JPH01152121A - Novel conductive or semiconductive polymer - Google Patents

Novel conductive or semiconductive polymer

Info

Publication number
JPH01152121A
JPH01152121A JP31093987A JP31093987A JPH01152121A JP H01152121 A JPH01152121 A JP H01152121A JP 31093987 A JP31093987 A JP 31093987A JP 31093987 A JP31093987 A JP 31093987A JP H01152121 A JPH01152121 A JP H01152121A
Authority
JP
Japan
Prior art keywords
polymer
monomer
electrolyte
film
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31093987A
Other languages
Japanese (ja)
Other versions
JPH0662742B2 (en
Inventor
Hiroshi Nishihara
寛 西原
Kuniji Aramaki
荒牧 國次
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62310939A priority Critical patent/JPH0662742B2/en
Publication of JPH01152121A publication Critical patent/JPH01152121A/en
Publication of JPH0662742B2 publication Critical patent/JPH0662742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain an organic polymeric conductor or semiconductor useful for electronic devices, semiconductor junction elements and switching elements, by reducing a specified compound having linear double bonds. CONSTITUTION:This conductive or semiconductive polymer is obtained by reducing a compound of the formula (wherein X and X' are each Cl, Br or H, Y and Y' are each Cl or Br, and n is 1-4). This polymer can be formed by applying a specified electric field to a reaction solution formed by dissolving a monomer and an electrolyte in a solvent and is obtained in the form of a single film, a laminated film or a fibrous material on the surface of a cathode. A good result can be attained when the electrolyte salt is formed by combining a tetrabutylammonium salt as a cation with boron tetrafluoride or phosphorus hexafluoride as an anion. The polymerization solution is prepared by dissolving the monomer and the electrolyte salt by mixing them preferably at such a ratio that the concentration of the monomer is 0.01-1M and that of the electrolyte salt is 0.1-5M based on the solvent.

Description

【発明の詳細な説明】 [技術分野] 本発明は電池等の各種電子デバイス、半導体接合素子、
スイッチング素子に有用な新規な有機高分子導電体又は
半導体に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to various electronic devices such as batteries, semiconductor junction devices,
The present invention relates to a novel organic polymer conductor or semiconductor useful for switching elements.

[従来技術] 近年、電子材料の研究が盛んに行われており、その中で
も共役系高分子を用いた機能性高分子材料が多様な可能
性があるものとして注目されている。共゛役系重合体は
、不純物をドープすると錯体が形成されて、絶縁体また
は半導体から金属に匹敵する電気伝導度を持つようにな
ることから機能性材料として期待され、ポリバラフェニ
レン系、ポリチオフェン系、ポリピロール系、ポリアセ
チレン系(特開昭81−4165号、特開昭56−13
6469号、Journal  of  Po1yn+
erSclense、Po1yier Chea+1c
al Editlon、第12巻、11〜20頁)など
種々の材料について研究が行われている。・ これらの重合体はπ電子系が発達しているものの結合交
替によりπ電子の局在化が起きるために非局在化のため
の分子設計が行われている。
[Prior Art] In recent years, research on electronic materials has been actively conducted, and among these, functional polymer materials using conjugated polymers are attracting attention as they have a wide variety of possibilities. When conjugated polymers are doped with impurities, they form complexes and change from insulators or semiconductors to having electrical conductivity comparable to that of metals, so they are expected to be used as functional materials. type, polypyrrole type, polyacetylene type (JP-A-81-4165, JP-A-56-13)
No. 6469, Journal of Polyyn+
erSclense,Polyier Chea+1c
Al Editlon, Vol. 12, pp. 11-20), and various other materials have been studied.・Although these polymers have a well-developed π-electron system, localization of π-electrons occurs due to bond alternation, so molecular design is being carried out to delocalize them.

[目 的] 本発明は新規な導電性あるいは半導性重合体を提供する
ことを目的とするものである。
[Objective] The object of the present invention is to provide a novel conductive or semiconductive polymer.

