JPH01151164A - Solid electrolyte fuel cell and its assembly - Google Patents

Solid electrolyte fuel cell and its assembly

Info

Publication number
JPH01151164A
JPH01151164A JP62308921A JP30892187A JPH01151164A JP H01151164 A JPH01151164 A JP H01151164A JP 62308921 A JP62308921 A JP 62308921A JP 30892187 A JP30892187 A JP 30892187A JP H01151164 A JPH01151164 A JP H01151164A
Authority
JP
Japan
Prior art keywords
fuel
electrode
solid electrolyte
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308921A
Other languages
Japanese (ja)
Inventor
Masatoshi Kudome
正敏 久留
Masayoshi Murata
正義 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62308921A priority Critical patent/JPH01151164A/en
Publication of JPH01151164A publication Critical patent/JPH01151164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the cell area and voltage as compared with conventional ones by bending one of a flat air electrode and a fuel electrode of adjacent cells, connecting them, and sandwiching them with solid electrolytes of the adjacent cells. CONSTITUTION:A fuel cell panel 21 is constituted by connecting band-shaped cells 22-22c in series. The cell 22a is constituted by laminating a fuel electrode 24a, a solid electrolyte 25a and an air electrode 26a on a substrate 23. The bent air electrode 26a of the cell 22a is connected to the fuel electrode 24b of the adjacent cell 22b. They are then sandwiched from both sides by the dense solid electrolytes 25a and 25b of the adjacent cells 22a and 22b, thus the cells 22a-22c are electrically connected respectively. The cell area in the same space is thereby increased as compared with conventional ones, and the high voltage can be easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質燃料電池及びその集合体に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolyte fuel cell and an assembly thereof.

[従来の技術] 従来、固体電解質燃料電池としては、例えば第7図に示
す円筒柱形のもの(従来例I)、あるいは第8図(A)
〜(C)に示す円筒環形のもの(従来例■)が知られて
いる。
[Prior Art] Conventionally, as a solid electrolyte fuel cell, for example, a cylindrical columnar type shown in FIG. 7 (Conventional Example I), or a solid electrolyte fuel cell shown in FIG. 8(A)
The cylindrical ring shape shown in ~(C) (conventional example ■) is known.

(1)円筒柱形の電池 図中の1は、基体管である。この基体管1は、アルミナ
又はC3Z (カルシア安定化ジルコニア)の例えば外
径21 mm、長さ700 mmの多孔質管からなり、
この表面に電池が構成される。前記基体管1上には空気
極2が積層され、その上に固体電解質3が後記電極間接
続要素を除いて積層されている。ここで、空気極2はL
aCoO3等からなり、厚さ150〜300pである。
(1) Cylindrical battery The number 1 in the diagram is a base tube. The base tube 1 is made of a porous tube made of alumina or C3Z (calcia stabilized zirconia), for example, with an outer diameter of 21 mm and a length of 700 mm.
A battery is constructed on this surface. An air electrode 2 is laminated on the base tube 1, and a solid electrolyte 3 is laminated thereon, excluding interelectrode connecting elements described later. Here, the air electrode 2 is L
It is made of aCoO3 or the like and has a thickness of 150 to 300p.

また、前記固体電解質3はYSZ(イツトリア安定化ジ
ルコニア)のち密溶射膜からなり、その厚さは150〜
200 Mである。前記固体電解質3上には、燃料極4
が後記電極間接続要素に接触しないように積層されてい
る。
Further, the solid electrolyte 3 is made of a densely sprayed film of YSZ (Ittria stabilized zirconia), and its thickness is 150~
It is 200M. A fuel electrode 4 is disposed on the solid electrolyte 3.
are laminated so as not to contact the inter-electrode connecting element described later.

ここで、燃料極4は、NiOの多孔質溶射膜で形成され
、その厚さは数lO〜100pである。また、柱状の電
池セルは隣接のセルに電極間接続要素(インクコネクタ
)5を介して直列に接続されている。このようにして直
列に接続された電池を並列に配置して電池モジュールが
構成されている。
Here, the fuel electrode 4 is formed of a porous sprayed NiO film, and has a thickness of several lO to 100p. Further, the columnar battery cells are connected in series to adjacent cells via inter-electrode connecting elements (ink connectors) 5. A battery module is constructed by arranging batteries connected in series in this way in parallel.

