JPH01149558A - Light transmitting data receiving circuit - Google Patents

Light transmitting data receiving circuit

Info

Publication number
JPH01149558A
JPH01149558A JP62307983A JP30798387A JPH01149558A JP H01149558 A JPH01149558 A JP H01149558A JP 62307983 A JP62307983 A JP 62307983A JP 30798387 A JP30798387 A JP 30798387A JP H01149558 A JPH01149558 A JP H01149558A
Authority
JP
Japan
Prior art keywords
circuit
signal
level
voltage
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307983A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Okuhara
奥原 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62307983A priority Critical patent/JPH01149558A/en
Publication of JPH01149558A publication Critical patent/JPH01149558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)
  • Manipulation Of Pulses (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

PURPOSE:To enlarge the dynamic range of a detectable level without increasing the supply voltage of a receiving amplifying circuit and, simultaneously, to surely detect data regardless of single data and successive data by providing a non-linear amplifying circuit and a detecting circuit, etc. CONSTITUTION:When a photodetector 11 light-receives a transmitting light, the element 11 generates a sawtooth wave current signal, the signal is converting-amplified to a voltage signal e0 by a current-voltage converting amplifier 121 of a non-linear amplifying circuit 12, and it is inputted to a non- linear converter 122. At the converter 122, first, the voltage e0 and a first reference voltage e1 are compared by a first compressing circuit (a), next, a voltage ea and a second reference voltage E2 are compared by a second compressing circuit (b), and an input signal is outputted by being compressed at two stages according to the comparison results. An output signal eb of the converter 122 is inputted to a detecting circuit 13 and a threshold control circuit 14, the circuit 13 outputs the signal of an H level when the input signal eb is at the threshold or above, the circuit outputs the signal of an L level when the signal eb is at the threshold or below, and digital data are reproduced. Thus, the dynamic range of the receivable level can be enlarged, and the data are surely detected.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、光によって伝送されるデジタルデータを受
信検出する光伝送データ受信回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical transmission data receiving circuit that receives and detects digital data transmitted by light.

(従来の技術) 一般に、光伝送データ受信回路は伝送光を受光素子によ
って受光して電流信号を発生させ、この電流信号を線型
増幅器による受信増幅回路で増幅した後、検出回路で識
別しきい値と比較してデータを検出する構成であり、そ
の検出方式は以下の方式が単独あるいは組合わせて構成
される。
(Prior Art) In general, an optical transmission data receiving circuit receives transmitted light with a light receiving element to generate a current signal, amplifies this current signal in a receiving amplifier circuit using a linear amplifier, and then uses a detection circuit to identify a threshold value. It is configured to detect data by comparing it with the data, and its detection method consists of the following methods alone or in combination.

(1)AGC(自動利得制御)方式 受信信号のレベルを検出し、この検出レベルに応じて受
信増幅回路の利得を制御する方式である。
(1) AGC (Automatic Gain Control) Method This is a method in which the level of a received signal is detected and the gain of the receiving amplifier circuit is controlled according to this detected level.

(2)ATC(自動しきい値制御)方式受信信号のレベ
ルに応じてデータの1,0の検出しきい値を信号レベル
に応じた最適値付近となるように制御する方式である。
(2) ATC (Automatic Threshold Control) Method This is a method in which the threshold value for detecting 1 and 0 data is controlled in accordance with the level of the received signal so that it is close to the optimum value according to the signal level.

(3)交流結合方式 受信増幅回路の出力端と検出回路の入力端とをコンデン
サ等によって交流結合したものであって、例えば増幅器
出力をコンデンサに通して微分波形等とし、この微分信
号を検出回路に入力してデータを再生する方式である。
(3) AC coupling method The output end of the receiving amplifier circuit and the input end of the detection circuit are AC coupled by a capacitor or the like. For example, the output of the amplifier is passed through the capacitor to form a differential waveform, and this differential signal is sent to the detection circuit. In this method, the data is played back by inputting it into the .

(4)  直接結合方式 受信増幅回路の出力端と検出回路の入力端とを直接結合
するものであって、増幅度や検出しきい値の制御を行な
わない方式である。
(4) Direct coupling method This is a method in which the output terminal of the reception amplifier circuit and the input terminal of the detection circuit are directly coupled, and the amplification degree and detection threshold are not controlled.

