JPH01151903A - Diffusion dialyzing method - Google Patents
Diffusion dialyzing methodInfo
- Publication number
- JPH01151903A JPH01151903A JP31086887A JP31086887A JPH01151903A JP H01151903 A JPH01151903 A JP H01151903A JP 31086887 A JP31086887 A JP 31086887A JP 31086887 A JP31086887 A JP 31086887A JP H01151903 A JPH01151903 A JP H01151903A
- Authority
- JP
- Japan
- Prior art keywords
- diffusion
- dialysis
- liquid
- acid
- soln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims description 22
- 238000000502 dialysis Methods 0.000 claims abstract description 39
- 239000002253 acid Substances 0.000 claims abstract description 19
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 18
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- 239000012528 membrane Substances 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000012510 hollow fiber Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 2
- 238000009849 vacuum degassing Methods 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 11
- 238000000926 separation method Methods 0.000 abstract description 7
- 230000007774 longterm Effects 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 150000007513 acids Chemical class 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical class [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Chemical class 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Chemical class 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000385 dialysis solution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000011133 lead Chemical class 0.000 description 1
- 239000011777 magnesium Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical class [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、イオン交換膜を用いる拡散透析法に関し、詳
しくはイオン交換膜を介して拡散用液と透析用液を存在
させて拡散透析を行なうにあたり、該拡散用液を予め脱
気して供給することを特徴とする拡散透析法である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diffusion dialysis method using an ion exchange membrane, and more specifically, a diffusion dialysis method in which a diffusion liquid and a dialysis liquid are present through an ion exchange membrane. This is a diffusion dialysis method characterized by supplying the diffusion liquid after deaerating it in advance.
イオン交換膜を用−た拡散透析法は、特別な試薬や加熱
あるいは電気エネルギーを用いることなく、簡単な装置
で効率的に最または金属塩水溶液を分離1回収できる。Diffusion dialysis using an ion exchange membrane can efficiently separate and recover an aqueous metal salt solution using a simple device without using special reagents, heating, or electrical energy.
さらに、中空糸状のイオン交換膜を用いる場合には、フ
ィルタープレス型イオン交換膜に比べて大きい膜面積を
必要としない特徴を有し、巾広−分野に利用されている
。Furthermore, when a hollow fiber ion exchange membrane is used, it has the characteristic that it does not require a large membrane area compared to a filter press type ion exchange membrane, and is used in a wide range of fields.
これら拡散透析法による酸または金属塩の分離1回収に
お―ては、濃度勾配による回収率を高めるため、種々の
方法が提案なされているかその代表的なものは例えば酸
を含む水溶液と水とが向流接触するよう供給する方法で
ある。In the separation and recovery of acids or metal salts using the diffusion dialysis method, various methods have been proposed in order to increase the recovery rate using concentration gradients. This is a method of supplying so that they are in countercurrent contact.
しかしながら、かかるイオン交換膜による向流接触式の
拡散透析法においても、特に中空糸状膜を用いる場合に
は、長時間の拡散透析を続けていくにつれて、酸の回収
率および金属塩の分離効率が低下してくるという欠点が
ある。However, even in the countercurrent contact diffusion dialysis method using such an ion exchange membrane, especially when a hollow fiber membrane is used, the acid recovery rate and metal salt separation efficiency decrease as diffusion dialysis continues for a long time. The disadvantage is that it is decreasing.
本発明者らは上記した問題点を解決するために、イオン
交換膜を用いる拡散透析法について鋭意研究、開発を重
ねた。その結果、特に中空糸状のイオン交換膜を用いる
拡散透析法においては、拡散液中に含まれる空気などの
溶存気体が温度変化により、該中空糸状膜の上部あるい
は内部にう帯留して該拡散液の流れを阻害するため、酸
の回収率および金属塩の分離効率の低下を招くという知
見を得た。本発明はかかる知見に基づき開発したもので
あり、イオン交換膜を介してそれぞれ拡散用液と透析用
液を存在させて拡散透析を行うにあたり、該拡散用液を
予め脱気して供給することを特徴とする拡散透析する方
法により、高い酸の回収率および金属塩の分離効率を達
成することが出来る。In order to solve the above problems, the present inventors have conducted extensive research and development on diffusion dialysis using an ion exchange membrane. As a result, especially in the diffusion dialysis method using a hollow fiber-like ion exchange membrane, dissolved gases such as air contained in the diffusion liquid become trapped in the upper part or inside of the hollow fiber-like membrane due to temperature changes and become trapped in the diffusion liquid. It was found that the acid recovery rate and metal salt separation efficiency were reduced due to the obstruction of the flow of acid. The present invention was developed based on this knowledge, and when performing diffusion dialysis with a diffusion liquid and a dialysis liquid present through an ion exchange membrane, the diffusion liquid is degassed in advance and supplied. A high acid recovery rate and metal salt separation efficiency can be achieved by the diffusion dialysis method characterized by the following.
