開
発が行なわれている。その中で、−般に情報蓄積のため
ICメモリー、磁気テープ、磁気ディスク等のメモリー
が使用されている。しかしながら、膨大な情報量に対応
するという点から、また、画像情報の蓄積という点から
大容量メモリーが必要とされ、この点から、特に光メモ
リ−、例えば光カード、光ディスク、光テープ等におけ
る高密度、大容量という点が注目されている。
On the other hand, various types of information such as photographs, TV images, VTR images,9 documents, and data have been increasing in recent years, and various elemental technologies and systems for transmitting, storing, and processing this information are being developed. Among these, memories such as IC memories, magnetic tapes, and magnetic disks are generally used for information storage. However, large-capacity memory is required in order to handle huge amounts of information and to store image information, and from this point of view, high-density memory is required, especially in optical memories, such as optical cards, optical disks, and optical tapes. , is attracting attention because of its large capacity.

この光メモリーにおいては、ROM型、 DRaW型の
ものが一般的であるが、現在では書き換え型のメモリー
に対する要求から、スピロピラン等のフォトクロミック
材料を使用したものや、液晶を用いた像形成媒体が使わ
れている。
ROM type and DRaW type optical memories are common, but due to the current demand for rewritable memories, image forming media using photochromic materials such as spiropyran and liquid crystals are being used. It is being said.

[発明が解決しようとする問題点] メモリーやデイスプレィ等に使用されている液晶を用い
た像形成媒体は、高速応答性等の要求に応じるために低
分子液晶が多く用いられている。
[Problems to be Solved by the Invention] In image forming media using liquid crystals used in memories, displays, etc., low-molecular liquid crystals are often used to meet requirements such as high-speed response.

しかしながら、近年、大画面デイスプレィの要望や液晶
素子の実装の簡素化などの点から、高分子液晶性化合物
と低分子液晶性化合物との混合系。
However, in recent years, due to the demand for large-screen displays and the simplification of mounting liquid crystal elements, mixed systems of high-molecular liquid crystal compounds and low-molecular liquid crystal compounds have been developed.

あるいは高分子液晶系など、いわゆる高分子液晶組成物
を用いた像形成媒体の検討が行なわれている。この様な
高分子液晶組成物を用いることは、溶液塗布等により成
膜化することが可能であり、また液晶素子の大面積化が
実現できる上に薄膜化、膜厚制御が容易なため、従来低
分子液晶で行なわれているセル基板間のギャップ制御な
どの難点が解消される、等の点で有効である。
Alternatively, image forming media using so-called polymer liquid crystal compositions, such as polymer liquid crystal systems, are being investigated. By using such a polymeric liquid crystal composition, it is possible to form a film by solution coating, etc., and it is possible to realize a large area of the liquid crystal element, and it is easy to reduce the film thickness and control the film thickness. This method is effective in that it solves problems such as gap control between cell substrates, which has conventionally been done with low-molecular-weight liquid crystals.

しかしながら、高分子液晶を用いた像形成媒体において
は、光の散乱が強くないため、コントラストが低くなり
、像の視認性が良くないという欠点があった・ 本発明は、光の散乱を強くするとともに、その発光によ
りコントラストを向上させ、視認性の良い像を形成する
ことが可能な像形成媒体を提供することを目的とする。
However, image forming media using polymeric liquid crystals do not have strong light scattering, resulting in low contrast and poor image visibility. Another object of the present invention is to provide an image forming medium that can improve contrast by emitting light and form an image with good visibility.

[問題点を解決するための手段] 本発明による像形成媒体は、少なくとも1種類の高分子
液晶性化合物を有する高分子液晶組成物からなる液晶層
と、この高分子液晶組成物中に少なくとも1種類の蛍光
剤を含有させることを特徴とする。
[Means for Solving the Problems] The image forming medium according to the present invention includes a liquid crystal layer made of a polymeric liquid crystal composition having at least one polymeric liquid crystal compound, and at least one polymeric liquid crystal compound in the polymeric liquid crystal composition. It is characterized by containing different kinds of fluorescent agents.