ここで、上記AGC方式、ATC方式はデータが連続的
に伝送されてくることを想定した制御方式である。しか
し、このような方式はポイント間のデータ伝送回線にお
いてはを効であるが、受信レベルが急峻に変化する回線
ではAGC,ATCの応答速度が問題となる。また、交
流結合方式は受信レベルの急峻な変化に対して強いとい
う特徴を有するが、雑音に弱く、また微分処理等の複雑
な回路を必要とするという問題を有する。直接結合方式
は増幅器のオフセット電圧や受光素子の暗電流の温度変
化に起因する検出性能の劣化、受信レベルの大小に伴う
再生パルスの位相、幅変化を生ずる等の欠点を有する。
Here, the above AGC method and ATC method are control methods assuming that data is transmitted continuously. However, although such a system is effective in a data transmission line between points, the response speed of AGC and ATC becomes a problem in a line where the reception level changes rapidly. Further, although the AC coupling method has the feature of being strong against sudden changes in the reception level, it is weak against noise and has the problem of requiring complicated circuits such as differential processing. The direct coupling method has drawbacks such as deterioration in detection performance due to temperature changes in the offset voltage of the amplifier and the dark current of the light receiving element, and changes in the phase and width of the reproduced pulse due to the magnitude of the reception level.

したがって、いずれの方式においても、検出可能レベル
のダイナミックレンジを拡大するには線型増幅器の回路
電源電圧を高くする等の必要に迫られ、回路構成上不利
になっている。
Therefore, in either method, in order to expand the dynamic range of the detectable level, it is necessary to increase the circuit power supply voltage of the linear amplifier, which is disadvantageous in terms of circuit configuration.

(発明が解決しようとする問題点) 以上述べたように、従来の光伝送データ受信装置では、
いずれの方式においても検出可能レベルのダイナミック
レンジを拡大するには受信増幅回路の回路電源電圧を高
くする必要に迫られ、回路構成J−不利になっている。
(Problems to be Solved by the Invention) As described above, in the conventional optical transmission data receiving device,
In either method, in order to expand the dynamic range of the detectable level, it is necessary to increase the circuit power supply voltage of the receiving amplifier circuit, making the circuit configuration disadvantageous.

この発明は上記問題を解決するためになされたもので、
受信増幅回路の回路電源電圧を高くする必要なく、検出
可能レベルのダイナミックレンジを拡大することができ
、単独データ、連続データを問わず確実にデータを検出
することのできる光伝送データ受信回路を提供すること
を目的とする。
This invention was made to solve the above problem.
Provides an optical transmission data receiving circuit that can expand the dynamic range of detectable levels without the need to increase the circuit power supply voltage of the receiving amplifier circuit, and that can reliably detect data regardless of whether it is single data or continuous data. The purpose is to

[発明の構成] (問題点を解決するための手段) 上記目的を達成するためにこの発明に係る光伝送データ
受信回路は、伝送データを示す光を受光して信号を発生
する受光素子と、この受光素子で発生された信号を該信
号が設定レベル以下のとき高利得で増幅し設定レベル以
上のとき低利得で増幅する非線型増幅器と、この非線型
増幅器の出 ′力信号からデータを検出する検出回路と
を具備して構成される。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, an optical transmission data receiving circuit according to the present invention includes: a light receiving element that receives light indicating transmission data and generates a signal; A non-linear amplifier amplifies the signal generated by this light-receiving element with a high gain when the signal is below a set level and a low gain when the signal is above the set level, and data is detected from the output signal of this non-linear amplifier. and a detection circuit.

(作用) 上記構成による光伝送データ受信回路は、受光素子で得
られた信号を非線型増幅器によって低レベル信号をより
拡大増幅し、高レベル信号を圧縮増幅しているので、検
出可能なダイナミックレンジが飛躍的に拡大され、時間
的に急峻なレベル変化を有する伝送データ信号の受信性
能も飛躍的に向上する。
(Function) The optical transmission data receiving circuit with the above configuration uses a nonlinear amplifier to amplify the low level signal and compress and amplify the high level signal of the signal obtained by the light receiving element, so the detectable dynamic range is is dramatically expanded, and the reception performance of transmission data signals having sharp level changes over time is also dramatically improved.

