JPH01151940A - Catalyst for removal of nitrogen oxides - Google Patents

Catalyst for removal of nitrogen oxides

Info

Publication number
JPH01151940A
JPH01151940A JP62308723A JP30872387A JPH01151940A JP H01151940 A JPH01151940 A JP H01151940A JP 62308723 A JP62308723 A JP 62308723A JP 30872387 A JP30872387 A JP 30872387A JP H01151940 A JPH01151940 A JP H01151940A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
nitrogen oxides
component
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62308723A
Other languages
Japanese (ja)
Other versions
JP2548756B2 (en
Inventor
Yoshiaki Obayashi
良昭 尾林
Kozo Iida
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62308723A priority Critical patent/JP2548756B2/en
Publication of JPH01151940A publication Critical patent/JPH01151940A/en
Application granted granted Critical
Publication of JP2548756B2 publication Critical patent/JP2548756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To remove nitrogen oxides in a flue gas at a high efficiency even in case that mole ratio of NO/NO2 is unbalanced by making a catalyst composed of titanium oxide, vanadium oxide and tungsten oxide support a composite oxide of copper oxide and chromium oxide. CONSTITUTION:As a catalyst for ammonia catalytic reduction process of nitrogen oxides in a combustion gas such as boiler flue gas, titanium oxide constitutes the first component and vanadium oxide and tungsten oxide the second component. A composite oxide of copper oxide and chromium oxide is made to support by the aforementioned catalyst as the third component. The catalyst thus obtained removes nitrogen oxides in the flue gas at a high remove rate even in case that mole ratio of NO/NO2 is deviated particularly to <=1.0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明にボイラ排ガス等の燃焼排ガス中に含まれる窒素
酸化物を除去するための触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a catalyst for removing nitrogen oxides contained in combustion exhaust gas such as boiler exhaust gas.

〔従来の技術〕[Conventional technology]

重油や石炭焚ボイラ、各種化学装置に付設する燃焼炉、
製鉄プラント、硝酸プラント、ディーゼルエンジンやタ
ービンの如き内燃機関からの排ガス中の窒素酸化物(以
下Boxという)の無害化処理方法としては、吸着法、
酸化吸収法、固体化捕集法、接触還元法などが知られて
いる。
Heavy oil and coal-fired boilers, combustion furnaces attached to various chemical equipment,
Methods for detoxifying nitrogen oxides (hereinafter referred to as Box) in exhaust gas from steel plants, nitric acid plants, and internal combustion engines such as diesel engines and turbines include adsorption methods,
Oxidation absorption methods, solidification collection methods, catalytic reduction methods, etc. are known.

その中でも後処理不要の接触還元法が経済的にも技術的
にも優れている。
Among these, the catalytic reduction method, which does not require post-treatment, is economically and technically superior.

接触還元法においても排ガス中の酸素の有無に影響され
ない選択的接触還元法が脱硝操作を容易にし技術的にも
優れている。その1つに、アンモニアを添加し接触還元
して排ガス中のNOxを無害な窒素と水に分解する方法
が最も経済的でかつ効果的な方法として工業化されてお
シ、現在ではこの方式を採用し九数多くのプラントが稼
動している。
Among the catalytic reduction methods, the selective catalytic reduction method, which is not affected by the presence or absence of oxygen in the exhaust gas, facilitates the denitrification operation and is technically superior. One method is to add ammonia and perform catalytic reduction to decompose NOx in exhaust gas into harmless nitrogen and water, which has been industrialized as the most economical and effective method, and is currently in use. Nine plants are in operation.

この方法に用いる触媒として、酸化タングステン、酸化
バナジウム、酸化モリブデン、酸化鉄などを酸化チタン
に担持し九触媒(特公昭57−36012)や酸化セリ
ウムを酸化チタンに担持し九触媒(特公昭53−i35
59)などが知られている。酸化チタンを担体とする触
媒以外に高比表面積な酸化アルミニウムに酸化バナジウ
ムを担持した触媒(特公昭56−44778)もあるが
、重油や石炭燃焼排ガスのような硫黄酸化物を含有する
排ガス処理のなめには、硫黄酸化物に対する耐被毒性の
点から酸化チタンを担体とした触媒の方が優れている。
Catalysts used in this method include tungsten oxide, vanadium oxide, molybdenum oxide, iron oxide, etc. supported on titanium oxide as the 9 catalyst (Japanese Patent Publication No. 57-36012), and cerium oxide supported on titanium oxide as the 9 catalyst (Japanese Patent Publication No. 57-36012). i35
59) etc. are known. In addition to catalysts using titanium oxide as a carrier, there is also a catalyst in which vanadium oxide is supported on aluminum oxide with a high specific surface area (Japanese Patent Publication No. 56-44778), but it is suitable for the treatment of exhaust gas containing sulfur oxides such as heavy oil and coal combustion exhaust gas. Specifically, a catalyst using titanium oxide as a carrier is superior in terms of resistance to poisoning by sulfur oxides.

