JPH01153939A - Calibrating method for measuring instrument for laser beam deflection angle - Google Patents

Calibrating method for measuring instrument for laser beam deflection angle

Info

Publication number
JPH01153939A
JPH01153939A JP31184587A JP31184587A JPH01153939A JP H01153939 A JPH01153939 A JP H01153939A JP 31184587 A JP31184587 A JP 31184587A JP 31184587 A JP31184587 A JP 31184587A JP H01153939 A JPH01153939 A JP H01153939A
Authority
JP
Japan
Prior art keywords
prism
laser beam
deflection angle
liquid
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31184587A
Other languages
Japanese (ja)
Other versions
JP2505230B2 (en
Inventor
Susumu Inoue
享 井上
Yasuji Hattori
服部 保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31184587A priority Critical patent/JP2505230B2/en
Publication of JPH01153939A publication Critical patent/JPH01153939A/en
Application granted granted Critical
Publication of JP2505230B2 publication Critical patent/JP2505230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To accurately calibrate the device even in liquid whose refractive index is close to that of glass by arranging a hollow prism which has a parallel part and a slanting part in its opposite flanks in the liquid. CONSTITUTION:While a laser beam from a laser generator 1 does not passes through the hollow prism 11, the light spot position P0 of the beam on a photodetector 8 is measured. Then the prism 11 is put in the oil 4 in a liquid tank 3 and while the beam passes through the parallel surfaces A and C of the prism 11, the arrangement angle (tilt angle and horizontal rotation) of the prism 11 are so adjusted that the light spot position on the photodetector 8 is at the same position with P0. Consequently, the surfaces A and C become perpendicular to the optical axis. While this state is maintained, the prism 11 is lifted to allow the beam pass through the slanting part (surfaces A and B: vertical angle theta), thereby measuring the position P2 of the light spot on the photodetector 8 at this time. Then a microcomputer finds the distance L between the positions P0-P2 and the conversion coefficient of the deflection angle phi of the beam is found from the distance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液浸された被測定物体中を通過するレーザー
ビームの偏向角を測定する装置あるいは、偏向角を測定
することにより被測定物体、例えば光フアイバ母材の屈
折率分布を求める装置に通用されるレーザービーム偏向
角測定装置の較正方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for measuring the deflection angle of a laser beam passing through an object to be measured immersed in liquid, or a device for measuring the deflection angle of a laser beam passing through an object to be measured that is immersed in liquid, or The present invention relates to a method for calibrating a laser beam deflection angle measuring device, which is used, for example, in a device for determining the refractive index distribution of an optical fiber base material.

[従来の技術] 光フアイバ母材等の円柱体の屈折率分布を測定する装置
としては、コリメート光を用いた空間フィルタリング法
によるものが従来より提供されているが、本発明に関わ
るような、レーザービームを用いてそのレーザービーム
の偏向角を読み取る方式のものは実用化されていない。
[Prior Art] As a device for measuring the refractive index distribution of a cylindrical body such as an optical fiber base material, devices based on a spatial filtering method using collimated light have been provided. A system that uses a laser beam and reads the deflection angle of the laser beam has not been put to practical use.

また、その偏向角の測定値の絶対較正を行う手段もなか
った。
Furthermore, there was no means to perform absolute calibration of the measured value of the deflection angle.

° [発明が解決しようとする問題点]本発明が適用さ
れるレーザービーム偏向角測定装置においては、受光器
上におけるレーザービームのスポット位置を読み取り、
コンピュータの演算処理によりこの読取位置をレーザー
ビームの偏向角に変換するという手法がとられる。従っ
て、ビーム偏向角の測定精度はこの変換係数の精度に依
存することになるが、撮像光学系の調整位置によりこの
変換係数は変化するので、偏向角の測定精度を向上させ
るには、測定時と同じ調整状態で読取角度の絶対較正を
行う必要がある。また、被測定物として光フアイバ母材
等の屈折率分布測定を行う場合に、その被測定物体の周
囲にはガラスに近い屈折率を有するオイルを満たして測
定するので、角度較正用プリズムに通常のガラスプリズ
ムを用いたのでは、所望の偏向角を得ることは困難であ
った。
° [Problems to be solved by the invention] In the laser beam deflection angle measuring device to which the invention is applied, the spot position of the laser beam on the receiver is read,
A method is used in which this reading position is converted into a deflection angle of a laser beam through computer processing. Therefore, the measurement accuracy of the beam deflection angle depends on the accuracy of this conversion coefficient, but since this conversion coefficient changes depending on the adjustment position of the imaging optical system, in order to improve the measurement accuracy of the deflection angle, it is necessary to It is necessary to perform absolute calibration of the reading angle under the same adjustment conditions. In addition, when measuring the refractive index distribution of an optical fiber base material or the like as an object to be measured, the area around the object to be measured is filled with oil having a refractive index close to that of glass. It was difficult to obtain the desired deflection angle using a glass prism of