ここで、インタコネクタ5は、NiA1合金のち密な溶
射膜からなる。なお、図中の6は空気流路、前記燃料極
4の外側が燃料流路となる。
Here, the interconnector 5 is made of a dense sprayed film of NiA1 alloy. Note that 6 in the figure is an air flow path, and the outside of the fuel electrode 4 is a fuel flow path.

しかるに、こうした構造の固体電解質燃料電池では、単
セル当りの電圧が低いので複数個の電池セルを直列に接
続して電圧を高くして電流を取出している。この為、電
極間の接続に前述したイン−3= タコネクタ5が使われているが、これには導電性の高い
事及び鍛密性が高くガス又は空気が通過しないことが要
求される。
However, in a solid electrolyte fuel cell having such a structure, since the voltage per single cell is low, a plurality of battery cells are connected in series to increase the voltage and extract current. For this reason, the above-mentioned in-3 connector 5 is used to connect between the electrodes, but it is required to have high conductivity and high forging strength so that gas or air does not pass therethrough.

(n)円筒環形の燃料電池 第8図(A)はこの円筒環形の燃料電池の斜視図、同図
(B)は同図(A)のX−X線に沿う断面図、同図(C
)は同図(A)のY−Y線に沿う断面図である。但し、
第8図の円筒環形の燃料電池は、基体管1の上にリング
状に構成され、隣接する電池の燃料極4と空気極2が電
極間接続要素5を介して接続された構造となっている。
(n) Cylindrical fuel cell FIG. 8(A) is a perspective view of this cylindrical fuel cell, FIG. 8(B) is a sectional view taken along line X-X in FIG.
) is a sectional view taken along the YY line in FIG. however,
The cylindrical ring-shaped fuel cell shown in FIG. 8 is constructed in a ring shape on a base tube 1, and has a structure in which the fuel electrode 4 and the air electrode 2 of adjacent cells are connected via an interelectrode connecting element 5. There is.

なお、図中の7は燃料流路である。Note that 7 in the figure is a fuel flow path.

[発明が解決しようとする問題点] しかしながら、従来の固体電解質燃料電池によれば、以
下に述べる問題点を有する。
[Problems to be Solved by the Invention] However, the conventional solid electrolyte fuel cell has the following problems.

■製作上その径は一定以上となり又円筒は所要のスペー
スを確保して配置される。従って、一定容積当りの発電
部面積が少なく出力が小さい。
■Due to manufacturing, the diameter must be above a certain level, and the cylinder must be placed with the required space. Therefore, the area of the power generation section per fixed volume is small and the output is small.

■構造が複雑で製造費が高い。■The structure is complex and manufacturing costs are high.

■電池電圧が比較的低い。即ち、従来例Iの場合、電池
電圧は直列に接続される円筒セルの本数により決り高電
圧を得難く、従来例■の場合円筒上に形成されるセルの
個数により高く出来難い。
■Battery voltage is relatively low. That is, in the case of Conventional Example I, it is difficult to obtain a high battery voltage due to the number of cylindrical cells connected in series, and in the case of Conventional Example I, it is difficult to obtain a high voltage due to the number of cells formed on the cylinder.

■円筒形では電極間接続要素が必要であり、気密性・導
電性が高く、膨張率は他のコンポーネント材と同とであ
ることが必要とされるのみならず、製作上も繁雑で工作
費増加の一因となっている。
■The cylindrical shape requires an inter-electrode connecting element, which not only requires high airtightness and conductivity, and the same expansion coefficient as other component materials, but is also complicated and expensive to manufacture. This is a contributing factor to the increase.

本発明は上記事情に鑑みてなされたもので、従来と比べ
同一空間における電池面積が増加し容易に高い電圧が得
られるとともに、構造が単純で製造が容易となり製造コ
ストの低減が可能な固体電解質燃料電池及びその集合体
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a solid electrolyte that can increase the battery area in the same space compared to conventional ones and easily obtain a high voltage, and also has a simple structure and can be manufactured easily, reducing manufacturing costs. The purpose is to provide fuel cells and their assemblies.