この中でも酸化チタン−酸化バナジウム−酸化タングス
テン触媒が活性も高く、耐久性に優れ九触媒であること
から数多くの実機プラントで窒素酸化物の除去用触媒と
して用いられている。
Among these, the titanium oxide-vanadium oxide-tungsten oxide catalyst has high activity and excellent durability, so it is used as a catalyst for removing nitrogen oxides in many actual plants.

[発明が解決しようとする問題点] 酸化チタンー酸化バナジウム−酸化タングステン触媒を
用いた実機プラントにおいて、排ガス発生源の運転状況
の変化に対応してIJOXの除去効率が変化する現象が
見られ念。このなめ排ガス中のNOxについてNo  
とNotに分別して濃度を測定したところ、定常状態で
J4110xの大部分ハMOで存在し、高い除去効率が
得られるものの、非定常状態でt’! NOXの大部分
1dolで存在し、低い除去効率しか得られないことが
明らかとなった。
[Problems to be Solved by the Invention] In an actual plant using a titanium oxide-vanadium oxide-tungsten oxide catalyst, a phenomenon has been observed in which the IJOX removal efficiency changes in response to changes in the operating conditions of the exhaust gas generation source. No about NOx in this slick exhaust gas.
When we measured the concentration of J4110x by separating it into ``HMO'' and ``Not'' in a steady state, we found that most of J4110x existed in the form of HAMO, and although a high removal efficiency was obtained, in an unsteady state, t'! It became clear that most of the NOX was present at 1 dol and only a low removal efficiency could be obtained.

本発明者らにこの現象を実験室でさらに詳細に検討する
ため、酸化チタン−酸化バナジウム−酸化タングステン
触媒のNOとNH,の反応、no とNotの混合ガス
と[、の反応、さらにMolと[1,との反応について
実験を行なった結果、Box OMHzによる還元反応
は下記の(1) 〜(3)式により進行し、No およ
びNo、の存在割合によって著しく NOx除去効率が
変化することが判った。
In order to investigate this phenomenon in more detail in the laboratory, the present inventors investigated the reaction of titanium oxide-vanadium oxide-tungsten oxide catalyst between NO and NH, the reaction of a mixed gas of no and Not with As a result of conducting experiments on the reaction with [1], it was found that the reduction reaction by Box OMHz proceeds according to the following equations (1) to (3), and that the NOx removal efficiency changes significantly depending on the abundance ratio of No and No. understood.

410  +  4MB、+  o、   →   4
N、  +  6H,O−−−(1)No  +NO1
+  2  MH,→   2N、+311.O・ ・
 ・ (2)6Mo、+ann、       →  
  7N、+i  2H,o    −−−(3)すな
わち(2)式に示すHoxの除去効率は(1)式に比べ
混合ガス°中のNo/NOX  モル比が1.0以上で
は若干上回るものの、no/so、  モル比がto以
下でdNo/No、  比が小さくなると共に徐々に低
下していき、(3)式に示す13of単独では著しく低
下することが判った。第1図にこのNo−No1 混合
系のNOx除去効率をグラフに示す。
410 + 4MB, + o, → 4
N, + 6H, O---(1) No + NO1
+ 2 MH, → 2N, +311. O・・
・ (2) 6Mo, +ann, →
7N. It was found that when the molar ratio of no/so is below to, dNo/No gradually decreases as the ratio becomes smaller, and when 13of shown in equation (3) is used alone, it decreases markedly. FIG. 1 shows a graph of the NOx removal efficiency of this No-No1 mixed system.

以上の如く、従来の酸化チタン−酸化バナジウム−酸化
タングステン触媒を用い九場合、N07M01モル比が
to以下あるいはHOI単独の場合にNOx除去効率が
著しく低下するという欠点がある。
As described above, when using the conventional titanium oxide-vanadium oxide-tungsten oxide catalyst, there is a drawback that the NOx removal efficiency is significantly reduced when the N07M01 molar ratio is less than 0 or when HOI is used alone.