[構 成] 本発明の高分子重合体は次の一般式で示されるモノマー
を還元することにより得られる。
[Structure] The high molecular weight polymer of the present invention can be obtained by reducing a monomer represented by the following general formula.

y4cmc+、y′ X ″ n=  1〜4の整数、 X、X”  :C1,Br、HS Y、Y−:C1゜B
r、Iから選ばれるハロゲン、すなわちエチレン、ブタ
ジェン、ヘキサトリエンを代表とする線状二重結合を有
する化合物のハロゲン化物をモノマーとするもので、特
に電気化学的還元により得られる重合体であって陰極表
面上に黒色フィルムとして得られる。特にブタジェン化
合物については、重合は容易に進行し、テトラクロルブ
タジェン、ヘキサクロルブタジェン、ヘキサブロムブタ
ジェンなど具体例として上げられる。
y4cmc+, y'
A monomer containing a halogen selected from r, I, that is, a halide of a compound having a linear double bond represented by ethylene, butadiene, and hexatriene, and is a polymer obtained in particular by electrochemical reduction. Obtained as a black film on the cathode surface. In particular, the polymerization of butadiene compounds proceeds easily, and specific examples include tetrachlorobutadiene, hexachlorbutadiene, and hexabrombutadiene.

この電気化学的重合方法は一般には例えば、J、E1e
ctrochea+、Soc、、Vol、130.No
、7.1508〜1509(lH3)、EIectro
chem、Aeta、 、 Vol 、 27 、 N
o、 1 、61〜85(1982)、J、Chem、
Soc、、Chem、Coa+sun、、1199〜(
+984)など、主に陽極酸化重合について示されてい
る。
This electrochemical polymerization method is generally used, for example, in J, E1e
ctrochea+, Soc,, Vol. 130. No
, 7.1508-1509 (lH3), EIelectro
chem, Aeta, , Vol. 27, N
o, 1, 61-85 (1982), J. Chem.
Soc,,Chem,Coa+sun,,1199~(
+984), etc., are mainly shown for anodic oxidation polymerization.

これに対し本発明はモノマーの還元と同時に還元性基が
脱離することにより重合反応が進行する陰極還元法によ
り実現される。陰極還元による高分子合成の例はほとん
どなくポリフェニレン、ポリフェニレンビニレン、ポリ
フェニレンキシリレンが成功しているにすぎない。本発
明はモノマーと電解質とを溶媒に溶解した反応液を所定
の電界を印加することによって実現され、重合体が陰極
表面上に単一膜状、積層膜、繊維状物として得られる。
In contrast, the present invention is realized by a cathodic reduction method in which the polymerization reaction proceeds by eliminating the reducing group simultaneously with the reduction of the monomer. There are few examples of polymer synthesis by cathodic reduction, and only polyphenylene, polyphenylene vinylene, and polyphenylene xylylene have been successful. The present invention is realized by applying a predetermined electric field to a reaction solution in which a monomer and an electrolyte are dissolved in a solvent, and a polymer is obtained on the surface of a cathode in the form of a single film, a laminated film, or a fibrous material.

電解質塩としては、過塩素酸テトラメチルアンモニウム
、過塩素酸テトラエチルアンモニウム、過塩素酸テトラ
ブチルアンモニウム、テトラフルオロホウ酸テトラメチ
ルアンモニウム、テトラフルオロホウ酸テトラエチルア
ンモニウム、テトラフルオロホウ酸テトラブチルアンモ
ニウム、過塩素酸リチウム、テトラフルオロホウ酸リチ
ウム、ヘキサフルオロヒ素酸テトラメチルアンモニウム
、ヘキサフルオロヒ素酸テトラエチルアンモニウム、ヘ
キサフルオロヒ素酸テトラブチルアンモニウム、ヘキサ
フルオロヒ素酸ナトリウム、ヘキサフルオロリン酸テト
ラメチルアンモニウム、ヘキサフルオロリン酸テトラブ
チルアンモニウム、ヘキサフルオロリン酸ナトリウム、
硫酸、硫酸水素テトラメチルアンモニウム、硫酸水素テ
トラブチルアンモニウム、トリフルオロ酢酸ナトリウム
、p−トルエンスルホン酸テトラメチルアンモニウムな
どが挙げられる。特に、カチオンとしてテトラブチルア
ンモニウム塩、アニオンとして四フッ化ホウ素または六
フッ化リンを組合せた場合に良好な結果が得られる。
Examples of electrolyte salts include tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, tetramethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, and perchlorate. Lithium acid, lithium tetrafluoroborate, tetramethylammonium hexafluoroarsenate, tetraethylammonium hexafluoroarsenate, tetrabutylammonium hexafluoroarsenate, sodium hexafluoroarsenate, tetramethylammonium hexafluorophosphate, hexafluorophosphoric acid Tetrabutylammonium, sodium hexafluorophosphate,
Examples include sulfuric acid, tetramethylammonium hydrogen sulfate, tetrabutylammonium hydrogen sulfate, sodium trifluoroacetate, and tetramethylammonium p-toluenesulfonate. Particularly good results are obtained when a tetrabutylammonium salt is used as the cation and boron tetrafluoride or phosphorus hexafluoride is used as the anion.