本発明において用いるイオン交換膜は、従来公知の拡散
透析用の陰イオン交換膜または陽イオン交換膜であれば
特に制限されず、拡散透析の目的(用途)に応じて適宜
選択される。例えば酸を回収する場合には陰イオン交換
膜、また塩基を回収する場合には陽イオン交換膜が採用
される。しかして、本発明の方法は特に陰イオン交換基
を有する重合体から形成された中空糸状膜を用いる場合
に有効である。拡散用液としては、主に水であり、また
透析用液としては、一般に酬を含有する金属塩水溶液が
多く適用され、それら酸の回収および金属塩の分離9回
収が行われる。 上記の酸としては、例えば硫酸。The ion exchange membrane used in the present invention is not particularly limited as long as it is a conventionally known anion exchange membrane or cation exchange membrane for diffusion dialysis, and is appropriately selected depending on the purpose (application) of diffusion dialysis. For example, an anion exchange membrane is used when recovering acids, and a cation exchange membrane is used when recovering bases. Therefore, the method of the present invention is particularly effective when using a hollow fiber membrane formed from a polymer having anion exchange groups. The diffusion liquid is mainly water, and the dialysis liquid is generally an aqueous metal salt solution containing acids, and these acids are recovered and the metal salts are separated and recovered. Examples of the above acids include sulfuric acid.
塩酸、硝酸、リン#kl酢酸、弗化水素酸などであり、
また金属塩としては、例えばアルミニウム、銅、鉄、マ
グネシクム、ニッケル、鉛、亜鉛、ウランなどの塩であ
る。Hydrochloric acid, nitric acid, phosphorus #kl acetic acid, hydrofluoric acid, etc.
Examples of metal salts include salts of aluminum, copper, iron, magnesium, nickel, lead, zinc, and uranium.
本発明における拡散用液の脱気は、その脱気手段など特
に制限されないが、該拡散液に含有される溶存気体を溶
存酸素の濃度として一般に5 ppm以下、特に2pp
mに脱気することが、長時間の拡散透析においても酸ま
たは金属塩を高い回収率を維持できるために極めて好ま
しい。Deaeration of the diffusion liquid in the present invention is not particularly limited, such as the degassing means, but the concentration of dissolved gas contained in the diffusion liquid as dissolved oxygen is generally 5 ppm or less, particularly 2 ppm.
It is extremely preferable to degas the mixture to a temperature of m, since it is possible to maintain a high recovery rate of the acid or metal salt even during long-term diffusion dialysis.
即ち、溶存酸素が特に5 ppmより多く含有されてい
る拡散用液を供した場合には、長時間の拡散透析におい
て、次第に酸または金に4鳩の低下を来たす。That is, when a diffusion solution containing more than 5 ppm of dissolved oxygen is used, the concentration of acid or gold gradually decreases during long-term diffusion dialysis.
拡散用液の脱気手段としては、例えば通常の加熱による
煮沸する方法や超音波加熱法なども用いられるが、多電
の熱エネルギーが必要であること、連続的に脱気する場
合に装置が大型化するなど経済的および工業的に不利で
ある。したがって、本発明においては特に真空チャンバ
ー内に設けた中空状高分子膜に拡散用液を通過させて減
圧脱気する簡便な方法が好ましく採用され、真空度を調
節することにより、該拡散液中に含有の溶存気体を溶存
酸素として一般に2ppm以下まで容易に脱気すること
が出来る。As means for degassing the diffusion liquid, for example, boiling by ordinary heating or ultrasonic heating can be used, but these methods require multiple electric thermal energy and are difficult to use when degassing continuously. It is economically and industrially disadvantageous as it becomes larger. Therefore, in the present invention, a simple method in which the diffusion liquid is passed through a hollow polymer membrane provided in a vacuum chamber and degassed under reduced pressure is preferably adopted. It is possible to easily degas the dissolved gas contained in the gas to 2 ppm or less as dissolved oxygen.