本発明hi来の排ガス中のNagの除去方法の欠点を解
消し、特にNo/!3o、モル比が1.0以下に片寄つ
九場合においても高い除去率を維持することを可能にし
な排ガス中の窒素酸化物の除去用触媒を提供しようとす
るものである。
The present invention solves the drawbacks of the conventional method for removing Nag from exhaust gas, and especially No/! 3o, it is an object of the present invention to provide a catalyst for removing nitrogen oxides from exhaust gas that can maintain a high removal rate even when the molar ratio is biased to 1.0 or less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは排ガス中のNOX (D内No、がNO/
IJO1モル比が1.0以下に片寄った場合においてN
Ox除去効率が低下する従来触媒の改良に関して、鋭意
検討を重ね九結果、従来の酸化チタン−酸化バナジクム
ー酸化タングステン触媒に酸化鋼と酸化クロムを複合酸
化物の形で担持する触媒を調製することによって、排ガ
ス中のNo、濃度の変化に影響を受けないことを見い出
し、本発明を完成するに至った。
The present inventors discovered that NOx in exhaust gas (No in D, is NO/
When the IJO1 molar ratio is biased to 1.0 or less, N
As a result of extensive research into improving conventional catalysts that reduce Ox removal efficiency, we have developed a catalyst in which steel oxide and chromium oxide are supported in the form of a composite oxide on the conventional titanium oxide-vanadium oxide tungsten oxide catalyst. It was discovered that the present invention is not affected by changes in the concentration of No in exhaust gas, and the present invention was completed.

すなわち、本発明の窒素酸化物除去用触媒に第一成分と
してチタン酸化物、第二成分としてバナジウム酸化物と
タングステン酸化物、第三成分として銅酸化物とクロム
酸化物の複合酸化物を含有してなるものである。
That is, the catalyst for removing nitrogen oxides of the present invention contains titanium oxide as the first component, vanadium oxide and tungsten oxide as the second component, and a composite oxide of copper oxide and chromium oxide as the third component. That's what happens.

上記の酸化チタン−酸化バナジウム−酸化タングステン
−酸化鋼・酸化クロム複合酸化物含有触媒を調整するに
は、まずチタン源としては塩化チタン、硫酸チタンなど
の無機性チタン化合物および修酸チタン、テトラアルコ
中クチタンなどの有機性チタン化合物などから選ぶこと
ができる。バナジウム源としてはバナジウムの酸化物、
硫酸バナジル、修酸バナジル、メタバナジン酸アンモニ
ウムなどから、タングステン源としてハハラタングステ
ン酸アンモニウム、メタタングステン酸アンモニウムな
どかう選ぶことができる。次に銅源としては硫酸銅、硝
酸鋼などがら、クロム源としては硫酸クロム、硝酸クロ
ム、クロム酸、重クロム酸アンモニウムなどから選ぶこ
とができる。さらに触媒の成形性や強度を向上させる目
的でモンモリロナイト、酸性白土、ベントナイト、カオ
リン、ハロイサイト、セリサイトなどの粘土系無機物質
や、グラスウール、グラスファイバー、ロックウール、
カオウールなどの無機繊維状物質を添加し九担体も用い
得る。ただし、触媒活性の点から、これらの添加物に担
体主成分に対して50 wt%以下であることが好まし
一〇 一般的にバナジウム酸化物、タングステン酸化物はチタ
ン酸化物1に対し、それぞれα001〜α1、α01〜
α2である。良好な触媒活性を得るには、第三成分とし
て加える銅化合物とクロム化合物の複合酸化物の配合割
合に酸化物換算で酸化チタンの1に対して(LOO2〜
IIL2、好ましくは101〜α1の範囲がよい。本発
明の触媒はその形状を選択することによって、固定層、
移動層、流動層のいずれの反応器形成でも使用すること
ができるが、反応温度は通常は200〜600℃、好ま
しくは250〜450℃が適当である。反応時間は、触
媒の単位立方米当〕毎時2000〜101011LOO
ONの範囲が選ばれる。反応圧力は大気圧、減圧、加圧
のいずれでも行い得るので特に制限はない。
In order to prepare the above-mentioned titanium oxide-vanadium oxide-tungsten oxide-steel oxide/chromium oxide composite oxide-containing catalyst, the titanium sources must first be inorganic titanium compounds such as titanium chloride and titanium sulfate, titanium oxalate, and tetraalcohol. You can choose from organic titanium compounds such as cutitan. As a vanadium source, vanadium oxide,
Among vanadyl sulfate, vanadyl oxalate, ammonium metavanadate, etc., ammonium haharatungstate, ammonium metatungstate, etc. can be selected as the tungsten source. Next, the copper source can be selected from copper sulfate, steel nitrate, etc., and the chromium source can be selected from chromium sulfate, chromium nitrate, chromic acid, ammonium dichromate, etc. Furthermore, in order to improve the formability and strength of the catalyst, clay-based inorganic substances such as montmorillonite, acid clay, bentonite, kaolin, halloysite, and sericite, glass wool, glass fiber, rock wool, etc.
A carrier may also be used by adding an inorganic fibrous material such as Kao wool. However, from the point of view of catalytic activity, it is preferable that these additives be added in an amount of 50 wt% or less based on the main component of the carrier.10 Generally, vanadium oxide and tungsten oxide are used in proportions of 1 to 1 titanium oxide, respectively. α001~α1, α01~
α2. In order to obtain good catalytic activity, the compounding ratio of the composite oxide of a copper compound and a chromium compound added as the third component should be 1 to 1 of titanium oxide (LOO2~
IIL2, preferably in the range of 101 to α1. By selecting the shape of the catalyst of the present invention, a fixed bed,
Although either a moving bed or a fluidized bed reactor can be used, the reaction temperature is usually 200 to 600°C, preferably 250 to 450°C. The reaction time is 2000 to 101011LOO per cubic meter of catalyst]
The ON range is selected. The reaction pressure is not particularly limited as it can be carried out at atmospheric pressure, reduced pressure or increased pressure.

