JPH0114960B2 - - Google Patents

Info

Publication number
JPH0114960B2
JPH0114960B2 JP57153823A JP15382382A JPH0114960B2 JP H0114960 B2 JPH0114960 B2 JP H0114960B2 JP 57153823 A JP57153823 A JP 57153823A JP 15382382 A JP15382382 A JP 15382382A JP H0114960 B2 JPH0114960 B2 JP H0114960B2
Authority
JP
Japan
Prior art keywords
phosphor
firing
temperature
washed
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57153823A
Other languages
Japanese (ja)
Other versions
JPS5943090A (en
Inventor
Takeshi Takahara
Tadashi Wakatsuki
Fumyasu Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15382382A priority Critical patent/JPS5943090A/en
Publication of JPS5943090A publication Critical patent/JPS5943090A/en
Publication of JPH0114960B2 publication Critical patent/JPH0114960B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は、希土類の酸硫化物螢光体の製造方法
に関し、特に高い電流密度となる螢光面に適する
希土類酸硫化物螢光体の製造方法の改良に関す
る。 (発明の技術的背景とその問題点) 近年、従来の直視型カラーテレビジヨンの他に
大型映像の得られる投写型カラーテレビジヨンの
普及は著しいものがある。この映像装置は青色、
緑色、赤色、三原色を発光する3つの高輝度陰極
細管の映像の光学レンズによつて拡大合成し大型
スクリーンに投影してカラー画像を再生するもの
である。この投写型映像装置ではスクリーンでの
明るさをできるだけ大きくするために上記陰極線
管の螢光面は、通常の直視型カラーブラウン管に
比較して10倍以上の高い電流密度の電子線によつ
て刺激される。このため螢光面の温度は、通常動
作で60℃以上に上昇する。一般的に螢光面の明る
さは温度上昇によつて低下することが多いので投
写型陰極線管の螢光面には直視型陰極線管とは異
なつた考慮が要求される。 螢光面の温度を下げる方法としてたとえば管の
螢光面の外側に、水の層を保持できるようにした
構造にして、温度上昇を減じる方法が知られてい
る。又フアンにより螢光面の外側に空気を吹きつ
ける工夫も知られている。しかしこれらの方法で
は、陰極線管の構造が複雑になつたり製造費が上
がつたりする欠点があるので、できるだけ動作状
態で効率のよい螢光体を使用することが望まし
い。 すなわち投写型陰極線管に用いられる螢光体は
温度特性のよいこと、高電流密度励起密度での揮
度飽和の少ないことが必要である。 投写型陰極線管の赤色螢光体では直視型ブラウ
ン管で多用されているユーロピウム付活酸硫化イ
ツトリウム(Y2O2S:Eu)螢光体が温度上昇に
よる発光効率の低下が著しいため、温度特性のす
ぐれたユーロピウム付活酸イツトリウム
(Y2O3:Eu)螢光体が使用されている。青色螢
光体では発光効率の高い銀付活硫化亜鉛(ZnS:
Ag)螢光体が使用されている。緑色螢光体では、
直視型ブラウン管で多用される硫化亜鉛系螢光体
が輝度の電流飽和特性が著しいため、マンガン付
活珪素亜鉛(Zn2S:O4:Mn)螢光体やテルビウ
ム付活酸硫化ガドリニウム(Gd2O2S:Tb)螢光
体、Y2O2S:Tb螢光体等が使用されている。 しかしながら上記Zn2SiO4:Mn螢光体は電子
線刺激による発光のエネルギー効率が約7%と低
く、高電子エネルギー刺激ではいわゆるヤケと称
する螢光面劣化を生じやすい。 又前述のGd2O2S:Tb、Y2O2S:Tb螢光体の
製造方法は例えば特公昭47−9562号に上記螢光体
と類似の赤色螢光体(Y、La、Gd、Ln)2O2S:
Euの製造方法が記載されている。この方法によ
つて得られたテルビウム付活希土類酸硫化物螢光
体は10%以上のエネルギー効率を有するが、温度
特性の悪いという欠点をもつていた。 (発明の目的) 本発明は希土類酸硫化物螢光体の温度に対する
輝度特性を改良する螢光体の製造方法を提供する
ことを目的とする。 (発明の概要) 発明者等は上記目的を達成するために希土類酸
硫化物螢光体の製造法に関して種々検討した。 まず一般的に行われる方法として、出発発原
料、フラツクスの混合物を焼成し、冷却、焼成、
冷却、焼成を繰返してみた。その結果輝度の温度
特性はわずかに改善されるだけであつた。次に同
様に焼成、冷却、焼成、冷却を繰返すとき、焼成
の前に硫黄や融剤を添加混合してみたがこの方法
によつても特性の改善はわずかであり、むしろ結
晶粒径が異状に大きくなり粒径の制御が困難にな
るという欠点を生じた。これは酸硫化物螢光体の
場合には焼成物中の融剤量が多くなることによる
現象と考えた。そこで発明者等は上記実験条件に
おいて焼成の前に融剤を添加混合する工程に加
え、焼成後に水洗を行い不用な融剤を洗い流す工
程を追加してみたところ輝度の温度特性が著しく
向上することを見出し、本発明を完成した。 すなわち本発明は一般式Re2O2S:Re′で表わさ
れる希土類酸硫化物螢光体の製造方法において、
出発原料Re2O3、Re′2O3の原料混合物に融剤を添
加混合して所定の温度で焼成する工程と、この焼
成物を水洗して融剤残留物を洗い流す工程と、前
記水洗した焼成物を乾燥して再び融剤を添加混合
して所定の温度で焼成する工程とを有することを
特徴とする螢光体の製造方法である。 たゞしReはY、Gdの少なくとも一つ、Re′は
Tb又はTb、Dy又はEuである。 本発明の螢光体の製造方法は、以下に述べる方
法でなされる。まず螢光体原料としては、 酸化イツトリウム(Y2O3)酸化ガドリニウ
ム(Gd2O3)酸化ランタン(La2O3)の少なく
共一つ 酸化テルビウム(Tb4O7)又は酸化テルビウ
ムと酸化デイスプロシウム(Dy2O3) 硫黄(S) 炭酸ナトリウム(Na2CO3) リン酸カリウム(K3PO4)、リン酸ナトリウ
ム(Na3PO4)、リン酸リチウム(Li3PO4)の
少なく共一つ を充分よく混合し、アルミナルツボに充填し、高
温電気炉にて中性ないし弱還え性雰囲気中で一次
焼成を行なう。焼成温度は1000℃〜1300℃の範囲
であることが望ましい。焼成時間は、原料の充填
量、焼成温度等によつて異なるが、3ないし6時
間が適当である。上記の焼成条件で一次焼成後、
焼成物を洗浄して変性した融剤残留物を除去す
る。さらに、上記の物質を混合して上記一
次焼成とほぼ同じ条件で二次焼成を行なう。焼成
物は洗浄乾燥、篩別等の螢光体製造において一般
的に採用されている各種操作を行なつて本発明の
螢光体を得る。 このようにして製造された螢光体は、従来の方
法(一次焼成のみ)で製造された螢光体に比較し
て、結晶性、粒状性がすぐれており、温度特性す
なわち、温度上昇による螢光体の輝度低下が著し
く改良される。 第1図の曲線aは本発明の製造方法のY2O2S:
Tb螢光体を用いて製造した投写型陰極線管の輝
度と温度との関係を示したものである。温度は管
の外側から赤外線ランプを用いて加熱しコントロ
ールした。 比較例1として、従来から製造している第1次
焼成のみの螢光体の特性を曲線bとして示す。 第1図から従来法の螢光体の60゜での輝度が20
℃でそれの60%であるのに対して、本発明の製造
方法では約85%であり、極めて温度特性が改良さ
れている。 なお本発明の製造方法を更に進めて焼成回数を
更にふやしても差しつかえないが、結晶性、粒状
性、温度特性の点から本発明の二回焼成で充分で
ある。 (発明の実施例) 次に実施例をもつて本発明を説明する。 実施例 1 酸化イツトリウム(Y2O3)95g酸化テルビウ
ム(Tb4O7)5g硫黄(S)30g炭酸ナトリウム
(Na2CO3)30gリン酸カリウム(K3PO4)8g
を充分よく混合する。得られた混合物をアルミナ
ルツボに充填し高温電気炉に入れてN2雰囲気中
で1100℃の温度で4時間一次焼成する。焼成後、
焼成物を脱イオン水で5回洗浄し、1規定の
HNO3で洗浄した後、脱イオン水で洗浄し乾燥す
る。乾燥後得られた粉体にS30g、Na2CO330g、
K3PO48gを加え充分よく混合する。得られた混
合物をアルミナルツボに充填し高温電気炉に入れ
ててN2雰囲気中で1100℃の温度で3時間二次焼