前記の要求に応じる高分子液晶として、最適にはサーモ
トロピック液晶性でネマティック相、スメクティック相
、コレステリック相等を示す材料を用いることができる
。この例としては1例えばメタクリル酸ポリマーやシロ
キサンポリマー等を主鎖とした低分子液晶をペンダント
状に付加したいわゆる側鎖型高分子液晶、また、高強度
高弾性耐熱性繊維や樹脂の分野で用いられているポリエ
ステル系又はポリアミド系等の主鎖型高分子液晶等であ
る。また、その他ディスコティック液晶等も用いうる。
As a polymeric liquid crystal that meets the above requirements, it is best to use a material that has thermotropic liquid crystal properties and exhibits a nematic phase, a smectic phase, a cholesteric phase, or the like. Examples of this include 1) so-called side-chain polymer liquid crystals in which low-molecular liquid crystals with main chains of methacrylic acid polymers, siloxane polymers, etc. Main chain polymer liquid crystals such as polyester-based or polyamide-based liquid crystals are used. In addition, discotic liquid crystals and the like may also be used.

さらに高分子液晶中に不斉炭素を導入して、5rsC”
を示す相を有し、強誘電性を示す高分子液晶も好ましく
用いうる。
Furthermore, by introducing asymmetric carbon into the polymer liquid crystal, 5rsC"
A polymer liquid crystal having a phase exhibiting ferroelectricity can also be preferably used.

[作 用] 以下、高分子液晶の具体的な一例として、下記構造式(
I)により表わされる液晶を用いて、本発明の基本構成
を更に詳しく説明する。
[Function] Hereinafter, as a specific example of polymer liquid crystal, the following structural formula (
The basic configuration of the present invention will be explained in more detail using the liquid crystal represented by I).

HH OHHO %v=9,000 〜10,000 前記高分子液晶をジクロロエタンにより溶解し、これを
アルコール洗浄を施したポリエステル系透明基体上にア
プリケーターにより塗布した。
HH OHHO %v=9,000 to 10,000 The polymer liquid crystal was dissolved in dichloroethane, and the solution was applied using an applicator onto a polyester transparent substrate that had been washed with alcohol.

その後、95°C雰囲気中に10分間放置したところ白
色の散乱膜が形成された。この膜厚は高分子液晶の重量
%が20%の場合において10gm強のものが得られて
いる。
Thereafter, when it was left in a 95°C atmosphere for 10 minutes, a white scattering film was formed. This film thickness was over 10 gm when the weight percent of the polymer liquid crystal was 20%.

このようにして得られた白色シート上を感熱ヘッドで走
査したところ、文字9図形パターンに従って透明部分が
固定された。このシートを黒色パックグラウンド上に導
くと、白地に黒の鮮明な表示が得られている。
When the thus obtained white sheet was scanned with a thermal head, the transparent portion was fixed according to the 9-character graphic pattern. When this sheet was introduced onto a black background, a clear black display on a white background was obtained.

また、通常のオーバーへッドブロジェクタ上に上記シー
トを導いたところ、文字、パターン部が白く投影される
鮮明なネガ投影像が得られた。
Furthermore, when the sheet was introduced onto a normal overhead projector, a clear negative projected image in which the characters and pattern portions were projected in white was obtained.

次に上記パターンが記録されたシートの全面を約120
°Cにまで加熱し、その後約90°Cで数秒保ったとこ
ろ、元の白色散乱状態に全面が復帰し、このまま常温に
戻しても安定であり、再度の記録。
Next, the entire surface of the sheet on which the above pattern was recorded is
When heated to 90°C and then held at approximately 90°C for a few seconds, the entire surface returned to its original white scattering state, and it remained stable even if returned to room temperature, and was recorded again.

表示がなされ得ている。The display has been made.

上記の現象は、前記高分子液晶が安定したメモリー状態
を維持するガラス転移点以下におけるフィルム状態、実
質的に光学的散乱状態に推移することのできる液晶フィ
ルム状態、およびこれより高温で等吉凶配列となる等方
性フィルム状態の3状態をとり得ることに起因して制御
することができる。
The above phenomenon occurs in a film state below the glass transition point in which the polymeric liquid crystal maintains a stable memory state, in a liquid crystal film state in which it can substantially transition to an optically scattering state, and in a film state in which the polymer liquid crystal maintains a stable memory state; It can be controlled because it can take three isotropic film states.

前記高分子液晶を用いた像形成媒体を表示に用いた場合
は、長時間静止した画像に対してフリッカがなく、また
高解像度であり視認性が良いだけでなく、そのメモリー
性のため長時間安定した画像を提供することが可能であ
る。さらに、光学的散乱状態を使用することで、白地つ
まり紙のような出力表示媒体として使用することができ
るばかりでなく、繰り返し使用も可能であるため、紙の
ように大量に廃棄することがない利点を有している。
When an image forming medium using polymeric liquid crystal is used for display, there is no flicker for images that remain stationary for a long time, and not only does it have high resolution and good visibility, but its memory property allows it to be used for long periods of time. It is possible to provide stable images. Furthermore, by using an optical scattering state, not only can it be used as an output display medium like white paper, but it can also be used repeatedly, so there is no need to discard large quantities like paper. It has advantages.