[発明を解決するための手段と作用] 本願第1の発明は、夫々平板状の空気極、固体電解質及
び燃料極からなる少なくとも3層を積層してなる積層体
を複数個横方向に列状に配置した燃料電池セルからなり
、隣合う前記セル同志の前記空気極又は燃料極のいずれ
か一方を屈面させてこれら空気極と燃料極を接続させ、
かつこれら空気極及び燃料極を両側より隣合う前記セル
の前記固体電解質で挟み込むことを特徴とする固体電解
質燃料電池である。
[Means and Effects for Solving the Invention] The first invention of the present application includes a plurality of laminates each formed by laminating at least three layers each consisting of a flat air electrode, a solid electrolyte, and a fuel electrode in a row in the horizontal direction. consisting of fuel cells arranged in a fuel cell, one of the air electrodes or fuel electrodes of adjacent cells is bent to connect the air electrodes and the fuel electrodes,
The solid electrolyte fuel cell is characterized in that the air electrode and the fuel electrode are sandwiched between the solid electrolytes of the adjacent cells from both sides.

本願第1の発明によれば、従来の円筒形の数倍の出力が
得られる。また、帯状の電池セルを直列に接続し、隣接
する電池セル同時を端部で接続することにより容易に高
電圧を得ることができる。
According to the first invention of the present application, an output several times that of a conventional cylindrical shape can be obtained. In addition, high voltage can be easily obtained by connecting strip-shaped battery cells in series and connecting adjacent battery cells at their ends.

更に、従来の如き電極間接続要素を不要にして電池構成
要素数を減少することができる。従って、製造が容易に
なり、製造コストの低減を図ることができる。更には、
異質の部材数を減少することにより、信頼性が向上する
Furthermore, the number of battery components can be reduced by eliminating the need for conventional inter-electrode connecting elements. Therefore, manufacturing becomes easy and manufacturing costs can be reduced. Furthermore,
Reliability is improved by reducing the number of dissimilar parts.

本願第2の発明は、夫々平板状の空気極、固体電解質及
び燃料極からなる少なくとも3層を積層してなる積層体
を複数個横方向に列状に配置した燃料電池セルからなり
、隣合う前記セル同志の前記空気極又は燃料極のいずれ
か一方を屈曲させてこれら空気極と燃料極を接続させ、
かつこれら空気極及び燃料極を両側より隣合う前記セル
の前記固体電解質で挟み込んだ固体電解質燃料電池を高
さ方向に適宜間隔を設けて重ね合せ、上方の上記燃料電
池の燃料極と下方の上記燃料電池の空気極、あるいは上
方の燃料電池の空気極と下方の燃料電池の燃料極とをU
字型の導電体で接続したことを特徴とする固体電解質燃
料電池の集合体である。
The second invention of the present application consists of a fuel cell in which a plurality of stacked bodies each consisting of at least three layers each consisting of a flat air electrode, a solid electrolyte, and a fuel electrode are arranged in rows in the horizontal direction, and adjacent Bending either the air electrode or the fuel electrode of the cells to connect the air electrode and the fuel electrode,
The solid electrolyte fuel cells in which these air electrodes and fuel electrodes are sandwiched between the solid electrolytes of the cells adjacent to each other from both sides are stacked at appropriate intervals in the height direction, so that the fuel electrode of the upper fuel cell and the lower fuel cell The air electrode of the fuel cell, or the air electrode of the upper fuel cell and the fuel electrode of the lower fuel cell, are
This is an assembly of solid electrolyte fuel cells that is characterized by being connected by a letter-shaped conductor.

本願箱2の本発明によれば、燃料電池パネルを高さ方向
に複数個適宜間隔を設けて重ね合せ、かつこれらパネル
の端部をU字型の導電体を用いて接続した構造となって
いるため、同一空間における電池面積が円筒形電池の集
合体に比較して10数倍増加するとともに、高い電圧が
得られる。また、構造が単純で製造が容易となり、製造
コストを低減できる。
According to the present invention in Box 2, a plurality of fuel cell panels are stacked one on top of the other at appropriate intervals in the height direction, and the ends of these panels are connected using a U-shaped conductor. Therefore, the battery area in the same space increases by more than ten times compared to an aggregate of cylindrical batteries, and a high voltage can be obtained. Moreover, the structure is simple and manufacturing is easy, and manufacturing costs can be reduced.