成する。焼成後焼成物を脱イオン水で5回洗浄
し、1規定のHNO3で3回洗浄する。次いで脱イ
オン水で洗浄した後、乾燥し篩別することによつ
てY2O2S:Tb0.03螢光体を得ることができる。こ
のようにして得られた螢光体は後述する従来法
(比較例1)(比較例2)によつて得られた螢光体
に比較して表に示すように特性のすぐれたもので
あつた。 比較例 1 酸化イツトリウム(Y2O3)95g酸化テルビウ
ム(Tb4O7)5g硫黄(S)30g炭酸ナトリウム
(Na2CO3)30gリン酸カリウム(K3PO4)8g
を充分よく混合する。得られた混合物をアルミナ
ルツボに充填し、高温電気炉に入れてN2雰囲気
中で1100℃の温度で8時間焼成する。焼成後焼成
物を脱イオン水で5回洗浄し、1規定のHNO3
洗浄する。次いで脱イオン水で洗浄後、乾燥、篩
別することによつてY2O2S:Tb0.03螢光体を得
る。この螢光体の特性を表に示す。 比較例 2 酸化イツトリウム(Y2O3)95g酸化テルビウ
ム(Tb4O7)5g硫黄(S)30g炭酸ナトリウム
(Na2CO3)30gリン酸カリウム(K3PO4)8g
を充分よく混合する。得られた混合物をアルミナ
ルツボに充填して高温電気炉でN2雰囲気中で
1100℃の温度で3時間焼成する。焼成後乳鉢で充
分よく粉砕した後、硫黄(S)30g炭酸ナトリウ
ム(Na2CO3)30gリン酸カリウム(K3PO4)8
gを混合し、アルミナルツボに充填し、N2雰囲
気中で1100℃の温度で3時間2次焼成する。以下
実施例1と同様な処理を行ないY2O2S:Tb0.03
光体を得る。この螢光体の特性を表にする。 表は実施例1、比較例1、比較例2の螢光体の
特性結果を表にしたものである。
(Technical Field of the Invention) The present invention relates to a method for producing a rare earth oxysulfide phosphor, and particularly to an improvement in the method for producing a rare earth oxysulfide phosphor suitable for a fluorescent surface with a high current density. (Technical Background of the Invention and Problems Thereof) In recent years, in addition to conventional direct-view color televisions, projection-type color televisions capable of producing large-sized images have become increasingly popular. This video device is blue,
The images of three high-intensity cathode capillary tubes that emit green, red, and three primary colors are enlarged and combined using an optical lens and projected onto a large screen to reproduce a color image. In this projection video device, in order to maximize the brightness on the screen, the fluorescent surface of the cathode ray tube is stimulated by an electron beam with a current density more than 10 times higher than that of a normal direct-view color cathode ray tube. be done. As a result, the temperature of the fluorescent surface rises to over 60°C during normal operation. In general, the brightness of a fluorescent surface often decreases as the temperature rises, so different considerations are required for the fluorescent surface of a projection type cathode ray tube than for a direct view type cathode ray tube. A known method for lowering the temperature of the fluorescent surface is, for example, to create a structure in which a layer of water can be retained on the outside of the fluorescent surface of the tube to reduce the temperature rise. Another known method is to use a fan to blow air onto the outside of the fluorescent surface. However, these methods have drawbacks such as complicating the structure of the cathode ray tube and increasing manufacturing costs, so it is desirable to use a phosphor that is as efficient as possible in the operating state. That is, the phosphor used in projection cathode ray tubes must have good temperature characteristics and low volatility saturation at high current and excitation densities. As for the red phosphor in projection cathode ray tubes, the europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu) phosphor, which is often used in direct-view cathode ray tubes, suffers from a significant drop in luminous efficiency due to temperature rise, so the temperature characteristics An excellent europium-activated yttrium oxide (Y 2 O 3 :Eu) phosphor is used. Silver-activated zinc sulfide (ZnS:
Ag) Fluorescent material is used. In green phosphor,
Zinc sulfide - based phosphors , which are often used in direct-view cathode ray tubes, have significant brightness current saturation characteristics. 2 O 2 S:Tb) phosphor, Y 2 O 2 S:Tb phosphor, etc. are used. However, the Zn 2 SiO 4 :Mn phosphor has a low energy efficiency of about 7% when stimulated with an electron beam, and high electron energy stimulation tends to cause deterioration of the phosphor surface, so-called discoloration. In addition, the method for producing the above-mentioned Gd 2 O 2 S:Tb, Y 2 O 2 S: Tb phosphor is described in Japanese Patent Publication No. 47-9562, for example, in which a red phosphor similar to the above-mentioned phosphor (Y, La, Gd , Ln) 2O2S :