一方、高分子液晶を用いた像形成媒体はメモリーにおい
ても大容量で、書き換えが可能であること、更にガラス
転移点以下においては安定したメモリー状態を維持する
ことができる特徴を有している。
On the other hand, image forming media using polymeric liquid crystals have a large memory capacity, are rewritable, and can maintain a stable memory state below the glass transition temperature.

前記高分子液晶を用いた像形成媒体においては、前記の
特徴だけでなく、更にコントラストの増大が望まれてお
り、例えば表示媒体としては透明と散乱(白色状態)と
の差の増大が高視認性の重要点となる。
In addition to the above-mentioned characteristics, an image forming medium using the polymer liquid crystal is desired to have an increased contrast. For example, as a display medium, an increase in the difference between transparency and scattering (white state) is desirable for high visibility. It becomes an important point of gender.

またメモリーにおいては、ビットの有無を光学濃度の差
で検出しているため、光学濃度の差の増大が望まれてい
る。これにより、ビットの有無の読み取りが簡単になる
ばかりでなく、誤りのない安定した読み取りが行なえる
という利点が得られる。
Furthermore, in a memory, the presence or absence of a bit is detected by the difference in optical density, so it is desired to increase the difference in optical density. This not only simplifies reading of the presence or absence of a bit, but also provides the advantage of being able to perform error-free and stable reading.

[実施例] 以下1本発明を実施例を挙げて詳細に説明するが、本発
明はこれに限定されるものではない。
[Example] Hereinafter, the present invention will be explained in detail with reference to an example, but the present invention is not limited thereto.

実施例1 第1図は、基体上に蛍光剤(蛍光増白染料)が含有され
ている高分子液晶を塗布した像形成媒体の模式断面図で
ある。基体lは厚さ100JLIIのPET  (ポリ
エチレンテレフタレート)である、前記基体に、前記構
造式(I)に示した高分子液晶をジクロロエタンに溶解
し、蛍光剤3を混合した溶液を塗布する。この時、高分
子液晶濃度は、総重量に対して10〜20wt%が望ま
しい。また、蛍光増白染料添加量は塗布に悪影響を及ぼ
さない範囲で添加し、高分子液晶の量に対して0.01
wt%〜25wt%が望ましい。
Example 1 FIG. 1 is a schematic cross-sectional view of an image forming medium in which a polymeric liquid crystal containing a fluorescent agent (fluorescent whitening dye) is coated on a substrate. The substrate 1 is made of PET (polyethylene terephthalate) having a thickness of 100 JLII.A solution in which the liquid crystal polymer shown in the structural formula (I) is dissolved in dichloroethane and the fluorescent agent 3 is mixed therein is applied to the substrate. At this time, the polymer liquid crystal concentration is preferably 10 to 20 wt% based on the total weight. In addition, the amount of fluorescent whitening dye added should be within the range that does not adversely affect the coating, and should be 0.01% relative to the amount of polymer liquid crystal.
Wt% to 25wt% is desirable.

前記溶液の塗布手段としては、スピンコード、ディッピ
ング、ワイヤーバー、アプリケーターを用いたもの、あ
るいはスクリーン印刷等の印刷手段を用いることができ
る。
As a means for applying the solution, a method using a spin cord, dipping, a wire bar, an applicator, or a printing method such as screen printing can be used.

このようにして溶液を基体に塗布し、前記溶媒を揮発せ
しめる過程あるいは揮発せしめた後に液晶温度(80〜
110°C)に一定時間保つことにより、安定した光学
散乱膜である高分子液晶層2が形成される。ここで蛍光
増白染料3について詳しく述べると、蛍光増白染料3と
しては、スチルベン型、ジアミノジフェニル型、イミダ
ゾール、イミダシロン、トリアゾール型、チアゾール、
オキサゾール型、クマリン、カルボスチリル型、ナフタ
ールイミド型等を用いることができる。蛍光増白染料3
は、総重量に対して0.01〜10wt%含まれる。
In this way, the solution is applied to the substrate, and the liquid crystal temperature (80 to 80
By maintaining the temperature at 110° C. for a certain period of time, a polymer liquid crystal layer 2, which is a stable optical scattering film, is formed. Here, to describe the fluorescent whitening dye 3 in detail, the fluorescent whitening dye 3 includes stilbene type, diaminodiphenyl type, imidazole, imidasilone, triazole type, thiazole,
Oxazole type, coumarin, carbostyryl type, naphthalimide type, etc. can be used. Fluorescent whitening dye 3
is contained in an amount of 0.01 to 10 wt% based on the total weight.