(実施例) 以下、第1図乃至第4図を参照してこの発明の一実施例
を説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図はATC方式の光伝送データ受信回路にこの発明
を適用した場合の構成を示すもので、受光素子(P I
 Nフォトダイオード) 11は伝送先を受光すると、
光に応Cた電流信号を発生する。この電流信号は非線型
増幅回路12に供給される。この非線形増幅回路12は
電流−電圧変換増幅器121及び非線型変換S 122
で構成されるもので、電流信号は電流−電圧変換増幅器
+21で電圧増幅された後、非線型変換器122に入力
される。この非線型変換器122は抵抗RO,R1,ダ
イオードD1、第1の基準電圧源Elよりなる第1の圧
縮回路aと、抵抗RO,R2、ダイオードD3、第2の
基準電圧源E2よりなる第2の圧縮回路すとがらなり、
人力信号を2段階で圧縮して出力するものである。
Figure 1 shows the configuration when the present invention is applied to an ATC type optical transmission data receiving circuit.
N photodiode) 11 receives light from the transmission destination,
Generates a current signal in response to light. This current signal is supplied to the nonlinear amplifier circuit 12. This nonlinear amplifier circuit 12 includes a current-voltage conversion amplifier 121 and a nonlinear conversion S 122.
The current signal is voltage amplified by the current-voltage conversion amplifier +21 and then input to the nonlinear converter 122. This nonlinear converter 122 includes a first compression circuit a consisting of resistors RO, R1, a diode D1, and a first reference voltage source El, and a first compression circuit a consisting of resistors RO, R2, a diode D3, and a second reference voltage source E2. The second compression circuit is
It compresses human input signals in two stages and outputs them.

この非線型変換器122の出力信号は検出回路13及び
しきい鏡制御回路14に人力される。しきい鏡制御回路
14は入力電圧のレベル変化に応じて検出回路13のし
きい値を制御するもので、検出回路13は入力信号とし
きい値とを比較して、入力信号がしきい値以上のときH
(ハイ)レベル、人力信号がしきい値以下のときL(ロ
ー)レベルの信号を出力して、これによってデジタルデ
ータを再生するものである。
The output signal of this nonlinear converter 122 is inputted to the detection circuit 13 and the threshold mirror control circuit 14 . The threshold mirror control circuit 14 controls the threshold value of the detection circuit 13 according to the level change of the input voltage, and the detection circuit 13 compares the input signal with the threshold value and determines whether the input signal is equal to or higher than the threshold value. When H
(high) level, and when the human input signal is below a threshold value, an L (low) level signal is output, thereby reproducing digital data.

上記構成において、以下第2図を参照してその動作につ
いて説明するが、ここでは非線型変換の説明を詳細にす
るため、受光索子11が(a)図に示すような鋸歯状波
電流信号を発生しているものとする。
In the above configuration, its operation will be explained below with reference to FIG. It is assumed that this is occurring.

まず、受光素子11にて第2図(a)に示す鋸歯状波電
流信号が発生すると、この電流信号は電流−電圧変換増
幅器121で第2図(b)に示すように底部がOvレベ
ルに固定された電圧信号eOに変換増幅され、非線型変
換器122に人力される。
First, when the sawtooth wave current signal shown in FIG. 2(a) is generated in the light receiving element 11, this current signal is converted to the Ov level at the bottom as shown in FIG. 2(b) in the current-voltage conversion amplifier 121. The signal is converted and amplified into a fixed voltage signal eO, and then input to the nonlinear converter 122.