[実施例] 以下、本発明の実施例を図を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図(A)〜(C)を参照する。ここで、同図(A)
は固体電解質燃料電池の斜視図、同図(B)は同図(A
)のX−X線に沿う断面図、同図(C)は同図(A)の
Y−Y線に沿う断面図である。
Example 1 Refer to FIGS. 1A to 1C. Here, the same figure (A)
is a perspective view of a solid electrolyte fuel cell, and (B) is a perspective view of a solid electrolyte fuel cell.
) is a cross-sectional view taken along the line XX of FIG.

図中の21は燃料電池パネルであり、複数の帯状の電池
セル22a、22b、22c・・・を電気的に直列接続
することにより構成される。前記各電池セル例えば電池
セル22aは、基板23上に燃料極24a、2箇所で屈
折した固体電解質25a及び1箇所で屈折した空気極2
6aが積層されて構成され、基板23側に燃料が流れか
つその反対側に空気が流れるようになっている。ここで
、基板23は、アルミナ又はC8Z (カルシア安定化
ジルコニア)からなる。燃料極24aはNiOの多孔質
溶射膜で形成され、その厚さは数10〜100趨程度で
ある。固体電解質層25aは、YSz(イツトリア安定
化ジルコニア)の緻密溶射膜からなり、その厚さは50
〜tooo4程度である。空気極26aはLaCoO3
やL a M n O3からなり、厚さは50〜100
0p程度である。なお、基板23側に空気を流す場合は
、基板23a、空気極26a。
21 in the figure is a fuel cell panel, which is constructed by electrically connecting a plurality of band-shaped battery cells 22a, 22b, 22c, . . . in series. Each of the battery cells, for example, the battery cell 22a, has a fuel electrode 24a on a substrate 23, a solid electrolyte 25a bent at two places, and an air electrode 2 bent at one place.
6a are stacked, so that fuel flows to the substrate 23 side and air flows to the opposite side. Here, the substrate 23 is made of alumina or C8Z (calcia stabilized zirconia). The fuel electrode 24a is formed of a porous sprayed film of NiO, and its thickness is about tens to hundreds. The solid electrolyte layer 25a is made of a dense sprayed film of YSz (yttoria stabilized zirconia) and has a thickness of 50 mm.
It is about ~too4. The air electrode 26a is LaCoO3
and L a M n O3, and the thickness is 50 to 100
It is about 0p. In addition, when air flows to the substrate 23 side, the substrate 23a and the air electrode 26a.

固体電解質層25a及び、燃料極24aの順に積層する
。前記電池セル22a、22b、22c・・・は従来の
如くインタコネクタを使用せずに接続されている。例え
ば、電池セル22a、22bの接続の例をとると、電池
セル22aの空気極26aの右端部と隣の電池セル22
bの燃料極24bの左端部が接続している。この互いに
接続した空気極26aと燃料極24bは、電池セル22
aの固体電解質層25aと電池セル22bの固体電解質
層25bとにより両側から挟み込まれている。なお、図
中の26bは電池セル22bの空気極であり、電池セル
22aの燃料極24aと電池セル22cの空気極26c
間も同様にして接続されている。
The solid electrolyte layer 25a and the fuel electrode 24a are stacked in this order. The battery cells 22a, 22b, 22c, . . . are connected without using interconnectors as in the conventional case. For example, if we take the example of the connection between the battery cells 22a and 22b, the right end of the air electrode 26a of the battery cell 22a and the adjacent battery cell 22a
The left end of the fuel electrode 24b of b is connected. The air electrode 26a and fuel electrode 24b connected to each other are connected to the battery cell 22.
It is sandwiched from both sides by the solid electrolyte layer 25a of a and the solid electrolyte layer 25b of the battery cell 22b. In addition, 26b in the figure is the air electrode of the battery cell 22b, and the fuel electrode 24a of the battery cell 22a and the air electrode 26c of the battery cell 22c.
They are also connected in the same way.