高分子液晶層に照射された光(図中矢印)は、散乱状態
301においては蛍光増白染料3に吸収され、吸収光よ
りも波長の長い光を出し、吸収されない光は散乱されて
散乱光となる。すなわち、散乱状態においては、散乱光
だけでなく個々の蛍光増白染料3が発光し、散乱の効率
を向上させる。
In the scattering state 301, the light irradiated onto the polymer liquid crystal layer (arrow in the figure) is absorbed by the fluorescent whitening dye 3 and emits light with a longer wavelength than the absorbed light, and the unabsorbed light is scattered and becomes scattered light. becomes. That is, in the scattering state, not only the scattered light but also the individual fluorescent whitening dyes 3 emit light, improving the scattering efficiency.

一方、前記の如く形成された光学散乱膜は、前記高分子
液晶のTcj)  (透明点)以上に加熱することによ
り、非晶質状態(等方状態)302を形成する。この非
晶質状態は、光に対し透過状態となる。また、加熱後、
高分子液晶のTg(ガラス転移温度)以下に急速冷却す
ることにより、前記透明状態が保持される。
On the other hand, the optical scattering film formed as described above forms an amorphous state (isotropic state) 302 by heating above the Tcj) (clearing point) of the polymer liquid crystal. This amorphous state is transparent to light. Also, after heating,
The transparent state is maintained by rapidly cooling the liquid crystal to a temperature below the Tg (glass transition temperature) of the polymer liquid crystal.

更にTc1以上に加熱した後、液晶温度において保持・
冷却することにより、再び散乱状態が形成され、7g以
下において散乱状態が固定される。
After further heating to Tc1 or higher, the temperature is maintained at the liquid crystal temperature.
By cooling, a scattering state is formed again, and the scattering state is fixed at 7 g or less.

透明状態においては、光は透過するかもしくは蛍光増白
染料に吸収され発光する。この発光は透明状態を通過す
る。更に層中を進んだ光は、散乱状態との境界部におい
て散乱するために、境界部においては特に光量が増し、
透明・散乱境界が明確となる。
In the transparent state, light is transmitted or absorbed by the fluorescent whitening dye and emits light. This emission passes through the transparent state. Furthermore, the light that has traveled through the layer is scattered at the boundary with the scattering state, so the amount of light increases especially at the boundary.
The transparent/scattering boundary becomes clear.

実施例2 高分子液晶に添加剤である蛍光増白顔料を、前記実施例
1と同様に添加し、光学散乱膜を形成した。蛍光増白顔
料としては、前記実施例に示した各種染料をアクリル、
塩化ビニル、アルキド、ユリア、メラミン、ペンゾクア
ナミン等の樹脂中に溶解させ、粒径1pm以下の微粒子
粉体にしたものである。L記顔料を用いると、前記実施
例1のごとく発光により散乱が増し、コントラストが向
上するばかりでなく、更に顔料自体により光散乱効果を
得ることができ、更に高いコントラストを得る特徴があ
る。
Example 2 A fluorescent whitening pigment as an additive was added to a polymeric liquid crystal in the same manner as in Example 1 to form an optical scattering film. As fluorescent whitening pigments, the various dyes shown in the above examples can be used as acrylic,
It is dissolved in a resin such as vinyl chloride, alkyd, urea, melamine, penzoquanamine, etc., and made into a fine powder with a particle size of 1 pm or less. When the L pigment is used, as in Example 1, scattering is increased due to light emission, and contrast is not only improved, but also the pigment itself can provide a light scattering effect, resulting in an even higher contrast.

尚、前記実施例1においては、基体としてPET(ポリ
エチレンテレツクレート)を用いたが、ポリイミド等の
樹脂あるいは樹脂膜、ガラス、アルミニウム等の金属や
合金等を用いても良く、光に対し透過基体であっても反
射基体であっても良いし、黒色等に着色していても良い
。厚さ100 p、mとしたが、これに限定されるもの
ではない。
In Example 1, PET (polyethylene terephthalate) was used as the substrate, but resins such as polyimide or resin films, glass, metals such as aluminum, alloys, etc. may also be used, and the substrate is transparent to light. It may be a reflective substrate, or it may be colored black or the like. Although the thickness is 100 p and 100 m, the thickness is not limited to this.