この非線型変換回路122は、まず第1の圧縮回路aで
入力電圧eOと第1の基準電圧El、とを比較する。こ
こで、eo <Elである間はダイオードDIがオフ状
態であるからそのまま出力され、eO>Elになるとダ
イオードDIがオン状態となって抵抗RO,R1による
抵抗比で圧縮出力される。次に、第1の圧縮回路を通過
した電圧信号eaは第2の圧縮回路に入力される。ここ
で、eaくR2である間はダイオードD2がオフ状態で
あるからそのまま出力され、ea >R2になるとダイ
オードD2がオン状態となって抵抗RO。
This nonlinear conversion circuit 122 first compares the input voltage eO and the first reference voltage El in the first compression circuit a. Here, while eo<El, the diode DI is in the off state, so the signal is output as is, and when eO>El, the diode DI is in the on state, and the signal is compressed and output using the resistance ratio of the resistors RO and R1. Next, the voltage signal ea that has passed through the first compression circuit is input to the second compression circuit. Here, while ea > R2, the diode D2 is in the off state, so the output is output as is, and when ea > R2, the diode D2 is in the on state and the resistor RO is output.

R1,R2による抵抗比で圧縮出力される。すなわち、
非線型変換器122の出力信号ebは第2図(C)に示
すように低レベル部に比して相対的に高レベル部が2段
階で圧縮されることになる。
It is compressed and output according to the resistance ratio of R1 and R2. That is,
As shown in FIG. 2(C), the output signal eb of the nonlinear converter 122 has a relatively high level part compressed in two stages compared to a low level part.

このように非線型変換された電圧信号は検出回路13及
びしきい値制御回路14に入力され、周知の処理によっ
てデジタルデータが再生される。尚、検出回路13及び
しきい値制御回路14の各入力インピーダンスは当然非
線型変換器121の出力インピーダンスより高インピー
ダンスでなければならない。
The voltage signal non-linearly converted in this way is input to the detection circuit 13 and the threshold control circuit 14, and digital data is reproduced by well-known processing. Incidentally, each input impedance of the detection circuit 13 and the threshold control circuit 14 must naturally be higher than the output impedance of the nonlinear converter 121.

第3図に実際の応答波形を示す。図中点線は線型増幅時
、実線は非線型増幅時の波形である。同図から明らかな
ように、入力パルスの振幅値が高いとき出力パルスの振
幅値は圧縮され、低いとき伸張されるので、線型増幅時
では検出できなかったパルスも検出可能となる。
Figure 3 shows the actual response waveform. The dotted line in the figure is the waveform during linear amplification, and the solid line is the waveform during nonlinear amplification. As is clear from the figure, when the amplitude value of the input pulse is high, the amplitude value of the output pulse is compressed, and when it is low, it is expanded, so that pulses that could not be detected during linear amplification can also be detected.

したがって、上記のように構成した光伝送データ受信回
路は、比較的少ない回路素子で受信信号が低レベルのと
き高利得で増幅し、受信レベルが高いとき低利得で増幅
することができるので、受信増幅回路の回路電源電圧を
高くする必要なく検出可能なダイナミックレンジを容易
に拡大することができ、これによって単独データ、連続
データを問わず確実にデジタルデータを検出することが
できる。
Therefore, the optical transmission data receiving circuit configured as described above can amplify the received signal with high gain when the received signal is low level and with low gain when the received signal level is high with a relatively small number of circuit elements. The detectable dynamic range can be easily expanded without increasing the circuit power supply voltage of the amplifier circuit, and thereby digital data can be reliably detected regardless of whether it is single data or continuous data.

尚、非線型増幅回路の非線型特性は第4図に示すように
対数的に変化することが望まし゛いが、これを実現する
には回路が複雑になるので、上記実施例のように2段階
で圧縮するだけでも十分である。必要となれば3段階以
上に設定すればよい。
It is desirable that the nonlinear characteristics of the nonlinear amplifier circuit change logarithmically as shown in Figure 4, but to achieve this the circuit would become complicated, so it is It is sufficient to compress it with If necessary, it may be set to three or more stages.

また、他段階で圧縮すると、出力信号のレベル低下を生
じるが、この場合には非線型変換器122に続いて直流
結合増幅器を配して直流増幅すれば、検出回路13及び
しきい値制御回路14を安定に動作させることができる
Furthermore, if compression is performed at another stage, the level of the output signal will drop, but in this case, if a DC coupling amplifier is placed following the nonlinear converter 122 to perform DC amplification, the detection circuit 13 and threshold control circuit 14 can be operated stably.