しかして、上記実施例に係る固体電解質燃料電池によれ
ば、電池セル22aの屈折した空気極26aと隣の電池
セル22bの燃料極24bとを接続し、この互いに接続
した空気極26aと燃料極24bを隣合う電池セル22
aの緻密な固体電解質層25aと電池セル22bの緻密
な固体電解質層25bとにより両側から挾み込まれ、こ
のようにして電池セル22a、22b、22c・・・を
夫々電気的に接続した構造となっている。従って、以下
に列挙する効果を有する。
According to the solid electrolyte fuel cell according to the above embodiment, the bent air electrode 26a of the battery cell 22a and the fuel electrode 24b of the adjacent battery cell 22b are connected, and the air electrode 26a and the fuel electrode connected to each other are connected to each other. 24b to the adjacent battery cell 22
A structure in which the dense solid electrolyte layer 25a of a and the dense solid electrolyte layer 25b of the battery cell 22b are sandwiched from both sides, and the battery cells 22a, 22b, 22c, etc. are electrically connected in this way, respectively. It becomes. Therefore, it has the effects listed below.

■燃料電池パネル21を最少間隔を保持して密に配する
ことにより、従来の円筒形の数倍の出力が得られる。
(2) By closely arranging the fuel cell panels 21 with minimum spacing, an output several times that of a conventional cylindrical panel can be obtained.

■帯状の電池セル22a、22b、22cを直列に接続
し、隣接する電池セル同時を端部で接続することにより
容易に高電圧を得ることができる。
(2) A high voltage can be easily obtained by connecting the strip-shaped battery cells 22a, 22b, and 22c in series and connecting adjacent battery cells at the ends.

■従来の如きインクコネクタを不要にして電池構成要素
数を減少することができる。従って、製造が容易になり
、製造コストの低減を図ることができる。また、異質の
部月数を減少することにより、信頼性が向上する。
(2) The number of battery components can be reduced by eliminating the need for conventional ink connectors. Therefore, manufacturing becomes easy and manufacturing costs can be reduced. In addition, reliability is improved by reducing the number of different copies.

なお、上記実施例1において、基板を省略し、第3図に
示す構造としてもよい。
Note that in the first embodiment, the substrate may be omitted and the structure shown in FIG. 3 may be adopted.

実施例2 第2図を参照する。同図において、電池セル22aの空
気極26aは先端部(右側)で下方に直角に曲がってい
る。又、固体電解質層25aは先端部(右側)の2箇所
で直角に曲がっており、前記空気極26aの下端面まで
延出している。従って、互いに接続する単位セル22a
の空気極26aと単位セル22bの燃料極24bは、単
位セル22aの固体電解質層25aと単位セル22bの
固体電解質層25bにより部分的に両側により挟み込ま
れている。
Example 2 Please refer to FIG. In the figure, the air electrode 26a of the battery cell 22a is bent downward at a right angle at the tip (right side). Further, the solid electrolyte layer 25a is bent at right angles at two places at the tip (right side) and extends to the lower end surface of the air electrode 26a. Therefore, unit cells 22a connected to each other
The air electrode 26a and the fuel electrode 24b of the unit cell 22b are partially sandwiched on both sides by the solid electrolyte layer 25a of the unit cell 22a and the solid electrolyte layer 25b of the unit cell 22b.

なお、上記実施例2においては基板を設けたが、実施例
1と同様基板を省略してもよい。
In addition, although the substrate was provided in the second embodiment, the substrate may be omitted as in the first embodiment.

実施例3 第4図、第5図及び第6図を参照して説明する。Example 3 This will be explained with reference to FIGS. 4, 5, and 6.

第4図は、例えば3枚の燃料電池パネル21a。FIG. 4 shows, for example, three fuel cell panels 21a.

