JPH01150037A - Vibro-isolating mechanism - Google Patents

Vibro-isolating mechanism

Info

Publication number
JPH01150037A
JPH01150037A JP62305810A JP30581087A JPH01150037A JP H01150037 A JPH01150037 A JP H01150037A JP 62305810 A JP62305810 A JP 62305810A JP 30581087 A JP30581087 A JP 30581087A JP H01150037 A JPH01150037 A JP H01150037A
Authority
JP
Japan
Prior art keywords
ball group
spring
vibration
unit
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305810A
Other languages
Japanese (ja)
Inventor
Hiroshi Ota
太田 啓
Masaru Oshino
押野 勝
Masahiro Tsunoda
正弘 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62305810A priority Critical patent/JPH01150037A/en
Publication of JPH01150037A publication Critical patent/JPH01150037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • F16F1/403Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers characterised by the shape of the non-elastic interengaging parts between the elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Architecture (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Vibration Prevention Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To promote the improvement of high accurate positioning performance stably obtaining the vibration characteristic of a device total unit by controlling the spring rigidity in a horizontal direction by the shearing rigidity of an elastic unit and the spring rigidity in a vertical direction by the elastic deformation of a ball group. CONSTITUTION:A unit, constituted of a ball group 2 of steel or the like held by a holding fixture 3 and a ball group supporting bed 4 serving as the surface for the ball group 2 to roll, is suitably built in layers. The ball group supporting bed 4 of the mutually different layer built unit is connected by an elastic unit 5 of rubber or the like. A mechanism controls the spring rigidity in a horizontal direction by the shearing rigidity of the elastic unit 5 and supports the spring rigidity in a vertical direction by the elastic deformation of the ball group 2. Thus stably obtaining the vibration characteristic of a device structure, the improvement of high accurate positioning performance is promoted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は除振機構に係り、特に縮小投影露光装置の如く
水平方向駆動力を受ける装置構造体の低振動化に好適な
除振機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration isolating mechanism, and more particularly to a vibration isolating mechanism suitable for reducing vibration of an apparatus structure that receives a horizontal driving force, such as a reduction projection exposure apparatus. It is something.

〔従来の技術〕[Conventional technology]

現在、実用に供されている公知の空気ばね方式除振装置
には昭和電線電纜株式会社のカタログ5WT−1708
の「昭和の除振台、定盤」がある。その−例を第4図に
より概設する。容器本体11と支持台12とはダイヤフ
ラム13を介して連結され、容器本体11の内部は、空
気室14と油槽部15とで構成され、空気室14には、
吸気バルブ16及び排気バルブ17が設けられており、
圧力調整装置からの機械的動作指令により空気室14の
空気圧が一定バンド内に保持できるように吸排気される
ようになっている。このような基本構成とすることによ
り、鉛直方向には空気室14の剛性がはね特性を支配し
、水平方向にはダイヤフラム13の水平面内剛性が支配
的なはね特性をもつ除振装置を実現している。支持台1
2の下端部に取り付けられた減衰器18は、例えば1紙
面に垂直な軸まわりの回転などに対する減衰をねらいと
している。この方式の除振装置は、構造上水平方向と比
較して鉛直方向のばね剛性が小さくなり、剛体ロッキン
グ振動モードを導びくことになる。
A known air spring type vibration isolator currently in practical use is Catalog 5WT-1708 of Showa Cable and Wire Co., Ltd.
There is a ``Showa era vibration isolation table, surface plate.'' An example thereof is outlined in FIG. The container body 11 and the support stand 12 are connected via a diaphragm 13, and the inside of the container body 11 is composed of an air chamber 14 and an oil tank 15.
An intake valve 16 and an exhaust valve 17 are provided,
In response to mechanical operation commands from the pressure regulating device, air is sucked and exhausted so that the air pressure in the air chamber 14 can be maintained within a constant band. With this basic configuration, it is possible to create a vibration isolator that has a splash characteristic in which the stiffness of the air chamber 14 dominates in the vertical direction, and a bounce characteristic in which the rigidity in the horizontal plane of the diaphragm 13 dominates in the horizontal direction. It has been realized. Support stand 1
The attenuator 18 attached to the lower end of the paper 2 is intended to attenuate, for example, rotation around an axis perpendicular to the plane of the paper. This type of vibration isolator has a structure in which the spring stiffness in the vertical direction is smaller than that in the horizontal direction, leading to a rigid body rocking vibration mode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、供給される平均空気圧及び空気圧の時
間変動により、鉛直方向及び水平方向のばね剛性が変化
し、最適な除振特性の安定性保持が困難となり、装置系
全体の振動特性にばらつきが生じる。縮小投影露光装置
においては、ある時間間隔でステージをステップ駆動し
、露光するシーケンスを繰り返す。したがって、理想的
な振動特性としては、各露光サイクルの初期状態が常に
一定状態となることが望ましい。ところで、従来の空気
ばね方式は、別途に設けた圧力調整器からの機械的動作
指令を受けて吸排気バルブが動作する。この場合、さけ
ることのできない圧力調整器の不感帯のため吸排気バル
ブの応答特性にばらつきを生じ、各露光サイクル毎に一
定な初期状態とすることはできない。
With the above conventional technology, the spring stiffness in the vertical and horizontal directions changes due to the average air pressure supplied and time fluctuations in the air pressure, making it difficult to maintain the stability of optimal vibration isolation characteristics, and causing variations in the vibration characteristics of the entire device system. occurs. In a reduction projection exposure apparatus, the stage is driven in steps at certain time intervals to repeat an exposure sequence. Therefore, as ideal vibration characteristics, it is desirable that the initial state of each exposure cycle is always constant. By the way, in the conventional air spring system, the intake and exhaust valves operate in response to a mechanical operation command from a separately provided pressure regulator. In this case, the unavoidable dead zone of the pressure regulator causes variations in the response characteristics of the intake and exhaust valves, making it impossible to maintain a constant initial state for each exposure cycle.