本発明は、上述の問題点に鑑み、ガラスに近い屈折率を
有する液体中においても所望の角度で光線を屈折させる
ことが可能であり、正確にレーザービーム偏向角測定装
置の較正を行うことができるレーザービーム偏向角測定
装置の較正方法を提供することを目的とする。
In view of the above-mentioned problems, the present invention makes it possible to refract a light beam at a desired angle even in a liquid having a refractive index close to that of glass, and makes it possible to accurately calibrate a laser beam deflection angle measuring device. The purpose of the present invention is to provide a method for calibrating a laser beam deflection angle measuring device.

E問題点を解決するための手段] かかる目的を達成するため、本発明は液浸された被測定
物体中を通過するレーザービームの偏向角度を測定する
装置において、液体中に中空のプリズムを配置すること
により偏向角度の絶対較正を行うことを特徴とする。
Means for Solving Problem E] To achieve the above object, the present invention provides a device for measuring the deflection angle of a laser beam passing through an object to be measured immersed in liquid, in which a hollow prism is disposed in the liquid. The feature is that absolute calibration of the deflection angle is performed by doing this.

また、本発明は一例として、プリズムは対向する側面が
平行部と傾斜部を有することを特徴とする。
Further, as an example of the present invention, the prism is characterized in that opposing side surfaces have a parallel portion and an inclined portion.

さらにまた、本発明は一例として、プリズムは上面が開
放されていることを特徴とする。
Furthermore, as an example, the present invention is characterized in that the top surface of the prism is open.

[作 用] 本発明による較正に用いる中空プリズムにおいては、そ
の内部が空洞(中空)となっているので、ガラスに近い
屈折率を有する液体中に液浸した場合に、プリズムに入
射する光線を頂角θおよび液体と空気の屈折率差に応じ
た角度だけ屈折させることが可能である。また、第2図
、第3図に示す本発明によるプリズムにおいては、面A
と面Cは平行に配置されており、面A1面Cを通過する
光線を用いて較正することによりプリズム(面A1面C
)が光軸に垂直となるように調整することが可能である
。特に、第3図に示すプリズムにおいては上面が開放さ
れているので、そのプリズム中に屈折率が既知の液体を
注入することが可能であり、これによりレーザービーム
偏向角の調整を自在に行うことができる。
[Function] The hollow prism used for calibration according to the present invention has a cavity (hollow) inside, so when it is immersed in a liquid having a refractive index close to that of glass, the light rays incident on the prism are It is possible to refract the liquid by an angle corresponding to the apex angle θ and the difference in refractive index between the liquid and the air. Furthermore, in the prism according to the present invention shown in FIGS. 2 and 3, the surface A
and surface C are arranged in parallel, and by calibrating using the light beam passing through surfaces A1 and C, the prism (surface A1 and C
) can be adjusted so that it is perpendicular to the optical axis. In particular, since the top surface of the prism shown in Figure 3 is open, it is possible to inject a liquid with a known refractive index into the prism, thereby making it possible to freely adjust the laser beam deflection angle. Can be done.