第5図乃至7図に他の実施例を示す。但し、第5図乃至
第7図において、互いに同一部分及び第1図と同一部分
には同一符号を付して示す。第5図はAGC方式、第6
図は交流結合方式、第7図は直接結合方式にこの発明を
適用した場合の構成を示すもので、いずれも受光索子1
1で得られた信号を非線型増幅回路12で対数的に増幅
した後、デジタルデータを再生するようになっている。
Other embodiments are shown in FIGS. 5 to 7. However, in FIGS. 5 to 7, the same parts and the same parts as in FIG. 1 are denoted by the same reference numerals. Figure 5 shows the AGC method, Figure 6
The figure shows the configuration when the present invention is applied to the AC coupling method, and FIG. 7 shows the configuration when the present invention is applied to the direct coupling method.
After the signal obtained in step 1 is logarithmically amplified by a nonlinear amplifier circuit 12, digital data is reproduced.

尚、第5図乃至第7図において、15は非線型増幅器1
2の利得をその出力レベルに応じて制御するレベル制御
回路、16は検出しきい値を発生する基準電圧源、17
は交流結合用コンデンサである。各回路の応答波形を第
8図乃至第10図に示す。各図において、点線は線型増
幅の場合、実線は非線型増幅の場合を示している。いず
れも検出可能なダイナミックレンジは拡大され、線型増
幅では検出できなかったパルスも検出可能となっている
In addition, in FIGS. 5 to 7, 15 is the nonlinear amplifier 1.
16 is a reference voltage source that generates a detection threshold; 17 is a level control circuit that controls the gain of 2 according to its output level;
is an AC coupling capacitor. The response waveforms of each circuit are shown in FIGS. 8 to 10. In each figure, the dotted line indicates the case of linear amplification, and the solid line indicates the case of nonlinear amplification. In both cases, the detectable dynamic range has been expanded, making it possible to detect pulses that could not be detected with linear amplification.

[発明の効果] 以上のようにこの発明によれば、受信増幅回路の回路電
源電圧を高くする必要なく、受信可能レベルのダイナミ
ックレンジを拡大することができ、単独データ、連続デ
ータを問わず確実にデータを検出することのできる光伝
送データ受信回路を提供することができる。
[Effects of the Invention] As described above, according to the present invention, the dynamic range of the receivable level can be expanded without the need to increase the circuit power supply voltage of the receiving amplifier circuit, and it is possible to reliably receive data regardless of whether it is single data or continuous data. An optical transmission data receiving circuit capable of detecting data can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るATC方式の光伝送データ受信
回路の一実施例を示すブロック回路図、第2図は同実施
例の非線型変換について説明するための波形図、第3図
は同実施例の応答波形を示す図、第4図は同実施例の理
想的な非線型増幅特性を示す特性図、第5図乃至第7図
はそれぞれこの発明に係る他の実施例を示すブロック回
路図、第8図乃至第10図はそれぞれ第5図乃至第7図
の各応答波形を示す図である。 11・・・受光素子、12・・・非線型増幅回路、12
1・・・電流−電圧変換増幅器、122・・・非線型変
換器、13・・・検出回路、14・・・しきい値制御回
路、15・・・レベル制御回路、1B・・・交流結合用
コンデンサ、17・・・基準電圧源。 出願人代理人 弁理士 鈴江武彦 第4図
FIG. 1 is a block circuit diagram showing an embodiment of an ATC type optical transmission data receiving circuit according to the present invention, FIG. 2 is a waveform diagram for explaining nonlinear conversion of the embodiment, and FIG. 3 is the same. FIG. 4 is a characteristic diagram showing ideal nonlinear amplification characteristics of the embodiment, and FIGS. 5 to 7 are block circuits showing other embodiments according to the present invention. 8 to 10 are diagrams showing the response waveforms of FIGS. 5 to 7, respectively. 11... Light receiving element, 12... Nonlinear amplifier circuit, 12
DESCRIPTION OF SYMBOLS 1... Current-voltage conversion amplifier, 122... Nonlinear converter, 13... Detection circuit, 14... Threshold control circuit, 15... Level control circuit, 1B... AC coupling capacitor, 17... reference voltage source. Applicant's agent Patent attorney Takehiko Suzue Figure 4