このような真空チャンノ(−内に設ける中空糸状高分子
膜は、例えばボラ四7ツ化エチレン、四フッ化エチレン
ーパー70ロアルキルビニルエーテル共重合体などのフ
ッ素系高分子膜やポリスルホン、ぎリエーテルイミド、
シリコンなど酸素透過性の材質も用いられている。The hollow fiber polymer membrane provided in such a vacuum chamber (-) may be made of a fluorine-based polymer membrane such as bora-tetra7ethylene, tetrafluoroethylene-per-70roalkyl vinyl ether copolymer, polysulfone, or glycyether imide. ,
Oxygen permeable materials such as silicon are also used.
以下、本発明の代表的な方法について、添付図面にその
フローを示す。中空糸状イオン交換膜の多数を集束して
円筒体内に構成したモジュール1にお―て、該中空糸状
膜の内側にそれぞれ拡散用液2を液槽3より定量ポンプ
4を用いて上部から供給し、また該中空糸状膜の外側に
透析用液5を液槽6より定量ポンプ7を用いて下部から
供給して、該膜を介して向流接触させることにより拡散
透析を実施する。本発明は、かかる拡散透析法において
拡散用液2を予め真空チャンバー8内に設けた中空糸状
高分子膜9を通過させて後、モジュールlに供給するこ
とを特徴とするものである。なお、拡散用液2として水
を供給し、透析用液5として醗を含有する金属塩水溶液
を供給する場合、拡散液10として酸含有の水溶液およ
び透析液11として分離された金属塩水溶液が回収され
る。The flow of a typical method of the present invention is shown below in the accompanying drawings. In a module 1 in which a large number of hollow fiber ion exchange membranes are assembled into a cylindrical body, a diffusion liquid 2 is supplied to the inside of each hollow fiber membrane from the upper part using a metering pump 4 from a liquid tank 3. Further, the dialysis liquid 5 is supplied from the lower part to the outside of the hollow fiber membrane from the liquid tank 6 using a metering pump 7, and diffusion dialysis is carried out by bringing the membrane into countercurrent contact. The present invention is characterized in that in the diffusion dialysis method, the diffusion liquid 2 is passed through a hollow fiber polymer membrane 9 provided in advance in a vacuum chamber 8 and then supplied to the module 1. In addition, when water is supplied as the diffusion liquid 2 and a metal salt aqueous solution containing alcohol is supplied as the dialysis liquid 5, an acid-containing aqueous solution as the diffusion liquid 10 and a separated metal salt aqueous solution as the dialysate 11 are recovered. be done.
以上の説明より理解されるように、本発明によれば、イ
オン交換膜を介してそれぞれ拡散用液と透析用液を存在
させて拡散透析を行うにあたり、該拡散用液を予め脱気
して供給することにより、例えば拡散用液が水であり、
透析用液が酸を含有する金属塩水溶液の連続透析におψ
で、酸の回収率及び金属塩分離効率が低下することなく
、長期にわたり性能を維持することができる。なお、本
発明は主に中空糸状のイオン交換膜を用いた場合につい
て説明したが、通常のイオン交換膜(平膜)の場合にお
いても、相応の効果が得られるであろうことが容易に理
解される。As can be understood from the above explanation, according to the present invention, when performing diffusion dialysis with a diffusion liquid and a dialysis liquid present through an ion exchange membrane, the diffusion liquid is degassed in advance. By supplying, for example, the diffusion liquid is water,
For continuous dialysis of metal salt aqueous solutions whose dialysis fluid contains acids.
Therefore, performance can be maintained over a long period of time without deterioration of acid recovery rate and metal salt separation efficiency. Although the present invention has mainly been explained using a hollow fiber ion exchange membrane, it is easy to understand that a corresponding effect can be obtained even when a normal ion exchange membrane (flat membrane) is used. be done.
以下、本発明の実施例を示すが、本発明はこれらの実施
例に限定されるものではない。Examples of the present invention will be shown below, but the present invention is not limited to these Examples.
実施例1
第1図に示したフローシートにおいて、陰イオン交換基
を有する中空糸状膜を用いて、透析用液として硫酸マグ
ネシウムの硫酸水溶液また拡散用液としてイオン交換水
をそれぞれ向流にて供給し、硫酸の回収を行うた。Example 1 In the flow sheet shown in Fig. 1, a sulfuric acid aqueous solution of magnesium sulfate as a dialysis liquid and ion-exchanged water as a diffusion liquid were supplied in countercurrent flow using a hollow fiber membrane having anion exchange groups. Then, sulfuric acid was recovered.
真空チャンバーの真空度により、拡散用液における溶存
酸素を第1表に示す濃度に調節して所定の運転を行った
。その結果、拡散用液中の硫酸濃度および硫酸の回収率
は第1表の通りであつた。比較のため、A1〜2の条件
における拡散用液は、脱気処理してないイオン交換水を
用いた。Depending on the degree of vacuum in the vacuum chamber, the dissolved oxygen in the diffusion liquid was adjusted to the concentration shown in Table 1, and a predetermined operation was performed. As a result, the sulfuric acid concentration in the diffusion liquid and the recovery rate of sulfuric acid were as shown in Table 1. For comparison, ion-exchanged water that had not been degassed was used as the diffusion liquid under conditions A1 and A2.
実施例2
実施例1と同条件で第2表1A1〜7)に示す塩化第1
鉄の塩酸水溶液から塩酸の回収を行なヮた。Example 2 Under the same conditions as Example 1, the first chloride shown in Table 2 1A1-7)
Hydrochloric acid was recovered from an aqueous solution of iron in hydrochloric acid.
その結果、拡散液中の塩酸濃度および塩酸の回収率は第
2表の通りであった。比較のため、屋1〜2の条件にお
ける拡散用液は、脱気処理をしてないイオン交換水を用
いた。As a result, the concentration of hydrochloric acid in the diffusion liquid and the recovery rate of hydrochloric acid were as shown in Table 2. For comparison, ion-exchanged water that had not been deaerated was used as the diffusion liquid under the conditions of Houses 1 and 2.
第1図は、本発明の方法における代表的なフローシート
である。lは中空糸状膜を中空筒内に設けて構成した拡
散透析装置、2は拡散用液、3はその液槽、4は定量ポ
ンプ、5は透析用液、6はその液槽、7は定量ポンプ、
8は真空チャンバー、9は中空糸膜、10は拡散液、1
1は透析液を示傅田曹達体55:会社
第1図FIG. 1 is a typical flow sheet for the method of the present invention. 1 is a diffusion dialysis device configured by installing a hollow fiber membrane in a hollow cylinder, 2 is a diffusion liquid, 3 is a liquid tank thereof, 4 is a metering pump, 5 is a dialysis liquid, 6 is a liquid tank, and 7 is a quantitative meter. pump,
8 is a vacuum chamber, 9 is a hollow fiber membrane, 10 is a diffusion liquid, 1
1 shows the dialysate.Fuda Soda body 55: Company diagram 1
Claims (1)
を存在させて拡散透析を行うにあたり、該拡散用液を予
め脱気して供給すること特徴とする拡散透析法 2)イオン交換膜が中空糸状膜である特許請求の範囲第
1項記載の拡散透析法 3)拡散用液が水である特許請求の範囲第1項記載の拡
散透析法 4)透析用液が酸を含有する金属塩水溶液である特許請
求の範囲第1項記載の拡散透析法 5)酸を回収する特許請求の範囲第4項記載の拡散透析
法 6)拡散用液の溶存酸素を5ppm以下に脱気する特許
請求の範囲第1項記載の拡散透析法 7)拡散用液を連続減圧脱気法により脱気する特許請求
の範囲第1項または同第6項記載の拡散透析法[Claims] 1) Diffusion dialysis characterized in that when performing diffusion dialysis with a diffusion liquid and a dialysis liquid present through an ion exchange membrane, the diffusion liquid is degassed beforehand and supplied. Method 2) Diffusion dialysis method according to claim 1, in which the ion exchange membrane is a hollow fiber membrane 3) Diffusion dialysis method according to claim 1, in which the diffusion liquid is water 4) Dialysis liquid 5) Diffusion dialysis method according to claim 4, in which the acid is recovered from a metal salt aqueous solution containing an acid. 6) Dissolved oxygen in the diffusion solution is reduced to 5 ppm. 7) Diffusion dialysis method according to claim 1 or claim 6, in which the diffusion liquid is degassed by continuous vacuum degassing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310868A JPH0817917B2 (en) | 1987-12-10 | 1987-12-10 | Diffusion dialysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310868A JPH0817917B2 (en) | 1987-12-10 | 1987-12-10 | Diffusion dialysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01151903A true JPH01151903A (en) | 1989-06-14 |
JPH0817917B2 JPH0817917B2 (en) | 1996-02-28 |
Family