本発明に使用しうる高分子液晶は、前記構造式(I)で
示したものの他に多数合成作成しうる。
A large number of polymeric liquid crystals that can be used in the present invention can be synthesized in addition to those shown in the structural formula (I).

以下にその他の例として数種挙げるが、これらに限定さ
れるものではない。
Several other examples are listed below, but the invention is not limited to these.

(CH2−CH)n ■ ?H3 4CH2−C)n また、これらを塗布成膜するための溶媒としては、前記
したジグロロエタン、INF、シクロヘキサン等の他、
テトラヒドロフラン(THF)  、アセトン、エタノ
ールその他の極性、又は非極性溶媒、或いはこれらの混
合溶媒が使用され、これらは使用する高分子液晶との溶
解性並びにこれを塗工する基体の材質または基体の表面
に設けた表面層との濡れ性、成膜性等の要因によって選
択しうるは言うまない。
(CH2-CH)n ■? H3 4CH2-C)n In addition to the above-mentioned digloroethane, INF, cyclohexane, etc., solvents for coating and forming these films include
Tetrahydrofuran (THF), acetone, ethanol, other polar or non-polar solvents, or mixed solvents of these are used, and these vary depending on their solubility with the polymer liquid crystal used and the material or surface of the substrate to which it is coated. Needless to say, the material may be selected depending on factors such as wettability with the surface layer provided on the surface layer and film formability.

更に蛍光剤としては、蛍光増白染料、顔料を挙げたが、
前記と同様の効果があるならばこれらに限定されるもの
ではない。また複数種の蛍光剤をもちいても良い。さら
に、散乱状態を調整するための増核剤等と同時に添加す
ることもできる。また、前記蛍光剤を含んだ層を別に薄
層として設けてもよい。
Furthermore, as fluorescent agents, fluorescent whitening dyes and pigments were mentioned, but
It is not limited to these as long as it has the same effect as above. Also, multiple types of fluorescent agents may be used. Furthermore, a nucleating agent or the like can be added at the same time to adjust the scattering state. Further, the layer containing the fluorescent agent may be provided as a separate thin layer.

前記蛍光増白染料及び顔料粒子の種類9粒径。Types and particle sizes of the fluorescent whitening dye and pigment particles.

重量比等は、光源の明るさ2発光波長、配置、光源と像
形成媒体との距離等の条件によって決められる。
The weight ratio and the like are determined by conditions such as the brightness of the light source, the emission wavelength, the arrangement, and the distance between the light source and the image forming medium.

また、前記光源としては、可視光だけでなく紫外光を含
むものを用い照射することが好ましい。
Further, it is preferable that the light source includes not only visible light but also ultraviolet light for irradiation.

これにより前記蛍光剤の効果を増すことができる。This can increase the effect of the fluorescent agent.

また、前記像形成媒体は基体上に塗布されているが、溶
媒揮発後に基体を取りのぞき、単一層構造としても良い
。また、高分子液晶層表面をキズ等から保護する保護層
を設けても良い。
Further, although the image forming medium is coated on a substrate, the substrate may be removed after the solvent evaporates to form a single layer structure. Further, a protective layer may be provided to protect the surface of the polymer liquid crystal layer from scratches and the like.

尚、前記像形成媒体に加熱する手段としては、発熱抵抗
体、赤外線等を用いることができるが、特に画像パター
ンあるいはメモリービットパターンを形成するには、外
部信号によって熱印加することができるサーマルヘッド
や、高分子液晶層中に赤外吸収色素等を添加し、レーザ
ーにより書き込む等の手段を用いることができる。
Note that as a means for heating the image forming medium, a heating resistor, infrared rays, etc. can be used, but in particular, in order to form an image pattern or a memory bit pattern, a thermal head capable of applying heat by an external signal is used. Alternatively, means such as adding an infrared absorbing dye or the like to the polymer liquid crystal layer and writing with a laser can be used.