Claims (1)

【特許請求の範囲】[Claims] 伝送データを示す光を受光して信号を発生する受光素子
と、この受光素子で発生された信号を該信号が設定レベ
ル以下のとき高利得で増幅し設定レベル以上のとき低利
得で増幅する非線型増幅器と、この非線型増幅器の出力
信号からデータを検出する検出回路とを具備する光伝送
データ受信回路。
A light receiving element that receives light indicating transmission data and generates a signal, and a non-light receiving element that amplifies the signal generated by this light receiving element with a high gain when the signal is below a set level and with a low gain when the signal is above the set level. An optical transmission data receiving circuit comprising a linear amplifier and a detection circuit that detects data from an output signal of the nonlinear amplifier.
JP62307983A 1987-12-05 1987-12-05 Light transmitting data receiving circuit Pending JPH01149558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307983A JPH01149558A (en) 1987-12-05 1987-12-05 Light transmitting data receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307983A JPH01149558A (en) 1987-12-05 1987-12-05 Light transmitting data receiving circuit

Publications (1)

Publication Number Publication Date
JPH01149558A true JPH01149558A (en) 1989-06-12

Family

ID=17975491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307983A Pending JPH01149558A (en) 1987-12-05 1987-12-05 Light transmitting data receiving circuit

Country Status (1)

Country Link
JP (1) JPH01149558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508754A (en) * 2003-10-17 2007-04-05 ツエントルム・ミクロエレクトロニク・ドレスデン・アクチエンゲゼルシャフト Method and apparatus for converting optical received pulse train to electrical output pulse train
WO2011074094A1 (en) * 2009-12-17 2011-06-23 三菱電機株式会社 Transmission system
JP2020014188A (en) * 2018-07-20 2020-01-23 ナンヤー テクノロジー コーポレイション Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508754A (en) * 2003-10-17 2007-04-05 ツエントルム・ミクロエレクトロニク・ドレスデン・アクチエンゲゼルシャフト Method and apparatus for converting optical received pulse train to electrical output pulse train
WO2011074094A1 (en) * 2009-12-17 2011-06-23 三菱電機株式会社 Transmission system
US8594591B2 (en) 2009-12-17 2013-11-26 Mitsubishi Electric Corporation Transmission system
JP5389189B2 (en) * 2009-12-17 2014-01-15 三菱電機株式会社 Transmission system
JP2020014188A (en) * 2018-07-20 2020-01-23 ナンヤー テクノロジー コーポレイション Semiconductor device

Similar Documents

Publication Publication Date Title
JPH0775356B2 (en) Optical receiver
WO1982000931A1 (en) A method and an arrangement for increasing the dynamic range at the input stage of a receiver in an optical fibre information transmission system
US4994692A (en) Quantizer system
JPH01149558A (en) Light transmitting data receiving circuit
JPS6234169B2 (en)
JP2713126B2 (en) Optical receiver
JPH06338746A (en) Agc circuit for audio apparatus
EP0202601A2 (en) Optical pulse receiving circuit
JP3114821B2 (en) Optical receiver circuit for ternary APD
GB2083963A (en) Fibre optic receiver
JPS6041498B2 (en) Input signal disconnection detection circuit
JP3518559B2 (en) Light reception signal detection circuit and light reception signal processing device
JPH09130330A (en) Optical receiver
JPS59110232A (en) Light receiving signal controller
JP2692652B2 (en) Optical receiving circuit
JPH10107555A (en) Optical reception circuit and its control method
JPH04334137A (en) Burst optical receiver
JP3426910B2 (en) Infrared data receiver
JPH07142936A (en) Optical receiving circuit
JPH03139887A (en) Apd bias voltage control method
JP2837209B2 (en) Optical receiver and optical communication system including the optical receiver
JP2723029B2 (en) Automatic threshold control circuit
JPH03273720A (en) Optical receiver
JPH079450Y2 (en) Optical receiver circuit
JPH02217010A (en) Automatic gain control circuit