従って、本発明によれば、ガラスに近い屈折率を有する
液体中においても所望の角度で光線を屈折させることが
可能であり、また、プリズム中に平行部を設けることに
よりプリズムのたおれ角等の調整を精度よく行うことが
可能であるので、レーザービーム偏向角測定装置の較正
を正確に行うことができる。
Therefore, according to the present invention, it is possible to refract light rays at a desired angle even in a liquid having a refractive index close to that of glass, and by providing a parallel portion in the prism, it is possible to change the folding angle of the prism, etc. Since the adjustment can be performed with high precision, the laser beam deflection angle measuring device can be calibrated accurately.

[実施例1 以下、図面を参照して本発明の実施例を詳細に説明する
[Embodiment 1] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図〜第3図は、それぞれ本発明の較正方法に使用さ
れる中空プリズムの一例を示し、何れのプリズムもその
各面A〜Cは石英板で構成され、その内部は空洞となっ
ている。また、第1図の中空プリズムllaはくさび状
の三角柱に形成され、第2図の中空プリズムllbは傾
斜部(傾斜面)Bを有する他少くとも対向する一組の側
面A、Cを平行に形成され、第3図の中空プリズムll
cは傾斜面Bと対向する上面が開放され、所定の液体が
上方から注入可能に形成されている。
Figures 1 to 3 each show an example of a hollow prism used in the calibration method of the present invention, each of which has surfaces A to C made of quartz plates, and the inside thereof is hollow. There is. In addition, the hollow prism lla in FIG. 1 is formed into a wedge-shaped triangular prism, and the hollow prism llb in FIG. The hollow prism ll formed in FIG.
The upper surface facing the inclined surface B is open, and a predetermined liquid can be injected from above.

第4図にはレーザービームの偏向角を用いて屈折率分布
を測定するレーザービーム偏向角測定装置の一例を示し
、第5図は第3図の中空プリズムを用いた本発明による
レーザービーム偏向角の較正方法の一実施例を示す。
FIG. 4 shows an example of a laser beam deflection angle measuring device for measuring refractive index distribution using the deflection angle of a laser beam, and FIG. 5 shows a laser beam deflection angle according to the present invention using the hollow prism shown in FIG. An example of a calibration method is shown below.

第4図において、1はレーザービームを発生する、例え
ばHe−Ne (ヘリウム−ネオン)レーザー発生器、
2はレーザー発生器1から出射したレーザービームを集
光するレンズ、3はレンズ2を通ったレーザービームの
光路中に配設された液槽であり、この液槽3は矢印で示
すように光軸に対して上下方向に移動可能に構成されて
いる。4は液槽3中に満たされたオイル、5は液ai3
のオイル4中に液浸された被測定サンプルであり、例え
ば光ファイバ母材である。
In FIG. 4, 1 is a He-Ne (helium-neon) laser generator that generates a laser beam;
2 is a lens that condenses the laser beam emitted from the laser generator 1; 3 is a liquid tank disposed in the optical path of the laser beam passing through the lens 2; this liquid tank 3 collects light as shown by the arrow; It is configured to be movable in the vertical direction with respect to the axis. 4 is the oil filled in the liquid tank 3, 5 is the liquid ai3
The sample to be measured is immersed in the oil 4, and is, for example, an optical fiber base material.

6.7は被測定サンプル5を通ったレーザービームな結
像するための一対のレンズ、8はレンズ6.7を通った
レーザービームを受光する受光器、例えばTVカメラで
ある。なお、実線9はレーザービームの径路を示し、破
線10は光軸を示す。
6.7 is a pair of lenses for imaging the laser beam that has passed through the sample to be measured 5, and 8 is a light receiver, such as a TV camera, that receives the laser beam that has passed through the lens 6.7. Note that the solid line 9 indicates the path of the laser beam, and the broken line 10 indicates the optical axis.

また、図中φはレーザービームの偏向角であり、受光器
8上の寸法りは受光器8上のレーザービームの位置と光
軸との距離(位置ずれ)を示す。
Further, in the figure, φ is the deflection angle of the laser beam, and the dimension on the light receiver 8 indicates the distance (positional shift) between the position of the laser beam on the light receiver 8 and the optical axis.