ID=18010356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62310868A Expired - Lifetime JPH0817917B2 (en) | 1987-12-10 | 1987-12-10 | Diffusion dialysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0817917B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102921319A (en) * | 2012-11-09 | 2013-02-13 | 杭州水处理技术研究开发中心有限公司 | Preparation method of hollow fiber diffusion dialysis acid recovery membrane |
CN112955408A (en) * | 2018-11-12 | 2021-06-11 | 连津格股份公司 | Device and method for recovering alkaline solution and device and method for producing regenerated cellulose moulded bodies having such a method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50105545A (en) * | 1973-11-15 | 1975-08-20 | ||
JPS53142382A (en) * | 1977-05-17 | 1978-12-12 | Toray Ind Inc | Controlling device for ultrafiltrating quantity |
-
1987
- 1987-12-10 JP JP62310868A patent/JPH0817917B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50105545A (en) * | 1973-11-15 | 1975-08-20 | ||
JPS53142382A (en) * | 1977-05-17 | 1978-12-12 | Toray Ind Inc | Controlling device for ultrafiltrating quantity |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102921319A (en) * | 2012-11-09 | 2013-02-13 | 杭州水处理技术研究开发中心有限公司 | Preparation method of hollow fiber diffusion dialysis acid recovery membrane |
CN112955408A (en) * | 2018-11-12 | 2021-06-11 | 连津格股份公司 | Device and method for recovering alkaline solution and device and method for producing regenerated cellulose moulded bodies having such a method |
Also Published As
Publication number | Publication date |
---|---|
JPH0817917B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4636295A (en) | Method for the recovery of lithium from solutions by electrodialysis | |
JP2007519823A (en) | Apparatus and method for osmotic membrane distillation | |
EP0250666A1 (en) | Process for selective dialysis using polymeric affinity adsorbents and size selective membranes | |
TW201836704A (en) | Electrodialysis module and electrodialysis system | |
WO2006066345A1 (en) | Increased conductivity and enhanced electrolytic and electrochemical processes | |
US4305793A (en) | Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes | |
JPH01151903A (en) | Diffusion dialyzing method | |
CN113457451A (en) | Method for regenerating carbon capture absorbent morpholine by bipolar membrane electrodialysis | |
US4415413A (en) | Method of concentrating alkali metal hydroxide in a cascade of hybrid cells | |
JPS61107907A (en) | Method and device for treating water and waste liquor | |
US3673067A (en) | Removal of molecular halogen from solution by passage through a membrane | |
US4299673A (en) | Method of concentrating alkali metal hydroxide in hybrid cells having cation selective diffusion barriers | |
CN102134135A (en) | Method for recovering and purifying tetra-alkylammonium hydroxide from waste liquor containing tetra-alkylammonium hydroxide | |
CN114534501A (en) | Electrodialysis device and method for separating nitric acid and acetic acid | |
JPS5850791B2 (en) | Device that changes salt concentration in liquid | |
JPH0157469B2 (en) | ||
JPS61114704A (en) | Desalting apparatus by electrodialytic method | |
JP3080859B2 (en) | Method for generating high-purity oxygen and apparatus therefor | |
JPH0418918A (en) | Method of diffusion dialysis | |
JPH11128923A (en) | Apparatus for producing pure water | |
CN217676937U (en) | Developer solution waste liquid cyclic utilization device | |
JPH057049B2 (en) | ||
CN221333561U (en) | Device for preparing organic alkali in high yield | |
CN212687830U (en) | Multistage reverse osmosis water purification system | |
CN213012408U (en) | High-purity water purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |