JPH01151786A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH01151786A
JPH01151786A JP30903687A JP30903687A JPH01151786A JP H01151786 A JPH01151786 A JP H01151786A JP 30903687 A JP30903687 A JP 30903687A JP 30903687 A JP30903687 A JP 30903687A JP H01151786 A JPH01151786 A JP H01151786A
Authority
JP
Japan
Prior art keywords
electromagnet
pump
vacuum
vacuum pump
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30903687A
Other languages
Japanese (ja)
Inventor
Hiraaki Tsujii
辻井 平明
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30903687A priority Critical patent/JPH01151786A/en
Publication of JPH01151786A publication Critical patent/JPH01151786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Abstract

PURPOSE:To reduce the size and the weight of a vacuum pump by employing a superconducting magnet for applying magnetic field onto a sputter ion pump from the outside and cooling the coil of the electromagnet to a temperature for exhibiting superconducting effect. CONSTITUTION:Upon application of high voltage between a titanium cathode 2 and an anode of a pump, an electron traveling therethrough is subjected to spiral motion by an electromagnet 4 thus providing function as a sputter ion pump and producing super high vacuum. When the coil of the electromagnet 4 is made of material exhibiting superconducting effect while a liquid helium cooling pipe 5 is arranged at the outside of the electromagnet 4 and a cryogenic adsorption trap fins are contacted tightly therewith, the size and the weight of a vacuum pump can be reduced. Furthermore, cryogenic pump effect can be provided through cryogenic adsorption of the trap fins 6 cooled by liquid helium. Consequently, evacuation can be performed through a single vacuum pump from relatively low vacuum to high vacuum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は10 Pa 以下の高真空排気に用いる真空ポ
ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vacuum pump used for high vacuum evacuation of 10 Pa or less.

従来の技術 第2図に従来のスパッタイオンポンプの概略図を示す。Conventional technology FIG. 2 shows a schematic diagram of a conventional sputter ion pump.

スパッタイオンポンプは、チタ−を材料にした円筒形状
の陰極21と陰極21の円筒形状の中に設置された陽極
22を有する。陽極22と陰極21との間の高い電界に
より陰極より放射された1次電子24は陽極に向かって
走行する。しかし陽極に到達するまでに外部の磁石23
の磁場により、aに示すようにらせん運動を繰り返して
対向陰極に近づく。この途中でbに示すように気体分子
と衝突して、イオン26と2次電子26の対をつくる。
The sputter ion pump has a cylindrical cathode 21 made of titanium and an anode 22 installed inside the cylindrical cathode 21. Due to the high electric field between the anode 22 and the cathode 21, primary electrons 24 emitted from the cathode travel toward the anode. However, before reaching the anode, the external magnet 23
Due to the magnetic field of , it repeats a spiral motion as shown in a and approaches the opposing cathode. During this process, they collide with gas molecules as shown in b, creating pairs of ions 26 and secondary electrons 26.

イオンは陰極に向かって、磁場内をらせん状に加速され
、陰極面をイオン衝撃し、Cに示すようにチタン原子2
6がスパッターされる。
The ions are accelerated spirally in the magnetic field toward the cathode, bombard the cathode surface, and as shown in C, titanium atoms 2
6 is sputtered.

スパッターされた原子は化学的に活性な金属で、dに示
すように多くの気体分子27を化学吸着する能力をもっ
てお9.気体を排気することが出来る。このようにして
イオンスパッタポンプは、超高真空を作り出すのに適し
ている。
The sputtered atoms are chemically active metals that have the ability to chemisorb many gas molecules 27 as shown in d. Gas can be exhausted. Ion sputter pumps are thus suitable for creating ultra-high vacuums.

発明が解決しようとする問題点 しかしながら、スパッタイオンポンプは次のような問題
点があった、すなわち一般には磁場を印加するのに、永
久磁石が使われるが、比較的大きな磁場が必要なため磁
石重量が重く、他の排気ポンプと比較しても約6倍の重
さになっていた。電磁石を用いた例もあるが、電磁石自
身の容積が大きく、ポンプの単位排気量当りの容量が大
きい。
Problems to be Solved by the Invention However, sputter ion pumps have the following problems: Generally, a permanent magnet is used to apply a magnetic field, but since a relatively large magnetic field is required, a permanent magnet is used. It was heavy, about six times heavier than other exhaust pumps. Although there are examples of using electromagnets, the volume of the electromagnet itself is large, and the capacity per unit displacement of the pump is large.

またチタンゲッターによる吸着を利用しているため低真
空では使用できないと言う問題があった。
Another problem is that it cannot be used in low vacuum because it uses adsorption by a titanium getter.

問題点を解決するための手段 本発明は、スパッタイオンポンプの永久磁石のかわりに
超電導電磁石を用いることと、その電磁石のコイルが超
電導を起こす温度にまで冷却することである。
Means for Solving the Problems The present invention consists in using a superconducting electromagnet in place of the permanent magnet in the sputter ion pump and cooling the coil of the electromagnet to a temperature at which superconductivity occurs.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなワチ、スパッタイオンポンプの外部からの磁場を印
加する磁石を、重量の軽い電磁石とし、かつ電磁石に用
いるコイルの材料として超電導材料を用いることにより
電磁石の体積容量を小さくできる。さらにコイルが超電
導効果を示す温度まで冷却すると同時に、低温吸着を起
こすべくトラップフィンを設けることにより低温固体表
面が表面に入射した気体分子を捕えて放さないようにす
ることが出来る。
In other words, the volumetric capacity of the electromagnet can be reduced by using a light-weight electromagnet as the magnet that applies the magnetic field from the outside of the sputter ion pump, and by using a superconducting material as the material for the coil used in the electromagnet. Furthermore, by providing trap fins to cause low-temperature adsorption while cooling the coil to a temperature that exhibits a superconducting effect, it is possible to prevent the low-temperature solid surface from trapping gas molecules incident on the surface and releasing them.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図においてポンプの外壁1内に対向して陰極2
と、陰極2の間に陽極3が配置されている。陰極2と陽
極3との間には高電界が生じるように高電圧が印加され
る。陰極2と陽極3との間には、ここを走行する電子が
ローレンツ力を受けてらせん運動を起こすように磁場を
印加させるために電磁石4が取り付けられている。この
電磁石のコイルは、0〜150にの低温で超電導効果を
示す材料たとえばNiTiまたはWb3Snで形成され
ている。電磁石4の外側には、電磁石4に密着して冷却
用の液体ヘリウムを流す冷却用バイブロが配置され、さ
らに液体ヘリウムの冷却用バイブロに密着して低温吸着
用のトラップフィン6が取り付けられている。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. In FIG.
An anode 3 is arranged between the anode 2 and the cathode 2. A high voltage is applied between the cathode 2 and the anode 3 to generate a high electric field. An electromagnet 4 is installed between the cathode 2 and the anode 3 in order to apply a magnetic field so that electrons traveling there undergo spiral motion under the Lorentz force. The coil of this electromagnet is made of a material that exhibits a superconducting effect at low temperatures of 0 to 150 °C, such as NiTi or Wb3Sn. On the outside of the electromagnet 4, a cooling vibro for flowing liquid helium for cooling is placed in close contact with the electromagnet 4, and a trap fin 6 for low-temperature adsorption is attached in close contact with the liquid helium cooling vibro. .

このような構成により、本発明の真空ポンプは、超電導
のコイルを用いた電磁石により、体積容量が小さく、重
量が軽減することができる。加えて、電磁石のコイルが
超電導状態を示す温度にまで冷却することにより、同温
度まで冷却されたトラップフィンにより、低温吸着によ
るクライオポンプの効果を合わせ持つことが出来る。
With such a configuration, the vacuum pump of the present invention has a small volumetric capacity and can be reduced in weight due to the electromagnet using a superconducting coil. In addition, by cooling the electromagnet coil to a temperature that indicates a superconducting state, the trap fins cooled to the same temperature can also have the effect of a cryopump due to low-temperature adsorption.

従って、1opa程度の比較的低真空度の状態では、陰
極2と陽極3との間に高電圧を印加せず、トラップフィ
ン6の低温吸着による排気を行ない、1O−3Pa以下
の高真空の状態で、高電圧の印加と電磁力による磁場の
印加を行ないスパッタイオンポンプを動作させ、高真空
の排気を行う。
Therefore, in a relatively low vacuum state of about 1 opa, high voltage is not applied between the cathode 2 and anode 3, and exhaust is performed by low-temperature adsorption of the trap fin 6, resulting in a high vacuum state of 1 O-3 Pa or less. Then, a high voltage is applied and a magnetic field is applied by electromagnetic force to operate the sputter ion pump and perform high vacuum evacuation.

このようにして比較的低真空から高真空まで1台の真空
ポンプにより排気することができる。
In this way, a single vacuum pump can evacuate from a relatively low vacuum to a high vacuum.