第4図に示すような測定装置においては、液槽3を上下
方向に移動させることにより、被測定サンプル5の位置
とそれに対応するレーザービームの偏向角φを受光器8
を介して測定し、この測定により得られた偏向角φのデ
ータを積分することによって被測定サンプル5の屈折率
分布を求める。ここで、レーザービームの偏向角φは、
受光器8上のレーザービームの位置と光軸lOとの距離
りに対応している。Lに所定の変換係数を乗じることに
より、偏向角φが求められるが、レンズ6.7の位置の
調整により、その変換係数も変化するので、偏向角φの
測定値の較正が必要となる。
In the measuring device shown in FIG. 4, by moving the liquid tank 3 in the vertical direction, the position of the sample to be measured 5 and the corresponding deflection angle φ of the laser beam can be determined by moving the liquid tank 3 up and down.
The refractive index distribution of the sample 5 to be measured is determined by integrating the data of the deflection angle φ obtained by this measurement. Here, the deflection angle φ of the laser beam is
This corresponds to the distance between the position of the laser beam on the light receiver 8 and the optical axis lO. The deflection angle φ is determined by multiplying L by a predetermined conversion coefficient, but since the conversion coefficient also changes by adjusting the position of the lens 6.7, it is necessary to calibrate the measured value of the deflection angle φ.

そこで、第5図に示すように中空プリズム11を被測定
サンプル5の代りに配置した場合は、そのプリズム11
の頂角θが既知のものであれば、偏向角φはスネルの法
則により求まる。このときの受光器8上のレーザービー
ムの位置と光軸10との距IILを受光器8を介して測
定することにより、偏向角φの変換係数が求められる。
Therefore, if a hollow prism 11 is placed in place of the sample to be measured 5 as shown in FIG.
If the apex angle θ is known, the deflection angle φ can be determined by Snell's law. By measuring the distance IIL between the position of the laser beam on the light receiver 8 and the optical axis 10 at this time via the light receiver 8, the conversion coefficient of the deflection angle φ is determined.

第3図に示す中空プリズム11を用いて、第4図のレー
ザービーム偏向角測定装置の較正を行う場合の具体的な
手順について、第5図を参照して以下に説明する。
A specific procedure for calibrating the laser beam deflection angle measuring device shown in FIG. 4 using the hollow prism 11 shown in FIG. 3 will be described below with reference to FIG. 5.

較正の手順としては、次の順序で実行する。The calibration procedure is performed in the following order:

手順1:レーザービームがプリズム11を通過しない状
態で受光器8上におけるレーザービームの光スポツト位
置P0を測定する。
Step 1: Measure the optical spot position P0 of the laser beam on the photoreceiver 8 with the laser beam not passing through the prism 11.

手順2:次に、プリズム11を液槽のオイル4中に入れ
、レーザービームがプリズム11の平行部(面A1面C
)を通過する状態で、受光器8上におけるレーザービー
ムの光スポツト位置PIが上記P0と同じ位置となるよ
うにプリズム11の配置角度(たおれ角・水平方向の回
転)の調整を行う。これにより、上記面A1面Cが光軸
に゛垂直となるように調整される。
Step 2: Next, put the prism 11 into the oil 4 in the liquid tank, and the laser beam will hit the parallel part of the prism 11 (surface A1, surface C
), the arrangement angle (tilt angle/horizontal rotation) of the prism 11 is adjusted so that the optical spot position PI of the laser beam on the photoreceiver 8 is the same as the above-mentioned position P0. Thereby, the surfaces A1 and C are adjusted to be perpendicular to the optical axis.

手順3:さらに、上記手順2の配置角度の状態(面A1
面Cが光軸に垂直な状態)を保ったまま、プリズム11
を多少持ち上げてレーザービームがプリズム11の傾斜
部(面A。
Step 3: Furthermore, the state of the arrangement angle in step 2 (surface A1
While keeping the plane C perpendicular to the optical axis, move the prism 11
The laser beam is directed to the inclined part of the prism 11 (surface A) by slightly lifting the prism 11.

面B)を通過する状態にし、その時の受光器8上におけ
るレーザービームの光スポツト位置P2を測定する。こ
の時に必要であれば光軸方向におけるプリズム11の位
置の調整も行う(第5図参照)。
The light spot position P2 of the laser beam on the light receiver 8 at that time is measured. At this time, if necessary, the position of the prism 11 in the optical axis direction is also adjusted (see FIG. 5).