22b、21cを接続させた固体電解質燃料電池の集合
体(モジュール)を示す。ここで、各燃料電池パネル2
1a〜2cは、基板23上に燃料極24、固体電解質2
5及び空気極26を積層した構造からなる。同図におい
て、前記パネル21a最下層の空気極26と前記パネル
21bの燃料極24が気密性のあるU字型の導電体31
により接続され、前記パネル21bの最上層の空気極2
6と前記パネル21cの燃料極24が気密性のあるU字
型の導電体32により接続されている。そして、このよ
うに接続することにより交互に空気流路33、燃料ガス
流路34が構成されている。前記空気流路33の入口部
、出口部には、空気が均等になるように非導電性の空気
入口分散板35、空気出口分散板36が夫々設けられて
いる。前記空気流路34の入口部、出口部には、燃料ガ
スが均等になるように非導電性の燃料ガス入口分散板3
7、燃料ガス出口分散板38が夫々設けられている。
An assembly (module) of solid electrolyte fuel cells in which 22b and 21c are connected is shown. Here, each fuel cell panel 2
1a to 2c, a fuel electrode 24 and a solid electrolyte 2 are provided on a substrate 23.
5 and an air electrode 26 are stacked. In the figure, the air electrode 26 at the bottom layer of the panel 21a and the fuel electrode 24 of the panel 21b are connected to an airtight U-shaped conductor 31.
connected to the air electrode 2 on the top layer of the panel 21b.
6 and the fuel electrode 24 of the panel 21c are connected by an airtight U-shaped conductor 32. By connecting in this way, an air flow path 33 and a fuel gas flow path 34 are configured alternately. A non-conductive air inlet dispersion plate 35 and an air outlet dispersion plate 36 are provided at the inlet and outlet portions of the air flow path 33, respectively, so that the air is distributed evenly. A non-conductive fuel gas inlet distribution plate 3 is installed at the inlet and outlet of the air flow path 34 so that the fuel gas is distributed evenly.
7. A fuel gas outlet distribution plate 38 is provided.

第5図は上述した接続接状態にもとづいて構成した固体
電解質燃料電池の集合体を示し、第6図は第5図のX−
X線に沿う断面図を示す。この集合体39において、空
気は集合体39の2隅に配設された入口空気マニホルド
40より入口空気室41に入り、ここから各燃料電池パ
ネル21間の空気流路33へ供給され、排空気はU字型
の導電体の端部を左右に流れて排空気マニホルド42に
至る。これより系外へ排出されこれより系外へ排気され
る。一方、燃料ガスは空気とは対向の流れをとる。すな
わち、入口ガスマニホールド43がら入口燃料ガス室4
4に至り、ここがら各燃料電池パネル21間の燃料ガス
流路34へ供給され、排ガスは前記導電体の端部を左右
に流れて排ガスマニホールド44へ至り、ここから外部
へ排出される。なお、空気流路凝3を挾む電池パネル2
1は空気極が面する様に、又燃料ガス流路34を挟む電
池パネル21は燃料極が面する様に2枚づつ対向に配置
される 上記実施例3によれば、燃料電池パネル21を高さ方向
に複数個適宜間隔を設けて重ね合せ、がつこれらパネル
21の端部をU字型の導電体31゜32を用いて接続し
た構造となっているため、同一空間における電池面積が
円筒形電池の集合体に比較して10数倍増加するととも
に、高い電圧が得られる。また、構造が単純で製造が容
易となり、製造コストを低減できる。
FIG. 5 shows an assembly of solid electrolyte fuel cells constructed based on the connection state described above, and FIG.
A cross-sectional view along the X-ray is shown. In this assembly 39, air enters an inlet air chamber 41 from an inlet air manifold 40 disposed at two corners of the assembly 39, from which air is supplied to an air passage 33 between each fuel cell panel 21, and the exhaust air is flows from side to side at the ends of the U-shaped conductor and reaches the exhaust air manifold 42. From this, it is discharged out of the system, and from this it is exhausted outside the system. On the other hand, the fuel gas flows in the opposite direction to the air. That is, the inlet gas manifold 43 and the inlet fuel gas chamber 4
4, the exhaust gas is supplied to the fuel gas flow path 34 between each fuel cell panel 21, and the exhaust gas flows left and right through the ends of the conductor to reach the exhaust gas manifold 44, from which it is discharged to the outside. Note that the battery panel 2 sandwiching the air flow path condenser 3
According to the third embodiment, the fuel cell panels 21 are arranged in pairs so that the air electrodes face each other, and two battery panels 21 sandwiching the fuel gas flow path 34 are arranged opposite each other so that the fuel electrodes face each other. Since the structure is such that multiple panels 21 are stacked at appropriate intervals in the height direction and the ends of these panels 21 are connected using U-shaped conductors 31 and 32, the battery area in the same space is reduced. Compared to an assembly of cylindrical batteries, the voltage is increased by more than 10 times, and a high voltage can be obtained. Moreover, the structure is simple and manufacturing is easy, and manufacturing costs can be reduced.