また、従来技術の空気ばね方式は、鉛直方向のばね剛性
が空気圧によってほぼ決定され、実用上の値としてはに
2″:3〜6 kg / mmであるのに対し、ダイヤ
フラムの水平面内剛性が支配的となる水平面内のばねに
、、に、は10〜20kg/rmである。
In addition, in the conventional air spring method, the spring stiffness in the vertical direction is almost determined by the air pressure, and the practical value is 3 to 6 kg/mm, whereas the stiffness in the horizontal plane of the diaphragm is The spring in the dominant horizontal plane is 10-20 kg/rm.

この方式では構造的制約から水平方向のばね剛性が鉛直
方向のばね剛性より大きくなることと、鉛直方向のばね
剛性が他の方式と比較しかなり小さいことが特徴である
。縮小投影露光装置の除振装置の機能として、(1)設
置床振動の装置への伝達遮断、(2)ステージステップ
駆動力に対する装置の振動低減が挙げられる。従来の空
気ばね方式は。
This method is characterized by the fact that the spring stiffness in the horizontal direction is greater than the spring stiffness in the vertical direction due to structural constraints, and that the spring stiffness in the vertical direction is considerably smaller than other methods. The functions of a vibration isolator for a reduction projection exposure apparatus include (1) cutting off transmission of installation floor vibration to the apparatus, and (2) reducing vibration of the apparatus in response to stage step driving force. The conventional air spring method.

上述の機能(1)に関しては満足するが、機能(2)に
関しては問題である。第5図は従来形空気ばねで支持し
た装置全体構造にステージステップ駆動力が作用する場
合の残留振動モード例であり、20はステージ、21は
コラム本体で装置の上部と下部とが露光光軸22に対し
て互いに逆位相変位となる強制力を受けることになる。
Function (1) above is satisfied, but function (2) is problematic. Figure 5 shows an example of the residual vibration mode when a stage step driving force acts on the entire structure of the apparatus supported by conventional air springs, where 20 is the stage, 21 is the column body, and the upper and lower parts of the apparatus are the exposure optical axis. 22 will be subjected to forcing forces that will cause displacements in opposite phases to each other.

このような振動モードは、微細なICパターン露光を実
現するための条件となる露光光学系の高精度位置決めに
悪影響を与える。すなわち、同一露光光軸22を構成し
なければならぬレティクル23とステージ20上に保持
されるウェハ24の基準点が、振動強制力により変形し
、相対位置ずれを生じる。
Such a vibration mode adversely affects the high precision positioning of the exposure optical system, which is a condition for realizing fine IC pattern exposure. That is, the reference points of the reticle 23 and the wafer 24 held on the stage 20, which must form the same exposure optical axis 22, are deformed by the vibrational force, resulting in relative positional deviation.

図示の如く、レティクル23とウェハ24とは相異なる
構造体に実装されており、したがっである程度の相対ず
れは許容せざるを得ない。その量をいかに微小量に抑え
るかが重要である。これは、ステージステップ駆動力の
作用面内と一致する水平方向の支持ばね剛性が鉛直方向
の支持ばね剛性より大きいためであり、空気ばね方式で
は避けられない現象である。
As shown in the figure, the reticle 23 and the wafer 24 are mounted on different structures, and therefore a certain degree of relative displacement must be allowed. It is important to keep the amount to a very small amount. This is because the support spring rigidity in the horizontal direction, which coincides with the plane of action of the stage step driving force, is greater than the support spring rigidity in the vertical direction, and is an unavoidable phenomenon in the air spring system.

本発明の目的は、上記した従来技術の問題点を解決し、
ばね剛性が一定で応答性がよく、装置全体の振動特性の
安定性をはかることができ、かつ、ステージステップ駆
動力の作用に対しても高精度位置決めを可能とすること
ができる除振機構を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
We have developed a vibration isolation mechanism that has constant spring stiffness and good responsiveness, can stabilize the vibration characteristics of the entire device, and also enables high-precision positioning even against the action of stage step driving force. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、水平方向に対しては比較的小さい弾性と適
度な粘性を有するばね剛性部材を配設し、鉛直方向に対
しては上記水平方向ばね剛性部材よりもかなり大きなば
ね剛性を有するばね剛性部材を配設し、この剛性部材と
上記ばね剛性部材とを結合した構成として達成するよう
にした。
The above purpose is to provide a spring rigid member having relatively small elasticity and moderate viscosity in the horizontal direction, and a spring rigid member having considerably greater spring rigidity than the horizontal spring rigid member in the vertical direction. The structure is achieved by combining the rigid member and the spring rigid member.

ステッパの稼動サイクルのうち、ステージの1ステップ
移動時間はスループット制約上0 、5 sec以下が
現状であり、例えば、台形速度制御駆動様式(第2図(
a)参照)をとる場合、これによって発生するステージ
駆動力が装置構造体に水平外力として作用する。速度制
御による駆動力のスペクトル分析結果(第2図(b)の
実線参照)をみると、f 岬3〜5 Hz領域、f49
〜11Hz領域等に比較的大きな加振力成分が存在し、
これらの中間の振動数領域に極小領域が存在する。特に
装置構造体に対しては、1句3〜5Hzの加振力成分が
問題となり、この成分による振動変位をできる限り小さ
く抑えることが必須条件となる。従来の空気ばね方式除
振台では、このような特性実現に対し柔軟性がなく、例
えば、第2図(b)のΔ印で表示する共振点となり、第
2図(c)の破線で示す如く、最適特性を得ることがで
きない。
In the operation cycle of a stepper, the time required for one step of the stage to move is currently 0.5 seconds or less due to throughput constraints.
When referring to a)), the stage driving force generated thereby acts on the device structure as a horizontal external force. Looking at the spectrum analysis results of the driving force due to speed control (see the solid line in Figure 2 (b)), it is found that f 3-5 Hz region, f 49
There is a relatively large excitation force component in the ~11Hz region, etc.
A minimum region exists in the frequency region between these. Particularly for device structures, the excitation force component of 3 to 5 Hz is a problem, and it is essential to suppress the vibration displacement due to this component as small as possible. Conventional air spring type vibration isolation tables are not flexible enough to achieve such characteristics, and for example, the resonance point is indicated by the Δ mark in Fig. 2(b), and the resonance point is indicated by the broken line in Fig. 2(c). Therefore, optimum characteristics cannot be obtained.

そこで本発明では、従来形では第2図(b)の○印表示
の如く不可能とされる加振力極小領域への共振点設定を
可能ならしめ、その結果、第2図(Q)に実線で示すよ
うに振動変位を最小にすることができるようにした。
Therefore, in the present invention, it is possible to set the resonance point in the minimum excitation force region, which is impossible in the conventional type, as shown by the circle mark in Fig. 2 (b), and as a result, as shown in Fig. 2 (Q). The vibration displacement can be minimized as shown by the solid line.

〔作用〕[Effect]

水平方向及び鉛直方向の支持ばね特性は、例えば、ゴム
材などの固体弾性体を用いることにより、応答特性が空
気ばねと比較して優れており、また。
The support spring characteristics in the horizontal and vertical directions are superior in response characteristics compared to air springs by using a solid elastic body such as a rubber material.

安定したばね特性を示すため、それによって支持される
装置全体の振動特性が安定し、除振性能の向上が実現で
きる。
Since it exhibits stable spring characteristics, the vibration characteristics of the entire device supported by it are stabilized, and vibration isolation performance can be improved.

かつ、水平方向の支持ばね剛性を比較的小さくし、これ
に対し、鉛直方向の支持ばね剛性をかなり大きくした除
振機構とすることにより、ステージステップ駆動力が作
用する場合の残留振動成分をf < I Hz領域及び
加振力が極小となる領域に設定することができる。本発
明のばね剛性構成とすることにより、水平方向の併進剛
体振動モードを残留させることができ、装置構造体の振
動変位を最小にすることが可能となり、高精度位置決め
に寄与できる。
In addition, by using a vibration isolation mechanism in which the stiffness of the support spring in the horizontal direction is relatively small and the stiffness of the support spring in the vertical direction is considerably large, the residual vibration component when the stage step driving force is applied is reduced to f. It can be set in the < I Hz region and the region where the excitation force is minimal. By adopting the spring rigidity structure of the present invention, it is possible to leave the horizontal translating rigid body vibration mode, and it is possible to minimize the vibration displacement of the device structure, contributing to high precision positioning.

〔実施例〕〔Example〕

以下本発明を第1図に示した実施例及び第3図を用いて
詳細に説明する。
The present invention will be described in detail below with reference to the embodiment shown in FIG. 1 and FIG. 3.

第1図は本発明の除振機構の一実施例を示す縦断面図で
ある。第1図において、1は設置床、2は鋼球、3は保
持具、4は鋼球支持台、5はゴム材、6は荷重受台で、
同一平面内に適当なピッチで配列された鋼球群2とこれ
らを一体保持するための保持具3とで構成される鋼球リ
ング部の保持具3の内周部と接合する鋼球支持台4とか
らなる要素を図示のように適当な暦数だけ積み上げ、各
各の層間に適当な弾性を有するゴム材5を介在させ、ゴ
ム材5の上、下面をそれぞれ異なる層の鋼球支持台4と
接着などにより一体結合しである。
FIG. 1 is a longitudinal sectional view showing an embodiment of the vibration isolation mechanism of the present invention. In Fig. 1, 1 is an installation floor, 2 is a steel ball, 3 is a holder, 4 is a steel ball support, 5 is a rubber material, 6 is a load holder,
A steel ball support base that is connected to the inner circumference of the holder 3 of a steel ball ring portion, which is composed of a group of steel balls 2 arranged at appropriate pitches in the same plane and a holder 3 for holding them together. 4 are piled up an appropriate number of times as shown in the figure, a rubber material 5 having appropriate elasticity is interposed between each layer, and the upper and lower surfaces of the rubber material 5 are covered with different layers of steel ball supports. 4 and is integrally joined by adhesive or the like.

このような機構を装置重量を支持する荷重受台6と設置
床1との間に介在させである。
Such a mechanism is interposed between the load pedestal 6 that supports the weight of the device and the installation floor 1.

この除振機構に水平面内のステージステップ駆動力が作
用する場合、水平方向に関しては各層間のゴム材5のせ
ん断抵抗かばね剛性を支配し、鋼球群2が鋼球支持台4
の面上をころがるときのころがり摩擦力とゴム材5の粘
性が減衰要素として作用する。各層間iのゴム材5の板
厚をト、せん断抵抗面積をAI、横弾性係数をGiとす
れば、水平方向の総合ばね定数KMは次の関係式によっ
て設定できる。
When the stage step driving force in the horizontal plane acts on this vibration isolating mechanism, the shear resistance and spring rigidity of the rubber material 5 between each layer are controlled in the horizontal direction, and the steel ball group 2 acts on the steel ball support base 4.
The rolling friction force when rolling on the surface and the viscosity of the rubber material 5 act as damping elements. If the plate thickness of the rubber material 5 in each interlayer i is t, the shear resistance area is AI, and the transverse elastic modulus is Gi, then the horizontal overall spring constant KM can be set by the following relational expression.

’Gi・A。'Gi・A.

一方、鉛直方向のばね剛性は鋼球群2と鋼球支持台4と
の弾性接触変位量によって支配され、公知のヘルツの式
を用いて求められる。鉛直方向の総合ばね定数Kvは、
支点荷重をP、鋼球2の半径、縦弾性係数及びポアソン
比をそれぞれRB。
On the other hand, the spring rigidity in the vertical direction is controlled by the amount of elastic contact displacement between the steel ball group 2 and the steel ball support base 4, and is determined using the well-known Hertz equation. The overall spring constant Kv in the vertical direction is
The fulcrum load is P, and the radius, longitudinal elastic modulus, and Poisson's ratio of steel ball 2 are RB, respectively.

EB、νB、また、鋼球支持台4の縦弾性係数及びポア
ソン比をそれぞれEs、vsとし、各層間の弾性変位量
をδ2Iとすれば Kv=−°=(4) Σ □ ’   kZI となり、鉛直方向のばね剛性Kvは、水平方向のばね剛
性Knよりもかなり大きな値に設定することが可能であ
る。
If EB, νB, the longitudinal elastic modulus and Poisson's ratio of the steel ball support 4 are Es and vs, respectively, and the amount of elastic displacement between each layer is δ2I, then Kv=-°=(4) Σ □ ' kZI , The vertical spring stiffness Kv can be set to a much larger value than the horizontal spring stiffness Kn.

このような特性を有する除振機構に実装される装置構造
体にステージステップ駆動時の水平力が作用すると、第
3図に示すような振動モードが残留する。空気ばね支持
機構では、装置の上、下部が互いに逆位相となる残留振
動モード(第5図参照)であるのに対し、本発明の除振
機構においては、装置の上、下部とも同一位相の強制力
を受ける振動モードが残留する。水平方向のばね剛性を
比較的に小さくし、鉛直方向のばね調性をかなり大きく
することにより、高精度位置決め性能向上に有効な支持
除振機構とすることができる。
When a horizontal force during stage step drive is applied to a device structure mounted on a vibration isolation mechanism having such characteristics, a vibration mode as shown in FIG. 3 remains. In the air spring support mechanism, the upper and lower parts of the device have a residual vibration mode in which the phases are opposite to each other (see Fig. 5), whereas in the vibration isolation mechanism of the present invention, the upper and lower parts of the device have the same phase. A vibration mode that is subjected to forced force remains. By making the spring stiffness in the horizontal direction relatively small and the spring tonality in the vertical direction considerably large, it is possible to provide a support vibration isolation mechanism that is effective in improving high-precision positioning performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、固体弾性体をば
ね剛性要素として用いているため、応答特性が良好で、
かつ、安定した特性を示し、したがって、これらの機構
によって支持される装置構造体の振動特性が安定し、ま
た、低振動化の実現に有効であり、また、鉛直方向のば
ね剛性を大きくし、水平方向には小さなばね剛性をもつ
支持機構とすることにより、高精度位置決めの性能向上
に好都合な残留振動モードとすることができ、低振動化
に有効であるという効果がある。
As explained above, according to the present invention, since a solid elastic body is used as a spring rigid element, the response characteristics are good.
Moreover, it exhibits stable characteristics, and therefore, the vibration characteristics of the device structure supported by these mechanisms are stabilized, and it is effective in realizing low vibration. By using a support mechanism with a small spring stiffness in the horizontal direction, a residual vibration mode can be created that is advantageous for improving the performance of high-precision positioning, and is effective in reducing vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除振機構の一実施例を示す縦断面図、
第2図は本発明の詳細な説明するための線図、第3図は
本発明の除振機構に実装された装置構造体の稼動時残留
振動モードの概略図、第4図は従来の空気ばね方式除振
機構の縦断面図、第5図は空気ばね方式除振機構に実装
された装置構造体の稼動時残留振動モードの概略図であ
る61・・・設置床、2・・・銅体、3・・・保持具、
4・・・鋼球支持台、5・・・ゴム材、6・・・荷重受
台。 (ほか1名)  ’、1 :j、−4 、′−2 $ 1 図 1−殺1体 2−剖珠 3−保持具 4−@球支持者 5−−ブ゛ム才r 乙−m−荷重受台 第Z口 茶30
FIG. 1 is a longitudinal sectional view showing an embodiment of the vibration isolation mechanism of the present invention;
Fig. 2 is a diagram for explaining the present invention in detail, Fig. 3 is a schematic diagram of the residual vibration mode during operation of the device structure mounted in the vibration isolation mechanism of the present invention, and Fig. 4 is a diagram for explaining the vibration isolation mechanism of the present invention. A vertical cross-sectional view of the spring-type vibration isolation mechanism, and FIG. 5 is a schematic diagram of the residual vibration mode during operation of the device structure mounted in the air-spring type vibration isolation mechanism. Body, 3... Holder,
4...Steel ball support stand, 5...Rubber material, 6...Load receiving stand. (1 other person) ', 1 :j, -4,'-2 $ 1 Figure 1 - 1 body 2 - autopsy 3 - holder 4 - @ ball supporter 5 - boom talent r ot - m - Load cradle No. Z mouth tea 30

Claims (1)

【特許請求の範囲】[Claims] 1、保持具により保持される鋼などの球群と、該球群が
転動する面となる球群支持台とで構成されたユニットを
適当に積層し、相異なる積層ユニットの前記球群支持台
をゴムなどの弾性体で結合した支持機構において、水平
方向のばね剛性は前記弾性体のせん断剛性が支配し、鉛
直方向のばね剛性は前記球群の弾性変形が支配するよう
にして、前記水平方向のばね剛性を小さくし、前記鉛直
方向のばね剛性をかなり大きくした構成としたことを特
徴とする除振機構。
1. A unit consisting of a ball group made of steel or the like held by a holder and a ball group support base that is a surface on which the ball group rolls is appropriately stacked, and the ball group support of different laminated units is performed. In a support mechanism in which a base is coupled with an elastic body such as rubber, the spring stiffness in the horizontal direction is controlled by the shear stiffness of the elastic body, and the spring stiffness in the vertical direction is controlled by the elastic deformation of the group of balls. A vibration isolation mechanism characterized in that the spring stiffness in the horizontal direction is made small and the spring stiffness in the vertical direction is made considerably large.
JP62305810A 1987-12-04 1987-12-04 Vibro-isolating mechanism Pending JPH01150037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305810A JPH01150037A (en) 1987-12-04 1987-12-04 Vibro-isolating mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305810A JPH01150037A (en) 1987-12-04 1987-12-04 Vibro-isolating mechanism

Publications (1)

Publication Number Publication Date
JPH01150037A true JPH01150037A (en) 1989-06-13

Family

ID=17949637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305810A Pending JPH01150037A (en) 1987-12-04 1987-12-04 Vibro-isolating mechanism

Country Status (1)

Country Link
JP (1) JPH01150037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090506A1 (en) * 2005-02-23 2006-08-31 Kikuo Sugita Turnover preventive sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090506A1 (en) * 2005-02-23 2006-08-31 Kikuo Sugita Turnover preventive sheet
GB2439855A (en) * 2005-02-23 2008-01-09 Kikuo Sugita Turnover preventive sheet
GB2439855B (en) * 2005-02-23 2009-09-16 Kikuo Sugita Turnover preventive sheet
US8182910B2 (en) 2005-02-23 2012-05-22 Kikuo Sugita Tip-resistant sheet for standing articles

Similar Documents

Publication Publication Date Title
EP0487637B1 (en) Vibration isolation system
US5310157A (en) Vibration isolation system
JP3266515B2 (en) Exposure apparatus, device manufacturing method, and stage apparatus
JP3794830B2 (en) Isolation device
US6518721B2 (en) Oscillation isolator
US20050161870A1 (en) Air-spring vibration isolation device
JP2001027280A (en) Active damping device
JP2015136737A (en) Substrate holding device and polishing device
JPH01150037A (en) Vibro-isolating mechanism
JP2003130132A (en) Vibration isolation mechanism
CA2182000C (en) Vibration isolation system
JPH0210286B2 (en)
JPH07266115A (en) Weight balancing device of movable body
JPH08170689A (en) Vibration resistant device
JPH11195578A (en) Lapping plate supporter and aligner
JP2006083883A (en) Vibration-free base device
JP3581499B2 (en) Vibration isolation device and control method thereof
JP2010127391A (en) Active vibration controller and actuator used for the same
RU2426920C1 (en) Vibratory bearing
JPH09273553A (en) Static pressure bearing device and positioning stage using the same
KR20010042415A (en) Diaphragm preload air bearing
JPH0874930A (en) Vibration control device
JP2002257190A (en) Processing apparatus and vibration blocking unit
JPS59102135A (en) Vibration testing machine
JPH06240924A (en) Vibration control device