手順4:図示しないマイクロコンピュータ等によりL 
(P 2〜P oの距離またはP1〜eoの距!!1)
を演算して求める。
Step 4: L by a microcomputer, etc. (not shown)
(Distance from P2 to Po or distance from P1 to eo!!1)
Calculate and find.

以上の手順により、受光器8としてITV撮像管を用い
、中空プリズム11として頂角θ= 11.92(de
g) 、面A〜面Cの距離を10(mm)の第3図に示
すような中空プリズムを用いて角度較正を行った結果、
較正値として、φ/ L = 5.52 (deg)/
178 (画素)の値が得られた。ここで、φはレーザ
ービームの偏向角であり、LはITV画像上でのレーザ
ービームの位置変化(p+〜Pa)である。
Through the above procedure, the ITV image pickup tube is used as the light receiver 8, and the apex angle θ=11.92 (de
g) As a result of calibrating the angle using a hollow prism as shown in Figure 3, where the distance between planes A and C is 10 (mm),
As a calibration value, φ/L = 5.52 (deg)/
A value of 178 (pixels) was obtained. Here, φ is the deflection angle of the laser beam, and L is the position change (p+~Pa) of the laser beam on the ITV image.

[発明の効果] 以上説明したように、本発明によれば、中空プリズムを
用いてレーザービーム偏向角の較正を行うようにしてい
るので、ガラスに近い屈折率を有する液体中においても
所望の角度で光線を屈折させることが可能であり、また
、中空プリズム中に平行部を設けることにより、そのプ
リズムのたおれ角等の調整を精度よく行うことが可能で
あるので、レーザービーム偏向角測定装置の較正を正確
に行うことができるという効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, since the laser beam deflection angle is calibrated using a hollow prism, the desired angle can be adjusted even in a liquid having a refractive index close to that of glass. In addition, by providing a parallel part in the hollow prism, it is possible to accurately adjust the deflection angle of the prism, so it is possible to use a laser beam deflection angle measuring device. The effect is that calibration can be performed accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ本発明に適用可
能な中空プリズムの構成例を示す斜視図、 第4図はレーザービームの偏向角を用いて屈折率分布を
測定するレーザービーム偏向角測定装置の構成例を示す
模式図、 第5図は本発明によるレーザービーム偏向角読取較正方
法の一例を示す模式図である。 1・・・レーザー発生器、 2・・・レンズ、  、 3・・・液種、 4・・・オイル、 5・・・被測定サンプル、 6・・・レンズ、 7・・・レンズ、 8・・・受光器、 9・・・レーザービームの径路、 lO・・・光軸、 11・・・中空プリズム、 φ・・・偏向角、 θ・・・頂角。 特許出願人  住友電気工業株式会社 代 理 人  弁理士 谷  義 − 亡      」
Figures 1, 2, and 3 are perspective views showing configuration examples of hollow prisms applicable to the present invention, respectively. Figure 4 shows a laser beam deflection for measuring the refractive index distribution using the deflection angle of the laser beam. FIG. 5 is a schematic diagram showing an example of the configuration of an angle measuring device. FIG. 5 is a schematic diagram showing an example of a laser beam deflection angle reading calibration method according to the present invention. DESCRIPTION OF SYMBOLS 1... Laser generator, 2... Lens, 3... Liquid type, 4... Oil, 5... Sample to be measured, 6... Lens, 7... Lens, 8... ...Light receiver, 9...Laser beam path, lO...Optical axis, 11...Hollow prism, φ...Deflection angle, θ...Vertex angle. Patent applicant Sumitomo Electric Industries, Ltd. Representative Patent attorney Yoshi Tani - deceased

Claims (1)