[発明の効果] 以上説明したように、高分子液晶を用いた像形成媒体に
おいて、高分子液晶組成物中に少なくとも一種類の蛍光
剤を添加することにより、光の散乱を強くするとともに
、その発光によりコントラストを向上させることができ
、視認性の良い像を形成することが可能となる。
[Effects of the Invention] As explained above, in an image forming medium using a polymer liquid crystal, by adding at least one type of fluorescent agent to the polymer liquid crystal composition, light scattering is strengthened and the light scattering is enhanced. The contrast can be improved by emitting light, and it becomes possible to form an image with good visibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の像形成媒体の模式断面図である。 l:基体、      2:高分子液晶層、3:蛍光剤
FIG. 1 is a schematic cross-sectional view of an image forming medium of the present invention. 1: Substrate, 2: Polymer liquid crystal layer, 3: Fluorescent agent.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1種類の高分子液晶性化合物を有する
高分子液晶組成物中に、少なくとも1種類の蛍光剤を含
有していることを特徴とする像形成媒体。
(1) An image forming medium characterized by containing at least one type of fluorescent agent in a polymeric liquid crystal composition having at least one type of polymeric liquid crystal compound.
JP31214687A 1987-12-10 1987-12-11 Image forming medium Pending JPH01154129A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31214687A JPH01154129A (en) 1987-12-11 1987-12-11 Image forming medium
DE3855346T DE3855346T2 (en) 1987-12-10 1988-12-09 Device for displaying pictures
EP88120652A EP0320011B1 (en) 1987-12-10 1988-12-09 Image display apparatus
US07/535,978 US5059000A (en) 1987-12-10 1990-06-11 Image forming medium and image forming apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31214687A JPH01154129A (en) 1987-12-11 1987-12-11 Image forming medium

Publications (1)

Publication Number Publication Date
JPH01154129A true JPH01154129A (en) 1989-06-16

Family

ID=18025803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31214687A Pending JPH01154129A (en) 1987-12-10 1987-12-11 Image forming medium

Country Status (1)

Country Link
JP (1) JPH01154129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517486A (en) * 2004-12-16 2009-04-30 シクパ・ホールディング・ソシエテ・アノニム Cholesteric monolayers and monolayer pigments with specific properties, their production and use
JP2013210667A (en) * 2013-06-04 2013-10-10 Sicpa Holding Sa Cholesteric liquid crystal monolayer having specified property and production method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151580A (en) * 1978-05-19 1979-11-28 Sharp Corp Fluoroscent type liquid crystal displayer
JPS58125247A (en) * 1982-01-21 1983-07-26 Tdk Corp Optical recording medium
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS61267024A (en) * 1985-05-20 1986-11-26 Sharp Corp Liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151580A (en) * 1978-05-19 1979-11-28 Sharp Corp Fluoroscent type liquid crystal displayer
JPS58125247A (en) * 1982-01-21 1983-07-26 Tdk Corp Optical recording medium
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS61267024A (en) * 1985-05-20 1986-11-26 Sharp Corp Liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517486A (en) * 2004-12-16 2009-04-30 シクパ・ホールディング・ソシエテ・アノニム Cholesteric monolayers and monolayer pigments with specific properties, their production and use
JP2013210667A (en) * 2013-06-04 2013-10-10 Sicpa Holding Sa Cholesteric liquid crystal monolayer having specified property and production method of the same

Similar Documents

Publication Publication Date Title
US3720623A (en) Encapsulated liquid crystals
TW412744B (en) Device with display portion capable of rewriting
US5059000A (en) Image forming medium and image forming apparatus using same
JPH0342618A (en) Color image forming device
JPH01154129A (en) Image forming medium
JP2789203B2 (en) Display medium
Hotta et al. Mechanistic study of thermoreversible recording media composed of polymeric films with dispersed fatty acids
JPS61228418A (en) Liquid crystal display device
JP2719160B2 (en) Reversible thermosensitive recording material
US4059340A (en) Doped liquid crystal display device
JPH01154130A (en) Image forming medium
JPH022513A (en) Image forming medium and method thereof
JPS63170485A (en) Liquid crystal optical element
US4894180A (en) Liquid crystal optical element
JP3106765B2 (en) Reversible thermosensitive recording material
JPS6128927A (en) Method and device for liquid crystal thermal writing and projection display
JPH01304431A (en) Display medium and display method thereof
JPH01252930A (en) Image forming method and its device
JPH022514A (en) Image forming medium and method thereof
JP2630966B2 (en) Image forming method
JPH0562189A (en) Rewritable recording medium and its recording method
JP3315811B2 (en) Reversible thermosensitive recording material
JPH02108094A (en) Color recording method
JPH01154120A (en) Image formation
JPS6079090A (en) Liquid crystal