溶媒としては、脱水、脱気等の精製処理を行った極性溶
媒を使用することが好ましく、テトラヒドロフラン、ヘ
キサメチルホスホルアミド、ジメトキシエタン、アセト
ニトリル、炭酸プロピレン、ニトロベンゼン、ベンゾニ
トリル、塩化メチレン、ジメチルホルムアミド、ジメチ
ルスルホキシド、アセトニトリルなどが用いられ、特に
テトラヒドロフラン、ジメトキシエタン、プロピレジカ
ーボネートが還元重合には好ましい。
As the solvent, it is preferable to use a polar solvent that has undergone purification treatments such as dehydration and deaeration, such as tetrahydrofuran, hexamethylphosphoramide, dimethoxyethane, acetonitrile, propylene carbonate, nitrobenzene, benzonitrile, methylene chloride, and dimethylformamide. , dimethyl sulfoxide, acetonitrile, etc. are used, and tetrahydrofuran, dimethoxyethane, and propylene dicarbonate are particularly preferred for reductive polymerization.

重合溶液の組成は好ましくは溶媒に対してモノマーがo
、ot −IM、電解質塩は0.1〜5Mの範囲で混合
、溶解せしめることにより調整される。
The composition of the polymerization solution is preferably such that the monomer is omitted relative to the solvent.
, ot-IM, and electrolyte salts are adjusted by mixing and dissolving them in a range of 0.1 to 5M.

電解重合時の電極を構成する電極材料としては銅、銀、
金、白金、ニッケル、亜鉛、スズ、アルミニウム等の金
属電極;グラッシーカーボン等の炭素電極、ITO等の
金属酸化電極などを用いることもでき、特にグラッシ・
カーボン、ITOガラス、3n02ガラス、白金電極が
好ましい。反応雰囲気としては、乾燥した窒素、アルゴ
ン等の不活性雰囲気下で行うことが好ましい。
Copper, silver,
Metal electrodes such as gold, platinum, nickel, zinc, tin, aluminum, etc.; carbon electrodes such as glassy carbon, metal oxide electrodes such as ITO, etc. can also be used;
Carbon, ITO glass, 3n02 glass, and platinum electrodes are preferred. The reaction atmosphere is preferably an inert atmosphere such as dry nitrogen or argon.

電解法は、定電流電解法、定電位電解法、定電圧電解法
のいずれの方法を用いても進行するが、定電位電解法が
好ましく、Ag/Ag+の標準電極に対しては、−1v
以下、好ましくは一2V〜−10Vの電位を作用極に対
してかけることが好適である。
Electrolysis proceeds using any of the constant current electrolysis method, constant potential electrolysis method, and constant voltage electrolysis method, but the constant potential electrolysis method is preferable.
Hereinafter, it is preferable to apply a potential of -2V to -10V to the working electrode.

かくして陰極上に単一又は積層フィルムが得られる。本
重合体はキャラクタリゼーションよりフムレン構造、グ
ラファイト構造を内部にもつ重合体であり、ヘキサクロ
ロブタジェンに関しては、αのクロル脱離により直鎖状
の重合が進行すると同時にβ位のクロルの脱離により2
次元又は3次元構造の重合体になっていると考えられる
。したがって、得られた重合体は不溶、不融で重合度を
測定することは不可能であるが、元素分析値より直鎖状
に重合が進行したと仮定して、炭素数12〜100ユニ
ツトの重合体が得られていると考えられる。(実際には
第2図よりグラファイト構造をもつことが考えられるの
で、炭素数はもっと大きいと推定される)その電気伝導
度(as−grown)は1G−2〜103s/c+e
であった。本重合体には赤外スペクトルには特徴のある
吸収がなくラマンスペクトルからは炭素間二重結合の吸
収がみられる(第1図)。
A single or laminated film is thus obtained on the cathode. According to the characterization, this polymer has an internal humulene structure and a graphite structure, and in the case of hexachlorobutadiene, linear polymerization proceeds due to the elimination of chlorine at the α position, and at the same time, due to the elimination of the chlorine at the β position, 2
It is thought that it is a polymer with a dimensional or three-dimensional structure. Therefore, the obtained polymer is insoluble and infusible and it is impossible to measure the degree of polymerization, but based on the elemental analysis values, it is assumed that the polymerization proceeds in a linear manner, and the polymer has a carbon number of 12 to 100 units. It is thought that a polymer was obtained. (Actually, it is thought that it has a graphite structure from Figure 2, so the number of carbon atoms is estimated to be larger.) Its electrical conductivity (as-grown) is 1G-2 to 103s/c+e.
Met. This polymer has no characteristic absorption in the infrared spectrum, and absorption of carbon-carbon double bonds is seen in the Raman spectrum (Figure 1).