[発明の効果] 以上詳述した如く本発明によれば、従来と比べ同一空間
における電池面積が増加し容易に高い電圧が得られると
ともに、構造が単純で製造が容易となり製造コストの低
減が可能な固体電解質燃料電池及びその集合体を提供で
きる。
[Effects of the Invention] As detailed above, according to the present invention, the battery area in the same space is increased compared to the conventional battery, a high voltage can be easily obtained, and the structure is simple and manufacturing is easy, so manufacturing costs can be reduced. A solid electrolyte fuel cell and an assembly thereof can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係る固体電解質燃料電池の
説明図、第2図は本発明の実施例2に係る固体電解質燃
料電池の要部の断面図、第3図は本発明の他の実施例に
係る固体電解質燃料電池の要部の断面図、第4図は本発
明の実施例3に係る燃料電池パネルの接続状態の説明図
、第5図は本発明の実施例3に係る固体電解質燃料電池
の集合体の説明図、第6図は第5図のX−X線に沿う断
面図、第7図は従来の円筒柱形の固体電解質燃料電池の
説明図、第8図は従来の円筒環形の固体電解質燃料電池
の説明図である。 21.21a〜21c・・・燃料電池パネル、22a、
22b、22cm・・燃料電池セル、23−・・基板、
24.24a、24b−・・燃料極、25゜25a、2
5b−固体電解質、26,26a。 26b、26c・・・空気極、31.32・・・導電体
、33・・・空気流路、34・・・燃料ガス流路、35
・・・空気入口分散板、36・・・空気出口分散板、3
7・・・燃料ガス入口分散板、38・・・燃料ガス出口
分散板、39・・・集合体、40・・・入口空気マニホ
ルド、41・・・入口空気室、42・・・排空気マニホ
ルド、43・・・入口ガスマニホールド。 出願人代理人 弁理士 鈴江武彦 (B) (C) 第8図
FIG. 1 is an explanatory diagram of a solid oxide fuel cell according to Embodiment 1 of the present invention, FIG. 2 is a sectional view of a main part of a solid oxide fuel cell according to Embodiment 2 of the present invention, and FIG. A cross-sectional view of the main parts of a solid electrolyte fuel cell according to another embodiment, FIG. 4 is an explanatory diagram of a connection state of a fuel cell panel according to a third embodiment of the present invention, and FIG. An explanatory diagram of such an assembly of solid oxide fuel cells, FIG. 6 is a sectional view taken along the line X-X in FIG. 5, FIG. 7 is an explanatory diagram of a conventional cylindrical columnar solid oxide fuel cell, and FIG. FIG. 1 is an explanatory diagram of a conventional cylindrical solid electrolyte fuel cell. 21.21a to 21c...fuel cell panel, 22a,
22b, 22cm...Fuel cell, 23-...Substrate,
24.24a, 24b--Fuel electrode, 25° 25a, 2
5b-Solid electrolyte, 26,26a. 26b, 26c...Air electrode, 31.32...Conductor, 33...Air flow path, 34...Fuel gas flow path, 35
...Air inlet distribution plate, 36...Air outlet distribution plate, 3
7... Fuel gas inlet distribution plate, 38... Fuel gas outlet distribution plate, 39... Assembly, 40... Inlet air manifold, 41... Inlet air chamber, 42... Exhaust air manifold , 43...Inlet gas manifold. Applicant's agent Patent attorney Takehiko Suzue (B) (C) Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)夫々平板状の空気極、固体電解質及び燃料極から
なる少なくとも3層を積層してなる積層体を複数個横方
向に列状に配置した燃料電池セルからなり、隣合う前記
セル同志の前記空気極又は燃料極のいずれか一方を屈曲
させてこれら空気極と燃料極を接続させ、かつこれら空
気極及び燃料極を両側より隣合う前記セルの前記固体電
解質で挟み込むことを特徴とする固体電解質燃料電池。
(1) Consisting of a fuel cell in which a plurality of stacked bodies each consisting of at least three layers each consisting of a flat air electrode, a solid electrolyte, and a fuel electrode are arranged in rows in the horizontal direction, and adjacent cells are A solid body characterized in that either the air electrode or the fuel electrode is bent to connect the air electrode and the fuel electrode, and the air electrode and the fuel electrode are sandwiched from both sides by the solid electrolyte of the adjacent cell. Electrolyte fuel cell.
(2)夫々平板状の空気極、固体電解質及び燃料極から
なる少なくとも3層を積層してなる積層体を複数個横方
向に列状に配置した燃料電池セルからなり、隣合う前記
セル同志の前記空気極又は燃料極のいずれか一方を屈曲
させてこれら空気極と燃料極を接続させ、かつこれら空
気極及び燃料極を両側より隣合う前記セルの前記固体電
解質で挟み込んだ固体電解質燃料電池を高さ方向に適宜
間隔を設けて重ね合せ、上方の上記燃料電池の燃料極と
下方の上記燃料電池の空気極、あるいは上方の燃料電池
の空気極と下方の燃料電池の燃料極とをU字型の導電体
で接続したことを特徴とする固体電解質燃料電池の集合
体。
(2) Consisting of a fuel cell in which a plurality of stacked bodies each consisting of at least three layers each consisting of a flat air electrode, a solid electrolyte, and a fuel electrode are arranged in a row in the horizontal direction; A solid electrolyte fuel cell is provided in which either the air electrode or the fuel electrode is bent to connect the air electrode and the fuel electrode, and the air electrode and the fuel electrode are sandwiched between the solid electrolytes of the adjacent cells from both sides. The fuel electrode of the upper fuel cell and the air electrode of the lower fuel cell, or the air electrode of the upper fuel cell and the fuel electrode of the lower fuel cell, are stacked one on top of the other with appropriate intervals in the height direction. An assembly of solid electrolyte fuel cells characterized by being connected by a type of conductor.
JP62308921A 1987-12-07 1987-12-07 Solid electrolyte fuel cell and its assembly Pending JPH01151164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308921A JPH01151164A (en) 1987-12-07 1987-12-07 Solid electrolyte fuel cell and its assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308921A JPH01151164A (en) 1987-12-07 1987-12-07 Solid electrolyte fuel cell and its assembly