A method for producing Eu is described. The terbium-activated rare earth oxysulfide phosphor obtained by this method has an energy efficiency of 10% or more, but has the drawback of poor temperature characteristics. (Object of the Invention) An object of the present invention is to provide a method for producing a rare earth oxysulfide phosphor that improves the brightness characteristics with respect to temperature of the phosphor. (Summary of the Invention) In order to achieve the above object, the inventors have conducted various studies regarding the manufacturing method of a rare earth oxysulfide phosphor. First, as a general method, a mixture of starting materials and flux is calcined, cooled, calcined,
I tried cooling and firing repeatedly. As a result, the temperature characteristics of brightness were only slightly improved. Next, when repeating firing, cooling, firing, and cooling, I tried adding sulfur and a flux before firing, but even with this method, the properties were only slightly improved, and the crystal grain size was rather abnormal. This resulted in the drawback that the grain size became difficult to control. This phenomenon was considered to be due to the increased amount of flux in the fired product in the case of oxysulfide phosphors. Therefore, under the above experimental conditions, the inventors added a step of adding and mixing a flux before firing, as well as a step of rinsing with water after firing to wash away the unnecessary flux, and found that the temperature characteristics of brightness were significantly improved. They discovered this and completed the present invention. That is, the present invention provides a method for producing a rare earth oxysulfide phosphor represented by the general formula Re 2 O 2 S:Re',
A step of adding and mixing a fluxing agent to a raw material mixture of starting materials Re 2 O 3 and Re′ 2 O 3 and firing the mixture at a predetermined temperature, a step of washing the fired product with water to wash away the fluxing agent residue, and the washing with water This method of manufacturing a phosphor is characterized by comprising the steps of drying the fired product, adding and mixing a flux again, and firing at a predetermined temperature. If Re is at least one of Y and Gd, Re′ is
Tb or Tb, Dy or Eu. The method for manufacturing the phosphor of the present invention is as follows. First, the phosphor raw materials are at least one of yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), lanthanum oxide (La 2 O 3 ), terbium oxide (Tb 4 O 7 ), or terbium oxide and oxidized Disprosium (Dy 2 O 3 ) Sulfur (S) Sodium carbonate (Na 2 CO 3 ) Potassium phosphate (K 3 PO 4 ), Sodium phosphate (Na 3 PO 4 ), Lithium phosphate (Li 3 PO 4 ) Mix at least one of the ingredients thoroughly, fill an alumina crucible, and perform primary firing in a high-temperature electric furnace in a neutral or weakly reducible atmosphere. The firing temperature is preferably in the range of 1000°C to 1300°C. The firing time varies depending on the filling amount of raw materials, firing temperature, etc., but 3 to 6 hours is appropriate. After primary firing under the above firing conditions,
The fired product is washed to remove denatured fluxing agent residue. Furthermore, the above-mentioned substances are mixed and secondary firing is performed under substantially the same conditions as the above-mentioned primary firing. The fired product is subjected to various operations generally employed in the production of phosphors, such as washing, drying, and sieving, to obtain the phosphor of the present invention. The phosphor produced in this way has superior crystallinity and granularity compared to the phosphor produced by the conventional method (primary firing only), and has excellent temperature characteristics, i.e., fluorescein resistance due to temperature rise. Decrease in brightness of the light body is significantly improved. Curve a in FIG. 1 is Y 2 O 2 S of the production method of the present invention:
This figure shows the relationship between the brightness and temperature of a projection cathode ray tube manufactured using a Tb phosphor. The temperature was controlled by heating from the outside of the tube using an infrared lamp. As Comparative Example 1, curve b shows the characteristics of a conventionally produced phosphor that has undergone only the first firing. From Figure 1, the brightness of the conventional phosphor at 60° is 20.
℃, it is about 85% in the manufacturing method of the present invention, and the temperature characteristics are extremely improved. Although it is possible to further advance the production method of the present invention and increase the number of firings, the two-time firing of the present invention is sufficient in terms of crystallinity, granularity, and temperature characteristics. (Examples of the Invention) Next, the present invention will be explained with reference to Examples. Example 1 Yttrium oxide (Y 2 O 3 ) 95g Terbium oxide (Tb 4 O 7 ) 5g Sulfur (S) 30g Sodium carbonate (Na 2 CO 3 ) 30g Potassium phosphate (K 3 PO 4 ) 8g
Mix thoroughly. The obtained mixture was filled into an alumina crucible, placed in a high-temperature electric furnace, and primarily fired at a temperature of 1100° C. for 4 hours in an N 2 atmosphere. After firing,
Wash the fired product 5 times with deionized water and
Wash with HNO3 , then with deionized water and dry. After drying, add 30 g of S, 30 g of Na 2 CO 3 to the powder obtained,
Add 8g of K 3 PO 4 and mix well. The obtained mixture was filled into an alumina crucible, placed in a high-temperature electric furnace, and subjected to secondary firing at a temperature of 1100° C. for 3 hours in an N 2 atmosphere. After firing, the fired product is washed 5 times with deionized water and 3 times with 1N HNO 3 . A Y 2 O 2 S:Tb 0.03 phosphor can then be obtained by washing with deionized water, drying and sieving. The phosphors thus obtained had superior properties as shown in the table compared to the phosphors obtained by the conventional methods (Comparative Example 1) (Comparative Example 2) described below. Ta. Comparative Example 1 Yttrium oxide (Y 2 O 3 ) 95 g Terbium oxide (Tb 4 O 7 ) 5 g Sulfur (S) 30 g Sodium carbonate (Na 2 CO 3 ) 30 g Potassium phosphate (K 3 PO 4 ) 8 g
Mix thoroughly. The resulting mixture is filled into an alumina crucible, placed in a high-temperature electric furnace, and fired at a temperature of 1100° C. for 8 hours in an N 2 atmosphere. After firing, the fired product is washed five times with deionized water and then with 1N HNO 3 . Then, after washing with deionized water, drying and sieving, a Y 2 O 2 S:Tb 0.03 phosphor is obtained. The properties of this phosphor are shown in the table. Comparative Example 2 Yttrium oxide (Y 2 O 3 ) 95 g Terbium oxide (Tb 4 O 7 ) 5 g Sulfur (S) 30 g Sodium carbonate (Na 2 CO 3 ) 30 g Potassium phosphate (K 3 PO 4 ) 8 g
Mix thoroughly. The resulting mixture was filled into an alumina crucible and heated in a high-temperature electric furnace in an N2 atmosphere.
Bake at a temperature of 1100℃ for 3 hours. After firing, grind thoroughly in a mortar and add 30 g of sulfur (S), 30 g of sodium carbonate (Na 2 CO 3 ), 8 g of potassium phosphate (K 3 PO 4 ).
g was mixed, filled into an alumina crucible, and secondarily fired at a temperature of 1100° C. for 3 hours in an N 2 atmosphere. Thereafter, the same treatment as in Example 1 is carried out to obtain a Y 2 O 2 S:Tb 0.03 phosphor. The characteristics of this phosphor are listed below. The table shows the characteristic results of the phosphors of Example 1, Comparative Example 1, and Comparative Example 2.

【表】 この表からも明らかなように実施例1の本発明
の方法で製造された螢光体は比較例1の従来の方
法の螢光体に比較して粒度分布がシヤープであり
分散性(中央値/平均粒径の大きさが小さい方が
分散性大)にすぐれており輝度温度特性も向上す
ることがわかる。 又一次焼成で残留している変性した融剤を除去
せずに新しい融剤を加えて2次焼成したし、比較
例2の場合には、一次焼成に比べて結晶性がやや
向上するが粒度分布分散性はさほど向上せず輝
度、温度特性も比較して大差ない。 実施例 2 酸化ガドリニウム(Gd2C3)97.13g酸化テル
ビウム(Tb4O7)2.87g炭酸ソーダ(Na2CO3
15gS15gリン酸カリウム5gを充分よく混合す
る。得られた混合物をアルミナルツボに充填し、
高温電気炉に入れてN2雰囲気中で1100℃の温度
で4時間一次焼成する。焼成後、焼成物を脱イオ
ン水で5回洗浄し、1規定のHNO3で洗浄した後
脱イオン水で洗浄し乾燥する。乾燥後得られた粉
体にS15g、Na2CO315g、K3PO45gを加え充分
よく混合する。得られた混合物をアルミナルツボ
に充填し高温電気炉に入れてN2雰囲気中で1100
℃の温度で3時間二次焼成する。焼成後焼成物を
脱イオン水で5回洗浄し、1規定の塩酸で3回洗
浄する。次いで脱イオン水で洗浄した後、乾燥し
篩別することによつてGd2O2S:Tb螢光体を得る
ことができる。このようにして得られた螢光体は
従来法によつて得られた螢光体に比較して20℃の
陰極線励起による輝度は106であり、60℃で輝度
維持率は80%であり従来法63%(60℃)に比較し
て高いものであつた。 実施例 3 酸化イツトリウム(Y2O3)100g酸化テルビウ
ム(Tb4O7)4.21g酸化デイスプロシウム
(Dy2O3)1.05g炭酸ソーダ30g硫黄(S)30g
リン酸カリウム(K3PO4)9gを充分よく混合
する。得られた混合物をアルミナルツボに充填し
高温電気炉に入れてN2雰囲気中で1100℃の温度
で4時間一次焼成する。焼成後、焼成物を脱イオ
ン水で5回洗浄し、1規定のHNO3で洗浄した後
脱イオン水で洗浄し乾燥する。乾燥後得られた粉
体にS30g、Na2CO330g、K3PO49gを加え充分
よく混合する。得られた混合物をアルミナルツボ
に充填し高温電気炉に入れてN2雰囲気中で1100
℃の温度で3時間二次焼成する。焼成後焼成物を
脱イオン水で5回洗浄し、1規定のHNO3で3回
洗浄する。次いで脱イオン水で洗浄した後、乾燥
し篩別することによつてY2O2S:Tb、Dy3螢光
体を得ることができる。このようにして得られた
螢光体は従来法(比較例1)によつて得られた螢
光体に比較して20℃での陰極線励起による輝度は
107であり、60℃で輝度維持率は87%であり従来
法67%に比較して高いものであつた。 実施例 4 酸化イツトリウム(Y2O3)100g酸化ユーロピ
ウム59g炭酸ソーダ30g硫黄(S)30gリン酸カ
リウム(K3PO4)9gを充分よく混合する。得
られた混合物をアルミナルツボに充填して高温電
気炉で1100℃の温度で4時間一次焼成する。焼成
後、焼成物を脱イオン水で5回洗浄し、1規定の
硝酸で洗浄した後脱イオン水で洗浄し乾燥する。
乾燥後得られた粉体にS30g、Na2CO330g、
K3PO49gを加え十分よく混合する。得られた混
合物をアルミナルツボに充填して高温電気炉で
1100℃の温度で3時間二次焼成する。焼成後焼成
物を脱イオン水で5回洗浄し、1規定の硝酸で3
回洗浄する。次いで脱イオン水で洗浄した後、乾
燥ふるい工程を経て本発明のY2O2S:Eu蛍光体
を得ることができる。 このようにして得られた蛍光体は比較例1とほ
ぼ同様の方法で作られた従来法の蛍光体に比べて
20℃での陰極線励起による輝度は105であり、60
℃での輝度維持率は83%であり、従来法65%に対
して高いものであつた。 (発明の効果) 以上説明した通り本発明の螢光体の製造方法に
よれば高温度に対する輝度特性が向上し、さらに
分散性の向上した希土類酸硫化物螢光体が得られ
る。
[Table] As is clear from this table, the phosphor produced by the method of the present invention in Example 1 has a sharper particle size distribution and better dispersibility than the phosphor produced by the conventional method in Comparative Example 1. (The smaller the median value/average particle size, the greater the dispersibility), and it can be seen that the brightness temperature characteristics are also improved. In addition, a new flux was added without removing the modified flux remaining in the first firing, and the second firing was performed. There is no significant improvement in distribution dispersion, and there is no significant difference in brightness or temperature characteristics. Example 2 Gadolinium oxide (Gd 2 C 3 ) 97.13g Terbium oxide (Tb 4 O 7 ) 2.87g Soda carbonate (Na 2 CO 3 )
Mix 15g S15g potassium phosphate 5g thoroughly. Fill the resulting mixture into an aluminium crucible,
The product is placed in a high-temperature electric furnace and fired for 4 hours at a temperature of 1100°C in an N2 atmosphere. After firing, the fired product is washed five times with deionized water, washed with 1N HNO 3 , and then washed with deionized water and dried. After drying, 15 g of S, 15 g of Na 2 CO 3 and 5 g of K 3 PO 4 were added to the powder obtained and mixed thoroughly. The resulting mixture was filled into an alumina crucible and placed in a high-temperature electric furnace for 1100 min in an N2 atmosphere.
Secondary firing is carried out at a temperature of ℃ for 3 hours. After firing, the fired product is washed five times with deionized water and three times with 1N hydrochloric acid. The Gd 2 O 2 S:Tb phosphor can then be obtained by washing with deionized water, drying and sieving. Compared to the phosphor obtained by the conventional method, the phosphor obtained in this way has a luminance of 106 by cathode ray excitation at 20°C, and a luminance maintenance rate of 80% at 60°C, compared to the phosphor obtained by the conventional method. This was higher than the 63% (60°C) method. Example 3 Yttrium oxide (Y 2 O 3 ) 100g Terbium oxide (Tb 4 O 7 ) 4.21g Disprosium oxide (Dy 2 O 3 ) 1.05g Soda carbonate 30g Sulfur (S) 30g
9 g of potassium phosphate (K 3 PO 4 ) are thoroughly mixed. The obtained mixture was filled into an alumina crucible, placed in a high-temperature electric furnace, and primarily fired at a temperature of 1100° C. for 4 hours in an N 2 atmosphere. After firing, the fired product is washed five times with deionized water, washed with 1N HNO 3 , and then washed with deionized water and dried. After drying, 30 g of S, 30 g of Na 2 CO 3 and 9 g of K 3 PO 4 were added to the powder obtained and thoroughly mixed. The resulting mixture was filled into an alumina crucible and placed in a high-temperature electric furnace for 1100 min in an N2 atmosphere.
Secondary firing is carried out at a temperature of ℃ for 3 hours. After firing, the fired product is washed 5 times with deionized water and 3 times with 1N HNO 3 . The Y 2 O 2 S:Tb, Dy 3 phosphor can then be obtained by washing with deionized water, drying and sieving. The luminance of the phosphor obtained in this way due to cathode ray excitation at 20°C is lower than that of the phosphor obtained by the conventional method (Comparative Example 1).
107, and the brightness maintenance rate at 60°C was 87%, which was higher than the conventional method, which was 67%. Example 4 100 g of yttrium oxide (Y 2 O 3 ), 59 g of europium oxide, 30 g of soda carbonate, 30 g of sulfur (S), and 9 g of potassium phosphate (K 3 PO 4 ) are thoroughly mixed. The resulting mixture was filled into an alumina crucible and fired in a high-temperature electric furnace at a temperature of 1100°C for 4 hours. After firing, the fired product is washed five times with deionized water, washed with 1N nitric acid, and then washed with deionized water and dried.
After drying, add 30 g of S, 30 g of Na 2 CO 3 to the powder obtained,
Add 9g of K 3 PO 4 and mix well. The resulting mixture was filled into an alumina crucible and heated in a high-temperature electric furnace.
Secondary firing is performed at a temperature of 1100°C for 3 hours. After firing, the fired product was washed 5 times with deionized water, and then washed with 1N nitric acid for 3 times.
Wash twice. Then, after washing with deionized water, a dry sieving process is performed to obtain the Y 2 O 2 S:Eu phosphor of the present invention. The phosphor obtained in this way is superior to the conventional phosphor made using almost the same method as Comparative Example 1.
The brightness due to cathode ray excitation at 20°C is 105 and 60
The brightness maintenance rate at ℃ was 83%, which was higher than that of the conventional method, which was 65%. (Effects of the Invention) As explained above, according to the method for producing a phosphor of the present invention, a rare earth oxysulfide phosphor with improved brightness characteristics against high temperatures and further improved dispersibility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はY2O2S:Tb螢光体を用いた陰極線管
の輝度温度特性を示す図である。曲線aは本発明
の製造方法、破線bは従来法による螢光体の特性
を示す。
FIG. 1 is a diagram showing the brightness temperature characteristics of a cathode ray tube using a Y 2 O 2 S:Tb phosphor. The curve a shows the characteristics of the phosphor produced by the manufacturing method of the present invention, and the broken line b shows the characteristics of the phosphor produced by the conventional method.

Claims (1)

【特許請求の範囲】 1 一般式Re2O2S:Re′で表わされる希土類酸硫
化物螢光体の製造方法において、 出発原料Re2O3、Re′2O3の原料混合物に融剤を
添加混合して所定の温度で焼成する工程と、この
焼成物を水洗して融剤残留物を洗い流す工程と、
前記水洗した焼成物を乾燥して再び融剤を添加混
合して所定の温度で焼成する工程とを有すること
を特徴とする螢光体の製造方法。 たゞしReはY、Gdの少なくとも一つ、Re′は
Tb又はTb、Dy又はEuである。
[Claims] 1. In a method for producing a rare earth oxysulfide phosphor represented by the general formula Re 2 O 2 S: Re', a fluxing agent is added to a raw material mixture of starting materials Re 2 O 3 and Re' 2 O 3 . a step of adding and mixing and firing at a predetermined temperature; a step of washing the fired product with water to wash away flux residue;
A method for producing a phosphor, comprising the steps of drying the water-washed fired product, adding and mixing a flux again, and firing at a predetermined temperature. If Re is at least one of Y and Gd, Re′ is
Tb or Tb, Dy or Eu.
JP15382382A 1982-09-06 1982-09-06 Preparation of fluorescent material Granted JPS5943090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15382382A JPS5943090A (en) 1982-09-06 1982-09-06 Preparation of fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15382382A JPS5943090A (en) 1982-09-06 1982-09-06 Preparation of fluorescent material

Publications (2)

Publication Number Publication Date
JPS5943090A JPS5943090A (en) 1984-03-09
JPH0114960B2 true JPH0114960B2 (en) 1989-03-15

Family

ID=15570866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15382382A Granted JPS5943090A (en) 1982-09-06 1982-09-06 Preparation of fluorescent material

Country Status (1)

Country Link
JP (1) JPS5943090A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737613B2 (en) * 1990-03-01 1995-04-26 化成オプトニクス株式会社 Method for producing rare earth oxysulfide phosphor
JP4131139B2 (en) * 2002-07-30 2008-08-13 日亜化学工業株式会社 Electron beam excited display and red light emitting phosphor used therefor
JP2006137851A (en) * 2004-11-12 2006-06-01 Sumitomo Chemical Co Ltd Silicate fluorescent substance powder and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850837A (en) * 1972-08-11 1974-11-26 Gen Electric Preparation of rare-earth oxysulfide luminescent material
JPS5186087A (en) * 1975-01-25 1976-07-28 Tokyo Shibaura Electric Co KIDORUIOKISHIRYUKABUTSUKEIKOTAI OYOBI SONOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850837A (en) * 1972-08-11 1974-11-26 Gen Electric Preparation of rare-earth oxysulfide luminescent material
JPS5186087A (en) * 1975-01-25 1976-07-28 Tokyo Shibaura Electric Co KIDORUIOKISHIRYUKABUTSUKEIKOTAI OYOBI SONOSEIZOHOHO

Also Published As

Publication number Publication date
JPS5943090A (en) 1984-03-09

Similar Documents

Publication Publication Date Title
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
JP3447274B2 (en) Method for producing aluminate phosphor
US20040099844A1 (en) Stable blue phosphor for plasma display panel applications
JPH0114960B2 (en)
JPS6140275B2 (en)
JPS6121581B2 (en)
JP2656769B2 (en) Fluorescent lamp
JPH03177491A (en) Fluorescent substance and fluorescent lamp
JPS632314B2 (en)
JP4146173B2 (en) Bivalent metal silicate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device using the same
US2589513A (en) Method of making titanium activated calcium magnesium silicate phosphor
JP3956434B2 (en) Aluminate phosphor
JPH09291275A (en) Production of fluorescent material and florescent material
CN102337126A (en) Preparation method of BAM (BaMgAl10O17) blue fluorescent powder for PDP (plasma display panel)
JPH0522750B2 (en)
RU2064482C1 (en) Method to produce cathodoluminophor based on yttrium and europium oxysulfide
KR950011230B1 (en) Preparatio method of green emitting luminescent
JPS5840381A (en) Bluish green fluophor
JPS6121504B2 (en)
JPH0252382B2 (en)
JPS5924786A (en) Rare earth aluminate fluorescent material
JPH04239588A (en) Aluminate fluorescent material and fluorescent lamp produced by using the same
JPH0129834B2 (en)
JPS6014059B2 (en) fluorescent surface
JP3457730B2 (en) Phosphor and cathode ray tube using the same