【特許請求の範囲】 1)液浸された被測定物体中を通過するレーザービーム
の偏向角度を測定する装置において、液体中に中空のプ
リズムを配置することにより前記偏向角度の絶対較正を
行うことを特徴とするレーザービーム偏向角測定装置の
較正方法。 2)前記プリズムは対向する側面が平行部と傾斜部を有
することを特徴とする特許請求の範囲第1項に記載のレ
ーザービーム偏向角測定装置の較正方法。 3)前記プリズムは上面が開放されていることを特徴と
する特許請求の範囲第1項または第2項に記載のレーザ
ービーム偏向角測定装置の較正方法。
[Claims] 1) In a device for measuring the deflection angle of a laser beam passing through a measured object immersed in liquid, absolute calibration of the deflection angle is performed by placing a hollow prism in the liquid. A method for calibrating a laser beam deflection angle measuring device. 2) The method for calibrating a laser beam deflection angle measuring device according to claim 1, wherein the prism has opposing side surfaces having a parallel portion and an inclined portion. 3) The method for calibrating a laser beam deflection angle measuring device according to claim 1 or 2, wherein the prism has an open top surface.
JP31184587A 1987-12-11 1987-12-11 Method for calibrating laser beam deflection angle measuring device Expired - Lifetime JP2505230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31184587A JP2505230B2 (en) 1987-12-11 1987-12-11 Method for calibrating laser beam deflection angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31184587A JP2505230B2 (en) 1987-12-11 1987-12-11 Method for calibrating laser beam deflection angle measuring device

Publications (2)

Publication Number Publication Date
JPH01153939A true JPH01153939A (en) 1989-06-16
JP2505230B2 JP2505230B2 (en) 1996-06-05

Family

ID=18022098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31184587A Expired - Lifetime JP2505230B2 (en) 1987-12-11 1987-12-11 Method for calibrating laser beam deflection angle measuring device

Country Status (1)

Country Link
JP (1) JP2505230B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734785B1 (en) * 2004-02-27 2007-07-04 티디케이가부시기가이샤 Conductive paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
JP2015023276A (en) * 2013-07-22 2015-02-02 ハネウェル・インターナショナル・インコーポレーテッド Atomic sensor physics package with optically transparent window frame and external wedge
CN111122130A (en) * 2020-01-17 2020-05-08 商丘师范学院 Device and method for measuring refractive index of prism based on mobile phone APP

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734785B1 (en) * 2004-02-27 2007-07-04 티디케이가부시기가이샤 Conductive paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
JP2015023276A (en) * 2013-07-22 2015-02-02 ハネウェル・インターナショナル・インコーポレーテッド Atomic sensor physics package with optically transparent window frame and external wedge
CN111122130A (en) * 2020-01-17 2020-05-08 商丘师范学院 Device and method for measuring refractive index of prism based on mobile phone APP

Also Published As

Publication number Publication date
JP2505230B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
CN102519510B (en) Calibration device and calibration method of position sensitive sensor
CN102713504A (en) Surface shape measurement method and surface shape measurement device
JP3673954B2 (en) Tilt sensor and surveying instrument using the same
US4359282A (en) Optical measuring method and apparatus
CN100561197C (en) Utilize laser feedback to determine the method and the application thereof of incident angle
CN206146834U (en) V V -prism refractometer based on auto -collimation and CCD vision technique
JPH01153939A (en) Calibrating method for measuring instrument for laser beam deflection angle
KR100953885B1 (en) Apparatus and Method for Aligning Optic Axis of Lens Module
CN115508311A (en) Transparent solution concentration measuring device and method based on hollow triangular prism lens
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
US4756618A (en) Refractive index measurement cell
Matsumoto et al. Automatic recording laser interferometer for line standards up to 2 m
CN217542340U (en) Period measuring device of two-dimensional grating
JP2678465B2 (en) Lens refractive index distribution measurement method
CN218546534U (en) Transparent solution concentration measuring device based on hollow triangular prism lens
Schulz Computer-controlled high accuracy optical measurement
JP4201410B2 (en) Non-contact thin film inspection equipment
JPH0411422Y2 (en)
RU1778518C (en) Device for checking two-sided reflectors
JP2523156B2 (en) Refraction angle measuring method and refractive index distribution measuring device
Gupta et al. Effect of tilt on positional measurement by an electro-optical sensor
SU787895A1 (en) Apparatus for determining slope angle
CN115406905A (en) Defect detection device and correction method for defect detection
JPH0348512Y2 (en)
CN113252306A (en) Air gap V prism refractive index measuring device