Publications (1)

Publication Number Publication Date
JPH01151164A true JPH01151164A (en) 1989-06-13

Family

ID=17986881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308921A Pending JPH01151164A (en) 1987-12-07 1987-12-07 Solid electrolyte fuel cell and its assembly

Country Status (1)

Country Link
JP (1) JPH01151164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166530A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Battery member for solid electrolyte fuel cell
WO2021123863A1 (en) * 2019-12-20 2021-06-24 Total Se Tubular electrochemical separation unit and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166530A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Battery member for solid electrolyte fuel cell
WO2021123863A1 (en) * 2019-12-20 2021-06-24 Total Se Tubular electrochemical separation unit and manufacturing method therefor
CN114845795A (en) * 2019-12-20 2022-08-02 道达尔能源一技术 Tubular electrochemical separation cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6361893B1 (en) Planar fuel cell utilizing nail current collectors for increased active surface area
US4490444A (en) High temperature solid electrolyte fuel cell configurations and interconnections
KR101603449B1 (en) Fuel Cell and Fuel Cell Stack
US5049458A (en) Fuel cell
US6423436B1 (en) Tubular electrochemical devices with lateral fuel aperatures for increasing active surface area
US20020048700A1 (en) Internally manifolded, planar solid oxide fuel cell (SOFC) stack with an inexpensive interconnect
JPS60100377A (en) Fuel battery
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JPH0159705B2 (en)
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
KR20170117189A (en) Electrochemical reaction unit and fuel cell stack
US20090004531A1 (en) Fuel cell stack having multiple parallel fuel cells
JP2790666B2 (en) Fuel cell generator
JP4191048B2 (en) High temperature fuel cell module with miniaturized interconnector
JPH01151164A (en) Solid electrolyte fuel cell and its assembly
JPS62200666A (en) Fuel cell
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JP2780885B2 (en) Solid electrolyte fuel cell
JPS63166159A (en) Solid electrolyte fuel cell
JPH0227670A (en) Fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JPH0359956A (en) Fuel battery generator
JPS63274062A (en) Solid electrolyte type fuel cell
US20220140380A1 (en) Cell stack device, module, and module housing device
TWM290614U (en) Structure of cathode channel for fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090604

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090604

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100604

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees