JPH01149963A - Laser cvd device - Google Patents

Laser cvd device

Info

Publication number
JPH01149963A
JPH01149963A JP30790587A JP30790587A JPH01149963A JP H01149963 A JPH01149963 A JP H01149963A JP 30790587 A JP30790587 A JP 30790587A JP 30790587 A JP30790587 A JP 30790587A JP H01149963 A JPH01149963 A JP H01149963A
Authority
JP
Japan
Prior art keywords
substrate
reaction chamber
laser
laser light
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30790587A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30790587A priority Critical patent/JPH01149963A/en
Publication of JPH01149963A publication Critical patent/JPH01149963A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve deposition efficiency and to stabilize deposition by introducing laser light in the vicinity of a substrate to be deposited through a beam guide, and making the pressure in the beam guide higher than the pressure in a reaction chamber. CONSTITUTION:The gaseous mixture of reactants is introduced into the reaction chamber 1 provided with an exhaust port 9 from an inlet 8, and laser light is projected from a laser light inlet 2 through a synthetic-quartz window 4. The gaseous mixture is thereby activated, and the reaction product is deposited on the substrate 7. The cylindrical and convergent beam guide 10 extending from the laser light inlet 2 to the substrate 7 or to the vicinity of the substrate 7 is provided in the laser CVD device, and the laser light is led to the substrate 7 through the guide 10. A purge gas inlet 5 is further provided, and the pressure in the guide 10 is made higher than the pressure in the reaction chamber 1. As a result, a loss in the energy of the irradiation laser light is prevented, deposition efficiency is improved, and deposition can be stabilized.

Description

【発明の詳細な説明】 〔概要] 本発明は、反応混合ガスを導入した反応チャンバ内部に
レーザ光を照射し、該混合ガスを活性化させて反応生成
物を生成し、該反応生成物を被堆積基板に堆積させるレ
ーザCVD装置に関し、レーザ光をパワーロスのないよ
うに有効に反応チャンバ内の被堆積基板に導くことによ
り、堆積効率の向上と堆積の安定化を図ることを目的と
し、レーザ光の導入通路となる反応チャンバ内部の。
Detailed Description of the Invention [Summary] The present invention irradiates the inside of a reaction chamber into which a reaction mixture gas is introduced, activates the mixture gas to generate a reaction product, and generates a reaction product. Regarding laser CVD equipment for depositing onto a deposition target substrate, the purpose of the laser CVD system is to improve deposition efficiency and stabilize deposition by effectively guiding laser light to the deposition target substrate in a reaction chamber without power loss. Inside the reaction chamber, which serves as the light introduction path.

部分に、レーザ光の導入口より反応を生じさせたい部分
まで筒状のビームガイドを設けたことを特徴とする。
It is characterized in that a cylindrical beam guide is provided in the section from the laser beam introduction port to the section where the reaction is desired to occur.

〔産業上の利用分野〕[Industrial application field]

本発明は、反応混合ガスを導入した反応チャンバ内部に
レーザ光を照射し、該反応混合ガスを活性化させて反応
生成物を生成し、該反応生成物を被堆積基板に堆積させ
るレーザCVD装置に関する。
The present invention provides a laser CVD apparatus that irradiates a reaction chamber into which a reaction mixture gas is introduced with a laser beam, activates the reaction mixture gas, generates a reaction product, and deposits the reaction product on a substrate to be deposited. Regarding.

従来より、ポリシリコンや酸化物を半導体基板などに堆
積する装置として外部よりの電気的な加熱により反応生
成物を生成、堆積させるCVD装置がある。
2. Description of the Related Art Conventionally, as an apparatus for depositing polysilicon or oxide on a semiconductor substrate or the like, there is a CVD apparatus that generates and deposits reaction products by external electrical heating.

本発明に係るレーザCVD装置は、比較的新しく今後半
導体分野をはじめ広い応用が期待される。
The laser CVD apparatus according to the present invention is relatively new and is expected to find wide application in the future, including in the semiconductor field.

〔従来の技術〕[Conventional technology]

第3図は、従来のレーザCVD装置を示す模式断面図で
ある。
FIG. 3 is a schematic cross-sectional view showing a conventional laser CVD apparatus.

図において、101は反応チャンバ、102はレーザ光
導入口、103は0リング、104は合成石英窓、10
5はパージ用ガス導入口、106は支持台、107は被
堆積基板、108は反応混合ガス導入口、109は排気
口である。
In the figure, 101 is a reaction chamber, 102 is a laser beam inlet, 103 is an O ring, 104 is a synthetic quartz window, 10
5 is a purge gas inlet, 106 is a support, 107 is a substrate to be deposited, 108 is a reaction mixed gas inlet, and 109 is an exhaust port.

図示のレーザCVD装置は、Sin、を堆積するための
装置で、排気口109より反応チャンバ101内の気体
を排気し、一定の圧力に達した後、反応混合ガス導入口
108より反応混合ガスN、0+5iJaを反応チャン
バ101内に導入する。同時に、前記反応混合ガスのレ
ーザ光導入口102への侵入を防止するため、パージ用
ガス導入口105よりN2を導入する。そしてOリング
103にて固定された合成石英窓104を通してレーザ
光を反応チャンバ内に照射すると、反応混合ガスはレー
ザ光照射部分だけ分解、反応を起こし紫色のラジカル発
光を生ずる。このようにして生成したSiO□が、被堆
積基板107上に堆積していく。
The illustrated laser CVD apparatus is an apparatus for depositing Sin, and after exhausting the gas in the reaction chamber 101 from the exhaust port 109 and reaching a certain pressure, the reaction mixture gas N is introduced from the reaction mixture gas inlet 108. , 0+5iJa are introduced into the reaction chamber 101. At the same time, in order to prevent the reaction mixture gas from entering the laser beam inlet 102, N2 is introduced through the purge gas inlet 105. When a laser beam is irradiated into the reaction chamber through a synthetic quartz window 104 fixed with an O-ring 103, the reaction mixture gas decomposes and reacts only in the portion irradiated with the laser beam, producing purple radical luminescence. The SiO□ thus generated is deposited on the substrate 107 to be deposited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上述の従来のレーザCVD装置によると、反応チ
ャンバ101内部のレーザ光導入口102にパージ用ガ
ス導入口105よりN2ガスを導入し、該レーザ光導入
口102に反応混合ガスが侵入しないようにしているに
もかかわらず完全ではなく、レーザ光照射によりこの部
分にもラジカル発光が生じ、反応混合ガスが侵入する。
However, according to the conventional laser CVD apparatus described above, N2 gas is introduced into the laser beam inlet 102 inside the reaction chamber 101 through the purge gas inlet 105 to prevent the reaction mixture gas from entering the laser beam inlet 102. Despite this, it is not perfect, and the laser beam irradiation causes radical emission in this area as well, allowing the reaction mixture gas to enter.

ところで該レーザ光導入口102で分解、反応して生成
した反応生成物は、反応チャンバ101内の合成石英窓
104表面に付着していき、レーザ光エネルギーの透過
率を下げることになる。更にレーザ光が該レーザ光導入
口102より被堆積基板107に到達するまでに、反応
チャンバ101内レーザ光の通路に存在する反応混合ガ
スが分解、反応を起こし、レーザ光エネルギーは無駄に
吸収されることにもなりエネルギー効率の低下をきたす
。又くり返して堆積する場合において、第2図に示すよ
うに、堆積レートが低下して同じレーザ光エネルギーを
同じ時間照射しても堆積する反応生成物の膜厚は一定と
はならない。従って堆積の安定性を図ることはできなか
った。
By the way, reaction products generated by decomposition and reaction at the laser light introduction port 102 adhere to the surface of the synthetic quartz window 104 in the reaction chamber 101, reducing the transmittance of the laser light energy. Furthermore, before the laser beam reaches the substrate to be deposited 107 from the laser beam inlet 102, the reaction mixture gas existing in the laser beam path in the reaction chamber 101 decomposes and reacts, and the laser beam energy is wasted and absorbed. This also results in a decrease in energy efficiency. In the case of repeated deposition, as shown in FIG. 2, the deposition rate decreases and the thickness of the deposited reaction product does not become constant even if the same laser light energy is irradiated for the same time. Therefore, it was not possible to ensure the stability of the deposition.

そこで本発明は、レーザ光をエネルギーロスのないよう
に有効に反応チャンバ内の被堆積基板に導くことにより
、堆積効率の向上と堆積の安定化を図ることを目的とす
るものである。
Therefore, an object of the present invention is to improve deposition efficiency and stabilize deposition by effectively guiding laser light to a substrate to be deposited in a reaction chamber without energy loss.

C問題点を解決するための手段〕 上記問題点は、レーザ光の導入通路となる反応チャンバ
内部の部分に該レーザ光の導入口より被堆積基板まで筒
状のビームガイドを設け、更に該ビームガイド内を反応
チャンバ内の圧力より高く与圧するためのパージ用ガス
の導入口を設けたことを特徴とするレーザCVD装置に
より解決される。更に上記の問題点の解決の効果を上げ
るために、前記筒状のビームガイドの先端を細くするこ
ともできる。
Means for Solving Problem C] The above problem is solved by providing a cylindrical beam guide from the laser beam introduction port to the substrate to be deposited in the interior of the reaction chamber that serves as the laser beam introduction path, and This problem is solved by a laser CVD apparatus characterized by providing a purge gas inlet for pressurizing the inside of the guide to a level higher than the pressure inside the reaction chamber. Furthermore, in order to improve the effectiveness of solving the above problems, the tip of the cylindrical beam guide can be made thinner.

〔作用〕[Effect]

即ち本発明は、レーザ光の導入通路となる反応チャンバ
内部の部分に該レーザ光の導入口より被堆積基板まで筒
状のビームガイドを設け、該ビームガイドの内部をパー
ジ用ガスで反応チャンバ内の圧力よりも高く与圧するこ
とにより、反応混合ガスを該ビームガイド内部に侵入さ
せることなしにレーザ光照射を行えるので、該反応混合
ガスの分解反応および反応生成物の堆積が該ビームガイ
ドの外で起こさせることができるため、合成石英窓表面
に反応生成物が付着することがなく、又レーザ光エネル
ギーの吸収を起こさせることなく被堆積基板までレーザ
光を導くことができ、堆積効率の向上と堆積の安定化を
図ることが可能となる。
That is, in the present invention, a cylindrical beam guide is provided in a portion of the reaction chamber that serves as a laser beam introduction path from the laser beam introduction port to the substrate to be deposited, and the inside of the beam guide is filled with a purge gas into the reaction chamber. By increasing the pressure higher than the pressure of the beam guide, laser light irradiation can be performed without the reaction mixture gas entering the inside of the beam guide, so that the decomposition reaction of the reaction mixture gas and the deposition of reaction products are prevented from occurring outside the beam guide. Since the reaction products can be caused to occur in the synthetic quartz window surface, the laser light can be guided to the substrate to be deposited without causing absorption of laser light energy, improving the deposition efficiency. This makes it possible to stabilize the deposition.

[実施例] 以下、本発明を図示の一実施例により具体的に説明する
[Example] Hereinafter, the present invention will be specifically explained with reference to an illustrated example.

第1図は本発明の一実施例におけるレーザCVD装置を
示す模式断面図で、第2図は本発明の一実施例における
レーザCVD装置と従来例におけるそれとの効果の比較
説明図である。
FIG. 1 is a schematic cross-sectional view showing a laser CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a comparative illustration of the effects of the laser CVD apparatus according to an embodiment of the present invention and that of a conventional example.

第1図において、1は反応チャンバ、2はレーザ光導入
口、3はレーザ光を反応チャンバ1内に導入するための
合成石英窓4を固定する0リング、5はビームガイド1
0内を与圧するためのパージ用ガス導入口、6は反応生
成物を堆積する被堆積基板7を支持する支持台、8は反
応混合ガス導入口、9はチャンバ内を一定圧力にするた
めの排気口、10はレーザ光をレーザ光導入口2より被
堆積基板7まで導くビームガイド、11は圧力調節用ガ
ス導入口を示す。
In FIG. 1, 1 is a reaction chamber, 2 is a laser beam introduction port, 3 is an O-ring that fixes a synthetic quartz window 4 for introducing laser light into the reaction chamber 1, and 5 is a beam guide 1.
A purge gas inlet for pressurizing the inside of the chamber, 6 a support base for supporting a substrate 7 on which a reaction product is deposited, 8 a reaction mixed gas inlet, and 9 a constant pressure in the chamber. An exhaust port, 10 is a beam guide that guides the laser beam from the laser beam inlet 2 to the substrate 7 to be deposited, and 11 is a pressure adjusting gas inlet.

同図の本発明に係るレーザCVD装置は、特に5iOz
を堆積するための装置で、まず反応チャンバ1内の適当
な位置に設置されている支持台6にビームガイド10先
端から約2cm程度離して被堆積基板をセントする。そ
の後排気口9より反応チャンバ1内の気体を排気し、一
定圧力に達した後、反応混合ガスNtO(200S C
CM) +S 1zH−(0,23CCM)を反応混合
ガス導入口8より反応チャンバ1内に導入する。同時に
該反応混合ガスのビームガイド10内への侵入を防止す
るため、パージ用ガス導入口5よりN2を導入し、ビー
ムガイド10内の圧力を反応チャンバ1内の圧力より高
くするとともに、この圧力関係を保ちながら、前記反応
混合ガスの濃度を均一にするため、圧力調整用ガス導入
口11よりN2を導入し、反応チャンバ1内の圧力が約
2torr、ビームガイド10内の圧力が約6 tor
rとなるようにN2ガス1Iii量を調整する。そして
Oリング3にて固定された合成石英窓4を通してレーザ
光を反応チャンバl内に照射すると、前記反応混合ガス
は、紫色のラジカル発光でf!認されるように、ビーム
ガイド10の先端より約1cmのところから分解、反応
が起こり反応生成物が被堆積基板7上に堆積していく。
The laser CVD apparatus according to the present invention shown in the same figure is particularly suitable for 5iOz
First, a substrate to be deposited is placed on a support stand 6 installed at an appropriate position in the reaction chamber 1 at a distance of about 2 cm from the tip of the beam guide 10. Thereafter, the gas in the reaction chamber 1 is exhausted from the exhaust port 9, and after reaching a constant pressure, the reaction mixture gas NtO (200 S C
CM) +S 1zH-(0.23CCM) is introduced into the reaction chamber 1 from the reaction mixture gas inlet 8. At the same time, in order to prevent the reaction mixture gas from entering the beam guide 10, N2 is introduced from the purge gas inlet 5 to make the pressure inside the beam guide 10 higher than the pressure inside the reaction chamber 1. In order to equalize the concentration of the reaction mixture gas while maintaining the relationship, N2 is introduced from the pressure adjustment gas inlet 11, and the pressure in the reaction chamber 1 is approximately 2 torr and the pressure in the beam guide 10 is approximately 6 torr.
Adjust the amount of N2 gas 1Iiii so that it becomes r. Then, when a laser beam is irradiated into the reaction chamber 1 through the synthetic quartz window 4 fixed with an O-ring 3, the reaction mixture gas emits purple radical light at f! As can be seen, decomposition and reaction occur from about 1 cm from the tip of the beam guide 10, and reaction products are deposited on the substrate 7 to be deposited.

従って合成石英窓4の表面には反応生成物の付着は起こ
らないし、又レーザ光のエネルギーは吸収されることな
く有効に被堆積基板7まで導かれる。
Therefore, no reaction products adhere to the surface of the synthetic quartz window 4, and the energy of the laser beam is effectively guided to the substrate 7 without being absorbed.

第2図は1回の堆積膜たりレーザ出力15W、繰り返し
周波数100H2、レーザ照射時間1時間としたときの
堆積回数と堆積膜厚との関係を実験により導いたグラフ
で、本発明に係るビームガイド付のレーザCVD装置と
従来のビームガイドなしのそれとの比較を示している。
FIG. 2 is a graph derived from an experiment of the relationship between the number of times of deposition and the thickness of the deposited film when the laser output is 15 W, the repetition frequency is 100 H2, and the laser irradiation time is 1 hour. A comparison is shown between a laser CVD device with a conventional beam guide and one without a conventional beam guide.

それによると従来のものが堆積回数が増えるに従って堆
積膜厚が減少し安定しなくなるのに対して、本発明のも
のは堆積回数によらず堆積膜厚は一定で堆積の安定化が
図れる。しかも、1回目の堆積でも、その膜厚に差が生
じており、ビームガイド設置の有効性が確認できる。
According to the conventional method, as the number of times of deposition increases, the thickness of the deposited film decreases and becomes unstable, whereas with the method of the present invention, the thickness of the deposited film is constant regardless of the number of times of deposition, and the deposition can be stabilized. Moreover, even in the first deposition, there was a difference in the film thickness, confirming the effectiveness of the beam guide installation.

〔発明の効果] 以上のように本発明によれば、レーザ光をエネルギーロ
スのないように有効に反応チャンバ内の被堆積基板に導
くことができるので、堆積効率の向上と堆積の安定化が
図れる。
[Effects of the Invention] As described above, according to the present invention, laser light can be effectively guided to the substrate to be deposited in the reaction chamber without energy loss, thereby improving the deposition efficiency and stabilizing the deposition. I can figure it out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるレーザCVD装置を
示す模式断面図、 第2図は本発明に係るレーザCVD装置の効果を従来の
それと比較して説明する図、 第3図は従来のレーザCVD装置を示す模式断面図であ
る。 (符号の説明) 1.101・・・反応チャンバ、 2.102・・・レーザ光導入口、 3.103・・・0リング、 4、’104・・・合成石英窓、 5.105・・・パージ用ガス導入口、6.106・・
・支持台、 7.107・・・被堆積基板、 8.108・・・反応混合ガス導入口、9.109・・
・排気口、 10・・・ビームガイド、 11・・・圧力調節用ガス導入口。
FIG. 1 is a schematic cross-sectional view showing a laser CVD apparatus according to an embodiment of the present invention, FIG. 2 is a diagram illustrating the effects of the laser CVD apparatus according to the present invention in comparison with that of a conventional one, and FIG. 3 is a diagram illustrating a conventional laser CVD apparatus. 1 is a schematic cross-sectional view showing a laser CVD apparatus. (Explanation of symbols) 1.101...Reaction chamber, 2.102...Laser light introduction port, 3.103...0 ring, 4,'104...Synthetic quartz window, 5.105...・Purge gas inlet, 6.106...
・Support stand, 7.107... Deposition target substrate, 8.108... Reaction mixed gas inlet, 9.109...
・Exhaust port, 10... Beam guide, 11... Gas inlet for pressure adjustment.

Claims (2)

【特許請求の範囲】[Claims] (1)反応混合ガスを導入した反応チャンバ内部にレー
ザ光を照射し、該反応混合ガスを活性化させて反応生成
物を生成し、該反応生成物を被堆積基板に堆積させるレ
ーザCVD装置において、レーザ光の導入通路となる反
応チャンバ内部の部分に、レーザ光導入口より被堆積基
板まで又はその近傍まで筒状のビームガイドを設け、更
に該ビームガイド内を反応チャンバ内の圧力より高く与
圧するためのパージ用ガス導入口を設けたことを特徴と
するレーザCVD装置。
(1) In a laser CVD apparatus in which a laser beam is irradiated into a reaction chamber into which a reaction mixture gas is introduced, the reaction mixture gas is activated to generate a reaction product, and the reaction product is deposited on a substrate to be deposited. A cylindrical beam guide is provided from the laser beam inlet to the substrate to be deposited or in the vicinity thereof in a portion inside the reaction chamber that serves as a laser beam introduction path, and the pressure inside the beam guide is applied higher than the pressure inside the reaction chamber. A laser CVD apparatus characterized by being provided with a purge gas inlet for pressurizing the gas.
(2)前記筒状のビームガイドの先端が細くなっている
ことを特徴とする特許請求の範囲第1項に記載のレーザ
CVD装置。
(2) The laser CVD apparatus according to claim 1, wherein the cylindrical beam guide has a tapered tip.
JP30790587A 1987-12-04 1987-12-04 Laser cvd device Pending JPH01149963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30790587A JPH01149963A (en) 1987-12-04 1987-12-04 Laser cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30790587A JPH01149963A (en) 1987-12-04 1987-12-04 Laser cvd device

Publications (1)

Publication Number Publication Date
JPH01149963A true JPH01149963A (en) 1989-06-13

Family

ID=17974582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30790587A Pending JPH01149963A (en) 1987-12-04 1987-12-04 Laser cvd device

Country Status (1)

Country Link
JP (1) JPH01149963A (en)

Similar Documents

Publication Publication Date Title
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
JPS61231716A (en) Filming apparatus
US7763551B2 (en) RLSA CVD deposition control using halogen gas for hydrogen scavenging
JPS60245217A (en) Thin film formation equipment
US5112647A (en) Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process
JPH01149963A (en) Laser cvd device
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPS62183512A (en) Laser-induced thin film deposition apparatus
EP0319021A2 (en) Apparatus for laser chemical vapour deposition
RU2059322C1 (en) Method of and device for photochemical deposition of thin films
EP0298126B1 (en) Optical cvd process
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPS60202928A (en) Optical pumping reaction device
JPH0128830B2 (en)
JP3272610B2 (en) Metal thin film forming method
JPS6028225A (en) Optical vapor growth method
JPH036379A (en) Chemical vapor growth device
JPS6328865A (en) Hard carbon film manufacturing device
JP3132963B2 (en) Method of forming silicon oxide film
JPS6118125A (en) Thin film forming apparatus
JPS59224118A (en) Photochemical vapor-phase reaction method
JPH06199595A (en) Method for synthesizing diamond
JPS61263213A (en) Processor
JPS62240766A (en) Formation of deposited film
JPH03271372A (en) Method for forming oxide thin film using excimer laser