本重合体を作用極として電解質溶液中でサイクリックボ
ルタモダラムを測定すると酸化及び還元波が観測され、
特に−〇、8 V vsA g /Ag0に強い還元波
が現れる。これは電解質カチオンが小さいほど大きな電
流となることから、カチオンドーピングに安定な材料で
あり、ポリマー二次電池の負極として有用である。第2
図または第3図より、グラファイト 002面と考えら
れるX線回折パターンが得られた。
When cyclic voltammodalum was measured in an electrolyte solution using this polymer as a working electrode, oxidation and reduction waves were observed.
In particular, a strong reduction wave appears at −〇, 8 V vs A g /Ag0. This is a material that is stable to cation doping because the smaller the electrolyte cation, the larger the current, and is useful as a negative electrode for polymer secondary batteries. Second
From the figure or FIG. 3, an X-ray diffraction pattern considered to be the 002 plane of graphite was obtained.

以下に実施例を示し、本発明をさらに詳細に説明する。EXAMPLES The present invention will be explained in further detail by way of Examples below.

実施例1 0.1M  Bu4NBF+のシアン化メチル溶液fo
alにヘキサクロロ−1,3−ブタジェン0.25a+
1 (0,18M)を溶解し、この溶液に作用極として
I To (2,42xlO’s 2) 、陰極として
ptおよび参照電極としてA g / A g+を浸漬
し、室温にて−3,OVvsAg/Ag” 、1時間電
解還元重合を行った。
Example 1 0.1M Bu4NBF+ methyl cyanide solution fo
Hexachloro-1,3-butadiene 0.25a+ in al
1 (0,18M) and immersed I To (2,42xlO's 2) as a working electrode, pt as a cathode, and A g/A g+ as a reference electrode in this solution, -3, OV vs Ag at room temperature. /Ag'', electrolytic reduction polymerization was performed for 1 hour.

ITO電極上に層状のこげ茶色の重合体フィルム0.5
3/ lagが得られた。この重合体フィルムの電気伝
導度は0.2X 1G−コS/ei、CI/Cは0.5
3、ラマンスペクトには1600cm−雷 (2重結合
)に吸収があり、IRには強い吸収はなかった。
0.5 layered dark brown polymer film on ITO electrode
3/lag was obtained. The electrical conductivity of this polymer film is 0.2X 1G-coS/ei, CI/C is 0.5
3. There was absorption at 1600cm-lightning (double bond) in the Raman spectrum, but there was no strong absorption in the IR.

実施例2 作用極をGCに代え、重合時間を70分とした以外は実
施例1と同様に電解還元重合を行った。黒色の重合体フ
ィルム1.482mgが得られた。
Example 2 Electrolytic reduction polymerization was carried out in the same manner as in Example 1, except that the working electrode was replaced with GC and the polymerization time was 70 minutes. 1.482 mg of a black polymer film was obtained.

この重合体フィルムの電気伝導度は6.2X10’S 
/ crys元素分析値CI/Cは0.53、またラマ
ンスペクトルより1600cm−’に2重結合による吸
収が見られ、IRには強い吸収はなかった。
The electrical conductivity of this polymer film is 6.2X10'S
/crys elemental analysis value CI/C was 0.53, and the Raman spectrum showed absorption due to a double bond at 1600 cm-', and there was no strong absorption in IR.