発明の効果 本発明は、従来のイオンスパッタポンプの高X中排気能
力に加えて、比較的低真空時の排気も低温吸着の効果を
利用して行うことができる。しかも超電導効果を示すコ
イルによる電磁石を用いているため、重量が従来のイオ
ンスパッタポンプより軽減することができるものである
Effects of the Invention The present invention, in addition to the high-X and medium-evacuation capabilities of conventional ion sputter pumps, can also perform evacuation at relatively low vacuum levels by utilizing the effect of low-temperature adsorption. Furthermore, since an electromagnet with a coil exhibiting a superconducting effect is used, the weight can be reduced compared to conventional ion sputter pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の真空ポンプの概略断面図、
第2図は従来の真空ポンプの断面図である。 2・・・・・・陰極、3・・・・・・陽極、4・・・・
・・電磁石、6・・・・・・冷却用パイプ、6・・・・
・・トラップフィン、23・・・・・・磁石。
FIG. 1 is a schematic cross-sectional view of a vacuum pump according to an embodiment of the present invention;
FIG. 2 is a sectional view of a conventional vacuum pump. 2...Cathode, 3...Anode, 4...
...Electromagnet, 6...Cooling pipe, 6...
...Trap fin, 23... Magnet.

Claims (3)

【特許請求の範囲】[Claims] (1)対向するチタン陰極と、前記チタン陰極の間に配
置された陽極と、前記チタン陰極と陽極との間の空間に
磁場を形成する超電導電磁石と、前記電磁石と熱的に接
続された低温吸着用のトラップフィンとを有し、前記電
磁石と前記トラップフィンとが、前記電磁石のコイルが
超電導を起こす温度以下に冷却されている真空ポンプ。
(1) Opposing titanium cathodes, an anode disposed between the titanium cathodes, a superconducting electromagnet that forms a magnetic field in the space between the titanium cathodes and the anode, and a low temperature thermally connected to the electromagnets. A vacuum pump comprising a trap fin for adsorption, wherein the electromagnet and the trap fin are cooled to a temperature below which a coil of the electromagnet causes superconductivity.
(2)トラップフィンと電磁石とが液体ヘリウム温度ま
で冷却されている特許請求の範囲第1項記載の真空ポン
プ。
(2) The vacuum pump according to claim 1, wherein the trap fin and the electromagnet are cooled to liquid helium temperature.
(3)電磁石がNbTiもしくはNb_3Snの合金に
よるコイルにより形成されている特許請求の範囲第2項
記載の真空ポンプ。
(3) The vacuum pump according to claim 2, wherein the electromagnet is formed by a coil made of an alloy of NbTi or Nb_3Sn.
JP30903687A 1987-12-07 1987-12-07 Vacuum pump Pending JPH01151786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30903687A JPH01151786A (en) 1987-12-07 1987-12-07 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30903687A JPH01151786A (en) 1987-12-07 1987-12-07 Vacuum pump

Publications (1)

Publication Number Publication Date
JPH01151786A true JPH01151786A (en) 1989-06-14

Family

ID=17988108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30903687A Pending JPH01151786A (en) 1987-12-07 1987-12-07 Vacuum pump

Country Status (1)

Country Link
JP (1) JPH01151786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114380A1 (en) * 2005-10-31 2007-05-24 Jackson Gerald P Containing / transporting charged particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114380A1 (en) * 2005-10-31 2007-05-24 Jackson Gerald P Containing / transporting charged particles
US9543052B2 (en) * 2005-10-31 2017-01-10 Hbar Technologies, Llc Containing/transporting charged particles

Similar Documents

Publication Publication Date Title
US2925214A (en) Ionic vacuum pump
JP6327974B2 (en) Stacked ultra-high vacuum creation device
US4097195A (en) High vacuum pump
US3216652A (en) Ionic vacuum pump
US3236442A (en) Ionic vacuum pump
JPH01151786A (en) Vacuum pump
US3161802A (en) Sputtering cathode type glow discharge device vacuum pump
EP2120255B1 (en) Ion pump device
US3428241A (en) High vacuum pump
US3535055A (en) Cold-cathode discharge ion pump
US3542488A (en) Method and apparatus for producing alloyed getter films in sputter-ion pumps
US3376455A (en) Ionic vacuum pump having multiple externally mounted magnetic circuits
JP2001357814A (en) Extra-high vacuum sputter ion pump
US3324729A (en) Method and apparatus for detecting leaks
US7413412B2 (en) Vacuum micropump and gauge
JPS63307656A (en) Superconductive sputter ion pump
US3684401A (en) Cathode-getter materials for sputter-ion pumps
JPH01132765A (en) Magnetron sputtering device
US3379365A (en) Magnetically confined ion getter pump having combined coupling flange and pole piece structure
JPH0689464B2 (en) Ion source
JPH0927294A (en) Ion pump
JP2019091576A (en) Vacuum creation device
US4328079A (en) Method for pumping impurities, especially noble gases, from hydrogen or mixtures of hydrogen and its isotopes
JPH0822803A (en) Sputter ion pump
US3377495A (en) Glow discharge apparatus having a stacked array of magnets