以下実施例によ〕詳しく説明する′。This will be explained in detail below using Examples.

〈実施例1〉 メタチタン酸スラリー625 t (Tie、 として
2oor)にメタバナジン酸アンモニウム12.9Fと
パラタングステン酸アンモニウム1aOfを水に溶解し
九ものを加え、生成したスラリー溶液を蒸発乾固する。
<Example 1> 12.9 F of ammonium metavanadate and 1 aOf of ammonium paratungstate dissolved in water were added to 625 t (Tie, 2 oor) of metatitanic acid slurry, and the resulting slurry solution was evaporated to dryness.

生成し九固体をムとする。It produces nine solids.

また別に重クロム酸アンモニウム((NH*)tCrm
O,]44fを100−の水に溶解し、さらにアンモニ
ア水(28チ溶液46−)を加えた溶液に硝酸鋼Ccu
oo凰)m−3H@o 〕42 tを100−の水に溶
解させた溶液をゆつくシと滴下し、滴下終了後60分間
攪拌を行なう。この間溶液のpHi&7に保つためアン
モニア水を少量滴下する。生成し九スラリー溶液1Fと
する。
Additionally, ammonium dichromate ((NH*)tCrm
Nitric acid steel Ccu was added to a solution in which O,]44f was dissolved in 100-water and further ammonia water (28-chi solution 46-) was added.
A solution prepared by dissolving OO) m-3H@o]42t in 100-g water was slowly added dropwise, and after the addition was completed, stirring was continued for 60 minutes. During this time, a small amount of ammonia water is added dropwise to maintain the pH of the solution at &7. A slurry solution 1F is produced.

次に固体ムとスラリー溶液Bを戸遇したケーキをニーダ
で十分混練し念。混線後直径3■の棒状に押出し、12
0℃で6時間乾燥後450℃で5時間焼成した。得られ
た触媒に重量比でTi01 : V2O5: WOI 
: (OuO”0rlO1) −1:α05:108:
(LO2の組成を有する。
Next, thoroughly knead the cake containing the solid mixture and slurry solution B using a kneader. After mixing, extrude into a rod shape with a diameter of 3 cm, 12
After drying at 0°C for 6 hours, it was fired at 450°C for 5 hours. The obtained catalyst had a weight ratio of Ti01:V2O5:WOI
: (OuO"0rlO1) -1:α05:108:
(Has a composition of LO2.

比較の九め、固体ムのみに水を加え、上記と同様の方法
によシ触媒を調製し九。得られた触媒は重量比でTie
、: vlog: WQ、=1: (LO5:(LO8
の組成を有する(以下比較例1の触媒という。)。
For comparison, a catalyst was prepared in the same manner as above by adding water only to the solid mass. The obtained catalyst has a weight ratio of Tie
,: vlog: WQ, = 1: (LO5:(LO8
(hereinafter referred to as the catalyst of Comparative Example 1).