このフィルムを作用極としてアセトニトリル中でサイク
リックポルクンメトリーを測定すると第2図のごとく電
解質カチオンが小さいほど銀に対し0.6〜−1.8 
Vの電位走査を行った時の酸化還元波は大きくなり、カ
チオンが膜内にドープされていると考えられる。
Using this film as a working electrode, cyclic polkunmetry was measured in acetonitrile, and as shown in Figure 2, the smaller the electrolyte cation, the 0.6 to -1.8 relative to silver.
When scanning the potential of V, the oxidation-reduction wave becomes large, and it is considered that cations are doped into the film.

第3図はX線回折をとったものであるが、2θ−53″
の回折はグラファイト構造の002面による回折と考え
られる。
Figure 3 shows the X-ray diffraction of 2θ-53″
The diffraction is considered to be due to the 002 plane of the graphite structure.

表1は各゛ドープ状態での元素分析値で、aはAgに対
して−a、OV、すなわち、as−g r o w n
における元素分析値、bは−’t、o vの電位まで脱
ドープした膜、CはOvで完全脱ドープした膜の元素分
析値である。CではアンモニウムカチオンによるNの量
が0となり、albにおいてカチオンが膜内部に存在し
ていることを示している。
Table 1 shows the elemental analysis values in each doped state, where a is -a and OV with respect to Ag, that is, as-grown
b is the elemental analysis value of the film dedoped to a potential of -'t, ov, and C is the elemental analysis value of the film completely dedoped with Ov. In C, the amount of N due to ammonium cations is 0, indicating that cations are present inside the film in alb.

表  1 実施例3 Bu4NBF4の溶液をプロピレンカーボネートに代え
た以外は実施例1と同様に電解還元重合を行った。周辺
が黒色で他が茶色の重合体フィルム0.814mgが得
られた。この重合体フィルムの電気伝導度は1.3X 
to°2S / 81%元素分析値CI/Cは0.51
 、ラマンスペクトルには1600cm“1 (2重結
合)に吸収があった。
Table 1 Example 3 Electrolytic reduction polymerization was carried out in the same manner as in Example 1 except that the Bu4NBF4 solution was replaced with propylene carbonate. 0.814 mg of a polymer film having a black periphery and a brown color was obtained. The electrical conductivity of this polymer film is 1.3X
to°2S / 81% elemental analysis value CI/C is 0.51
, the Raman spectrum had an absorption at 1600 cm"1 (double bond).

実施例4 0.1M  Bu4NBF4のアセトニトリル溶液10
m1にテトラクロルエチレン0.2mlを溶解し、この
溶液と作用極として5n02ガラス(4Ω/口 2.4
X 10’ rrr) 、陰極としてpt。
Example 4 0.1M Bu4NBF4 acetonitrile solution 10
Dissolve 0.2 ml of tetrachlorethylene in m1 and mix this solution with 5n02 glass (4Ω/mouth 2.4
X 10' rrr), pt as cathode.

参照電極としてAg/Ag+を浸漬し、室温にて−3,
5V v、s、A g / A g+で1時間電解重合
した。
Ag/Ag+ was immersed as a reference electrode, −3,
Electrolytic polymerization was carried out at 5V v, s, A g /A g+ for 1 hour.

電気伝導度    1.3X 10→S/amCI/C
O,1B ラマンスペクトル  1600 cm−’実施例5 0.1M  Bu4NBF4のアセトニトリル溶iff
llOmlにオクタブロムヘキサトリエン0.4mlを
溶解し、この溶液に作用極としてITO(2,4XlO
’イ)、陰極としてpt、参照電極としてAg/Ag+
を浸漬し、室温にて−3,OVu、s、Ag/Ag”で
1時間電解重合した。
Electrical conductivity 1.3X 10→S/amCI/C
O,1B Raman spectrum 1600 cm-'Example 5 0.1M Bu4NBF4 dissolved in acetonitrile iff
Dissolve 0.4 ml of octabromohexatriene in 110 ml, and add ITO (2,4
'b), PT as cathode, Ag/Ag+ as reference electrode
was immersed and electrolytically polymerized at room temperature in -3,OVu,s,Ag/Ag'' for 1 hour.