1+固体ム226tに酸化クロム2?と酸化銅2tとを
加え、以下実施例と同様の方法によシ触媒を調製した。
1 + 226t solid chromium oxide and 2 chromium oxide? and 2 tons of copper oxide were added to prepare a catalyst in the same manner as in the following examples.

得られた触媒に重量比でTi01  :   710@
   :   WOI  :   auo   :  
 Qr、Q、=x   1    :   (LO5:
108=101:101の組成を有する(以下、比較例
2の触媒という)。
The weight ratio of Ti01 to the obtained catalyst was 710@
: WOI : auo :
Qr, Q, = x 1: (LO5:
It has a composition of 108=101:101 (hereinafter referred to as the catalyst of Comparative Example 2).

(2)窒素酸化物除去試験 上記によシ調製した本発明及び比較列の触媒を直@3■
、長さ5〜5■の円柱状とし、これを内径24−の石英
製小型反応器に充てんし、S’V 2 (LO00hr
−” で脱硝活性試験を行なった。ガス組成に下記の通
りであった。
(2) Nitrogen oxide removal test The catalysts of the present invention and comparative series prepared as described above were directly tested at @3
, a cylindrical shape with a length of 5 to 5 cm, and this was filled into a small quartz reactor with an inner diameter of 24 mm, and S'V 2 (LO00 hr
A denitrification activity test was carried out using the following gas composition.

(ガス組成1)     (ガス組成2)No  :1
90ppm      No  :  10ppmNo
l:  10ppm      No倉:  190p
pmNHs: 200ppm      NHB : 
 200ppmOR:5%       0.:5% Co!:12優       CO意:12%H!O:
9%       H,O:9%N、:   残   
        !!重  :   残反応器入口と出
口のNOx 9度をケミルミネッセンス式のBox分析
計により測定した。結果を表1に示す。
(Gas composition 1) (Gas composition 2) No: 1
90ppm No: 10ppmNo
l: 10ppm No.: 190p
pmNHs: 200ppm NHB:
200ppmOR: 5% 0. :5% Co! :12 Yu CO: 12%H! O:
9% H, O: 9% N,: remainder
! ! Heavy: The NOx level at the inlet and outlet of the remaining reactor was measured using a chemiluminescence Box analyzer. The results are shown in Table 1.

表1から明らかなように本発明による触媒はガス組成1
及び2に対し、共に良好な活性(mow除去率)を示す
が、比較触媒はガス組成1に対しては高い活性を示すが
、ガス組成2に対しては活性が低く、特に25ccと反
応温度が比較的低温の場合に顕著である。
As is clear from Table 1, the catalyst according to the present invention has a gas composition of 1
Both show good activity (mow removal rate) for gas composition 1 and 2, but the comparative catalyst shows high activity for gas composition 1, but low activity for gas composition 2, especially at 25 cc and reaction temperature. is noticeable when the temperature is relatively low.

〈実施例2〜6〉 実施列1と同様な方法により、重クロム酸アンモニウム
及び硝酸鋼の添加tft変化させて本発明の触媒を5種
調展した。
Examples 2 to 6 In the same manner as in Example 1, five types of catalysts of the present invention were prepared by varying the addition TFT of ammonium dichromate and steel nitrate.

これらの触媒及びガス組成2のガスを用い、実施例1と
同様にして、反応温度と窒素酸化物除去率の関係を求め
た。得られた結果を表2に示す。
Using these catalysts and gas having gas composition 2, the relationship between reaction temperature and nitrogen oxide removal rate was determined in the same manner as in Example 1. The results obtained are shown in Table 2.

表2から明らかなように実施列2〜6すなわち Ti0
1  :  V協0@  :  WOB  :  0u
OOrlO1=  1   :  a口5:(LO8:
(LOO2〜(L2の範囲内で高i活性が得られ九。
As is clear from Table 2, implementation rows 2 to 6, i.e. Ti0
1: V cooperation 0@: WOB: 0u
OOrlO1= 1: a-mouth 5: (LO8:
(High i activity was obtained within the range of LOO2~(L2).

〔発明の効果] 本発明の触媒を用いることによって、窒素酸化物の大半
が二酸化窒素として含有する排ガス中の窒素酸化物を一
酸化窒素の場合と同様に高い除去率で除去することがで
き念。
[Effects of the Invention] By using the catalyst of the present invention, it is possible to remove nitrogen oxides in the exhaust gas, in which most of the nitrogen oxides are contained as nitrogen dioxide, with a high removal rate similar to that of nitrogen monoxide. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の触媒の効果を示す図表である。 FIG. 1 is a chart showing the effects of the catalyst of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 排ガス中の窒素酸化物をアンモニアの存在下で接触的に
還元処理する触媒において、第一成分としてチタン酸化
物、第二成分としてバナジウム酸化物とタングステン酸
化物、第三成分として銅酸化物とクロム酸化物の複合酸
化物を含有してなることを特徴とする排ガス中の窒素酸
化物の除去用触媒。
In a catalyst that catalytically reduces nitrogen oxides in exhaust gas in the presence of ammonia, the first component is titanium oxide, the second component is vanadium oxide and tungsten oxide, and the third component is copper oxide and chromium. A catalyst for removing nitrogen oxides from exhaust gas, characterized by containing a composite oxide of oxides.
JP62308723A 1987-12-08 1987-12-08 Catalyst for removing nitrogen oxides Expired - Lifetime JP2548756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308723A JP2548756B2 (en) 1987-12-08 1987-12-08 Catalyst for removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308723A JP2548756B2 (en) 1987-12-08 1987-12-08 Catalyst for removing nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH01151940A true JPH01151940A (en) 1989-06-14
JP2548756B2 JP2548756B2 (en) 1996-10-30

Family

ID=17984507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308723A Expired - Lifetime JP2548756B2 (en) 1987-12-08 1987-12-08 Catalyst for removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2548756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330179A (en) * 2003-04-18 2004-11-25 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide, catalyst formed product, method for treating exhaust gas and composite power facility
KR100502853B1 (en) * 2000-08-24 2005-07-20 주식회사 포스코 Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119651A (en) * 2006-11-15 2008-05-29 Mitsubishi Heavy Ind Ltd Catalyst for nitrogen oxide removal, and exhaust gas treating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421956A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Method of removing nitrogen oxides contained in exhaust gas
JPS62282623A (en) * 1985-06-10 1987-12-08 Nippon Shokubai Kagaku Kogyo Co Ltd Purifying method for exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421956A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Method of removing nitrogen oxides contained in exhaust gas
JPS62282623A (en) * 1985-06-10 1987-12-08 Nippon Shokubai Kagaku Kogyo Co Ltd Purifying method for exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502853B1 (en) * 2000-08-24 2005-07-20 주식회사 포스코 Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
JP2004330179A (en) * 2003-04-18 2004-11-25 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide, catalyst formed product, method for treating exhaust gas and composite power facility
US7413715B2 (en) 2003-04-18 2008-08-19 Itsubishi Heavy Industries, Ltd. Catalyst for removing nitrogen oxides
JP4508615B2 (en) * 2003-04-18 2010-07-21 三菱重工業株式会社 Nitrogen oxide removal catalyst, catalyst molded product, exhaust gas treatment method and combined power generation facility
US8663567B2 (en) 2003-04-18 2014-03-04 Mitsubishi Heavy Industries, Ltd. Catalyst for removing nitrogen oxides
US8852518B2 (en) 2003-04-18 2014-10-07 Mitsubishi Heavy Industries, Ltd. Catalyst for removing nitrogen oxides

Also Published As

Publication number Publication date
JP2548756B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US4003978A (en) Method for treating ammonia-containing gases
CA2599114A1 (en) Ammonia oxidation catalyst for the coal fired utilities
JPS6090043A (en) Catalyst for purifying nitrogen oxide
KR20200086343A (en) SCR catalyst
CN109351358A (en) A kind of transition metal oxide composite catalyst and its preparation method and application
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JPS6211892B2 (en)
CN114832829A (en) High-temperature denitration catalyst for gas tail gas and preparation method thereof
JPS5820303B2 (en) Chitsusosankabutsunokangenyoushiyokubaisosebutsu
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
JPH01151940A (en) Catalyst for removal of nitrogen oxides
US4071601A (en) Selective removal of nitrogen oxides from waste gases using V-Mo-W catalysts
JP2007038155A (en) Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
JPH0587291B2 (en)
US4075283A (en) Selective removal of nitrogen oxides from waste gases containing sulfur oxides
JPS5812057B2 (en) Shiyokubaisosabutsu
JPS59213442A (en) Preparation of denitration catalyst
US4105745A (en) Catalyst and process for reducing nitrogen oxides
JPS63171643A (en) Catalyst for removing nitrogen oxide
JP3357904B2 (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JPS63147546A (en) Method for removing nitrogen oxide in exhaust gas
JPS5827623A (en) Catalytic decomposition of nitrogen oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12