電気伝導度    3.2X 1O−3S / 0mC
1/CO,77 ラマンスペクトル  1600 am−’[効 果] 以上説明したように、本発明により導電性または半導電
性の有用な新規重合体が提供される。
Electrical conductivity 3.2X 1O-3S/0mC
1/CO,77 Raman spectrum 1600 am-' [Effect] As explained above, the present invention provides a useful novel conductive or semiconductive polymer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2の重合体フィルムのIRおよびラマ
ンスペクトを示すグラフ、第2図は同フィルムの定常状
態サイクリックポルタモグラムを示すグラフ、第3図は
同フィルムのX線回折を示すグラフ。
Fig. 1 is a graph showing the IR and Raman spectra of the polymer film of Example 2, Fig. 2 is a graph showing the steady-state cyclic portamogram of the same film, and Fig. 3 is a graph showing the X-ray diffraction of the same film. Graph showing.

Claims (1)

【特許請求の範囲】 ▲数式、化学式、表等があります▼ (式中X、X′はCl、Br、Hから選択され、Y、Y
′はCl、Brから選択されたハロゲンを表わし、nは
1〜4の整数を表わす。)を還元することにより得られ
る導電性又は半導性重合体。
[Claims] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, X and X' are selected from Cl, Br, and H, and Y and Y
' represents a halogen selected from Cl and Br, and n represents an integer from 1 to 4. conductive or semiconductive polymer obtained by reducing ).
JP62310939A 1987-12-10 1987-12-10 Method for producing conductive or semiconductive polymer Expired - Fee Related JPH0662742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310939A JPH0662742B2 (en) 1987-12-10 1987-12-10 Method for producing conductive or semiconductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310939A JPH0662742B2 (en) 1987-12-10 1987-12-10 Method for producing conductive or semiconductive polymer

Publications (2)

Publication Number Publication Date
JPH01152121A true JPH01152121A (en) 1989-06-14
JPH0662742B2 JPH0662742B2 (en) 1994-08-17

Family

ID=18011205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310939A Expired - Fee Related JPH0662742B2 (en) 1987-12-10 1987-12-10 Method for producing conductive or semiconductive polymer

Country Status (1)

Country Link
JP (1) JPH0662742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149104A (en) * 2022-08-16 2022-10-04 昆明理工大学 Battery electrolyte containing additive and application thereof in lithium-sulfur battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190217A (en) * 1986-02-18 1987-08-20 Agency Of Ind Science & Technol Electrically conductive product and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190217A (en) * 1986-02-18 1987-08-20 Agency Of Ind Science & Technol Electrically conductive product and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149104A (en) * 2022-08-16 2022-10-04 昆明理工大学 Battery electrolyte containing additive and application thereof in lithium-sulfur battery
CN115149104B (en) * 2022-08-16 2024-02-27 昆明理工大学 Battery electrolyte containing additive and application of battery electrolyte in lithium-sulfur battery

Also Published As

Publication number Publication date
JPH0662742B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US4663001A (en) Electroconductive polymers derived from heterocycles polycyclic monomers and process for their manufacture
Loguercio et al. Synergistic interplay of ionic liquid and dodecyl sulphate driving the oxidation state of polypyrrole based electrodes
JPH075716B2 (en) Process for producing N, N'-diphenylbenzidine polymer
JPH02240163A (en) Conductive polymer solution
Tkachenko et al. One-step synthesis of the polyaniline–single-walled carbon tubes nanocomposite in formic acid and its electrochemical properties
JPH01152121A (en) Novel conductive or semiconductive polymer
JPS63122727A (en) Novel polymer and production thereof
JPH075717B2 (en) Method for producing N-alkyl substituted dihydropyrrolopyrrole polymer
JPS63139912A (en) Conductive polymer
JPS614723A (en) Production of polymer of carbazole compound
JPS63196622A (en) Production of polymer having isothianaphthene structure
JPS63199726A (en) Novel semiconductive or conductive polymer
JP2525488B2 (en) Highly conductive polypyrrole molding
JPS63199727A (en) Organic semiconductor
JPS63225622A (en) Production of polymeric semiconductor or conductor composition
JP2716132B2 (en) Polyaniline battery
JPS63202625A (en) Production of high polymer semiconductor or electrically conductive material
JPS63125520A (en) Production of polymer semiconductor of conductor composition
JPH0739474B2 (en) Method for producing polyphenylene film
JPS61233020A (en) Production of 1,2-benzenediamine based compound polymer
JPS6291525A (en) Production of electroconductive polymer
JPH06322115A (en) Polyaminoazonaphthalene and its production
JPH029620B2 (en)
JPS6291523A (en) Production of electroconductive polymer
JPS6162521A (en) Production of electrically conductive polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees