JPH01148793A - Method for horizontally drawing silicon cystal of ribbon shape - Google Patents

Method for horizontally drawing silicon cystal of ribbon shape

Info

Publication number
JPH01148793A
JPH01148793A JP27060288A JP27060288A JPH01148793A JP H01148793 A JPH01148793 A JP H01148793A JP 27060288 A JP27060288 A JP 27060288A JP 27060288 A JP27060288 A JP 27060288A JP H01148793 A JPH01148793 A JP H01148793A
Authority
JP
Japan
Prior art keywords
silicon
ribbon
fiber fabric
inner width
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27060288A
Other languages
Japanese (ja)
Inventor
Gerhard Hoyler
ゲルハルト、ホイラー
Josef Grabmaier
ヨーゼフ、グラープマイエル
Richard Falckenberg
リヒアルト、フアルケンベルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH01148793A publication Critical patent/JPH01148793A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate

Abstract

PURPOSE: To obtain a ribbon-shaped silicon crystal, which is suitable for semiconductor device, especially for solar battery, etc., and has a surface excellent in flatness, by bringing a supporting body, which is composed of a meshlike fiber textile having a specified mesh inner width and is used for supporting and forming crystalline nuclei into contact with a silicon fused body and drawing the supporting body in the horizontal direction.
CONSTITUTION: The meshlike fiber textile 1, the mesh inner width of which adapts to maximum thickness 300 μ of a silicon ribbon crystal 7 to be drawn and is set to ≤2.0 mm when temp. gradient in the silicon fused body 2 is ≤25 K/cm and which has resistance to the fused silicon 2 and shows a high radiation coefficient, is used as the supporting body for supporting silicon ribbons and for forming crystalline nuclei. Then, the supporting body composed of the fiber textile 1 is brought into contact with the silicon fused body 2 held at melting temp. by a heater 4 put at a bottom surface area of a quartz vessel 3 and then is drawn in a drawing direction V while canceling radiation loss 5 by a reflector 6 and also by shielding, if necessary, to obtain the ribbon-shaped silicon crystal 7.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、溶融シリコンに対して耐性があり高い放射
係数を示す網状の繊維織物から成る支持体を支持ならび
に結晶核形成用としてシリコン溶融体に接触させて水平
方向に引抜(ことによりリボン状のシリコン結晶を製作
する方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides support for supporting a support made of a reticulated fiber fabric that is resistant to molten silicon and exhibits a high radiation coefficient, and for forming crystal nuclei in a silicon melt. It relates to a method for producing ribbon-shaped silicon crystals by horizontally drawing them in contact with the silicon crystal.

〔従来の技術] この種の水平Sウェブ法と呼ばれている公知のシリコン
・リボン引抜き法は高い引抜き速度(約l m /mi
n )と低い材料使用量(リボンの厚さ300μm以下
)によりコスト的に有利であって、文献「ジャーナル・
オブ・クリスタル・グロウス(Journal of 
Crystal Growth) J 79.1986
年、572〜577頁及び欧州特許出願公開第0170
119号公報に詳細に記述されている。
[Prior Art] This kind of known silicone ribbon drawing method, called horizontal S-web method, has a high drawing speed (approximately l m /mi
n ) and low material consumption (ribbon thickness 300 μm or less), it is cost-effective and
Journal of Crystal Growth
Crystal Growth) J 79.1986
, pp. 572-577 and European Patent Application Publication No. 0170
It is described in detail in Publication No. 119.

次にこの技術の原理を第1図によって説明する。Next, the principle of this technique will be explained with reference to FIG.

引抜き方向■に進む炭素繊維網1が、石英層3に入れら
れたシリコン溶融体2の表面に接して引かれる。この槽
3の寸法はその長さが少なくとも接触長L=v、  ・
t (v2は引抜き速度、Lは滞留時間)に等しくなる
ように決められる。シリコン溶融体2は槽3の底面区域
に置かれた加熱器4によって溶融温度に保持される。そ
の際5で示す放射損失は必要に応じて遮蔽と反射器6に
よって打ち消される。7は完成したシリコン・リボンで
ある。8は網1の内幅にのメツシュ9内の結晶化開始点
を示す。絹糸はその高い放射係数により熱シンクとなり
、融体内の温度勾配GLが適当であると結晶化を誘起さ
せる。凝固は絹糸に直接接触する融体部分で始まり水平
方向と垂直方向に拡がる。水平方向の拡張が進むと結晶
化したシリコン表面が熱シンクとして加わる。この表面
の放射も融体より畜い。凝固速度が水平成分と垂直成分
から構成されることにより引き抜かれたシリコン・リボ
ンの炭素繊維網に対して反対の側に舟形構造と呼ばれる
波が形成され、その周期は網構造のそれに対応する。網
の下面に形成されたシリコン層は深さ方向に一様に成長
せず、繊維の下では繊維で覆われていない融体表面部分
においてよりも厚くなる。実験の結果によれば支持体1
上で溶融し結晶化したシリコン層7が薄い程舟形構造の
波打ちが激しくなる。
A carbon fiber network 1 proceeding in the drawing direction (2) is drawn against the surface of a silicon melt 2 placed in a quartz layer 3. The dimension of this tank 3 is such that its length is at least the contact length L=v,
t (v2 is the drawing speed, L is the residence time). The silicon melt 2 is kept at melting temperature by a heater 4 placed in the bottom area of the vessel 3. The radiation losses indicated by 5 are then canceled out by means of shielding and reflectors 6, if necessary. 7 is the completed silicon ribbon. 8 indicates the starting point of crystallization within the mesh 9 at the inner width of the mesh 1. Silk threads act as heat sinks due to their high radiation coefficients and induce crystallization if the temperature gradient GL in the melt is suitable. Coagulation begins at the molten part in direct contact with the silk thread and spreads horizontally and vertically. As the horizontal expansion progresses, the crystallized silicon surface acts as a heat sink. The radiation on this surface is also worse than that of the molten body. Because the solidification rate consists of a horizontal component and a vertical component, a wave called a boat structure is formed on the opposite side of the carbon fiber network of the drawn silicon ribbon, and its period corresponds to that of the network structure. The silicon layer formed on the underside of the mesh does not grow uniformly in the depth direction and is thicker under the fibers than in the portion of the melt surface not covered by fibers. According to the experimental results, support 1
The thinner the silicon layer 7 melted and crystallized above, the more severe the wave of the boat-shaped structure becomes.

シリコン・リボン7を加工して太陽電池とする場合、特
にそれに接触を設ける必要がある場合には舟形構造は妨
害となる。
The boat-shaped structure is a hindrance when processing the silicon ribbon 7 into a solar cell, especially if it is necessary to provide contacts thereto.

〔発明が解決しようとする課題] この発明の目的は、極めて平坦な表面をもつシリコン・
リボンの水平Sウェブ方式による製決を提供することで
ある。
[Problems to be Solved by the Invention] The purpose of the present invention is to provide silicon with an extremely flat surface.
The purpose of the present invention is to provide ribbon manufacturing using a horizontal S-web method.

〔課題を解決するための手段〕[Means to solve the problem]

この目的はこの発明により、水平Sウェブ引抜き法にお
いて使用される支持体としてメツシュ内幅が引抜くシリ
コン・リボンの最大の厚さ300μmに適合してシリコ
ン融体内の温度勾配が25K / cm以下のとき2.
0 mm以下に設定されたものを使用することによって
達成される。黒鉛又は黒鉛化石英の繊維を使用すると有
利である。
This objective is achieved by the present invention as a support used in the horizontal S-web drawing process, the internal width of the mesh is compatible with the maximum thickness of the silicon ribbon to be drawn, 300 μm, and the temperature gradient in the silicon melt is below 25 K/cm. Time 2.
This is achieved by using a material set to 0 mm or less. It is advantageous to use fibers of graphite or graphitic quartz.

この発明の種々の実施態様は特許請求の範囲の請求項2
以下に示される。
Various embodiments of this invention are described in claim 2 of the claims.
Shown below.

〔実施例〕〔Example〕

この発明を以下実施例により説明する。 This invention will be explained below with reference to Examples.

1つのメツシュ内径に内のシリコン・リボンの最も厚い
部分と最も薄い部分の差として定義される波打ちWの発
生とその高さは網のデザイン、溶融体内の温度勾配およ
びシリコン層の厚さに関係し、繊維径の影響は少ない。
The occurrence of waviness W, defined as the difference between the thickest and thinnest parts of the silicon ribbon within one mesh inner diameter, and its height are related to the mesh design, the temperature gradient within the melt, and the thickness of the silicon layer. However, the influence of fiber diameter is small.

波打ちはシリコン層が厚くなる程大きい(厚い層は薄い
層よりも成長が遅い)。しかし300μm以上の厚さは
コスト的に有利な太陽電池には不適である。
The waviness increases as the silicon layer becomes thicker (thicker layers grow more slowly than thinner layers). However, a thickness of 300 μm or more is not suitable for cost-effective solar cells.

溶融体内の温度勾配GLは成長の迅速性に顕著な影響を
及ぼす。温度勾配が大きい程より多量の熱が形成された
シリコン層に導かれ、それに応じて成長が遅くなる。コ
スト的にを利なシリコン・リボンの連続引抜きを確実に
するためには引抜き速度を最低1m/minに保持しな
ければならない。
The temperature gradient GL within the melt has a significant effect on the rapidity of growth. The larger the temperature gradient, the more heat will be directed to the formed silicon layer and the growth will be correspondingly slower. To ensure cost-effective continuous drawing of the silicone ribbon, the drawing speed must be kept at a minimum of 1 m/min.

これは温度勾配をできるだけ小さくすることを、意味し
ている。
This means making the temperature gradient as small as possible.

ソリコン・リボンの平均厚さdと波打ちWとの関係を第
2図に図式的に示す。炭素繊維網の特徴をメンシュ内幅
にで表わすものとしてkをノぐラメータとしてW=W(
d)が図に示されている。曲線が示すようにWはに= 
l mmとに=2mmのいずれにおいても最高値を通過
した後1の増大方向に向かって低下する。最高点はメン
シュ内幅にの減少と共に厚さ丁と波打ちの小さい方に移
動する。
The relationship between the average thickness d of the soric ribbon and the waviness W is schematically shown in FIG. The characteristics of the carbon fiber network are expressed by the inner width of the mensch, and W=W(
d) is shown in the figure. As the curve shows, W =
After passing the maximum value at both l mm and 2 mm, it decreases in the direction of increasing 1. The highest point moves toward the smaller thickness and undulation as the inner width of the mensch decreases.

シリコン・リボンの平均厚さd=300μm、溶融体内
の温度勾配GL = 15 K /el+のときメ・ン
シュ内幅にの関数としての波打ちWを第3図に示す。第
3図の直線から波打ちはメ・ンシュ内幅にの低下と共に
低下し、1.3 rrrra以下のとき10μm以下と
なることが分かる。測定点1.2.3が示すように次の
3種の網目パターンについて実験が行われた。
FIG. 3 shows the waviness W as a function of the inner width of the mesh for an average silicon ribbon thickness d=300 μm and a temperature gradient GL=15 K/el+ in the melt. It can be seen from the straight line in FIG. 3 that the waving decreases as the inner width of the mesh decreases, and becomes 10 μm or less when it is 1.3 rrrra or less. As shown by measurement points 1.2.3, experiments were conducted on the following three types of mesh patterns.

網目パターンl:に=1.7mm 網目パターン2:’に=2.28論 網目パターン3:に=4.2mm メツシュ内幅にの外に使用された繊維織物の平坦度が強
い影響を及ぼす。たて糸方向の織物の安定化に使用され
る絽結合により繊維の交叉点に肥大部が生じ波打ちを増
大させる。そのためこの発明の1つの実施例では絽結合
のない繊維織物、即ちたて糸と横糸が単純にリンネル結
合されているものが使用される。これにより網の安定化
に必要な絽結合は引き抜きに際してシリコン熔融体と接
触することのない網の縁端に限定される。
Mesh pattern 1: = 1.7 mm Mesh pattern 2: = 2.28 Mesh pattern 3: = 4.2 mm The flatness of the fiber fabric used on the outside of the mesh has a strong influence on the inner width of the mesh. The thread binding used to stabilize the fabric in the warp direction creates thickenings at the intersections of the fibers, which increases waviness. In one embodiment of the invention, therefore, a fiber fabric without thread binding is used, ie the warp and weft threads are simply linen-bonded. As a result, the threaded connections necessary for stabilizing the mesh are limited to the edges of the mesh that do not come into contact with the silicon melt during drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明する図面、第2図はメッ
シュ内幅をパラメータとする波打ちWとシリコン層の平
均厚さdの関係、第3図はメ・ノンユ内幅にの関数とし
ての波打ちWを示す。 1・・・炭素繊維網 2・・・シリコン熔融体 3・・・石英槽 4・・・加熱器 6・・・反射器 7・・・シリコン・リボン 8・・・結晶化開始点 (611B)代理人弁理士富村 欄−11、−′
Figure 1 is a drawing explaining the invention in detail, Figure 2 is the relationship between the waving W and the average thickness d of the silicon layer with the mesh inner width as a parameter, and Figure 3 is the relationship as a function of the mesh inner width. It shows the wavy W of. 1... Carbon fiber network 2... Silicon melt 3... Quartz tank 4... Heater 6... Reflector 7... Silicon ribbon 8... Crystallization starting point (611B) Representative Patent Attorney Tomimura Column -11, -'

Claims (1)

【特許請求の範囲】 1)シリコン・リボン支持と結晶核形成用の支持体(1
)として溶融シリコン(2)に対して耐性があり高い放
射係数を示す網状の繊維織物が使用され、この支持体が
溶融槽(3)内のシリコン融体表面に接しながら水平方
向(v)に引き出されてシリコン層で被着されるリボン
状シリコン結晶(7)の水平引抜きによる製法において
、支持体(1)として使用される網状の繊維織物のメッ
シュ内幅が引抜くシリコン・リボン結晶(7)の最大厚
さ300μmに適合してシリコン融体(2)内の温度勾
配が25K/cm以下のとき20mm以下に設定される
ことを特徴とするリボン状シリコン結晶の水平引抜き法
。 2)黒鉛繊維又は黒鉛化石英繊維の繊維織物が使用され
ることを特徴とする請求項1記載の方法。 3)メッシュ内幅が1.7mmの繊維織物が使用され、
シリコン融体内の温度勾配が15K/cmに保持される
ことを特徴とする請求項1または2記載の方法。 4)メッシュ内幅が1.3mmの繊維織物が使用され、
シリコン融体内の温度勾配が15K/cmに保持される
ことを特徴とする請求項1または2記載の方法。 5)たて糸と横糸が交叉点において単純なリンネル結合
によって相互配置されている繊維織物が使用されること
を特徴とする請求項1ないし4の1つに記載の方法。 6)融体比よって濡らされない外縁端がたて糸方向の安
定化のためたて糸と横糸の交叉点においてたて糸方向に
延びる絽結合を示す繊維織物が使用されることを特徴と
する請求項1ないし5の1つに記載の方法。 7)半導体デバイス特に太陽電池用のリボン状シリコン
結晶の製造に利用されることを特徴とする請求項1ない
し6の1つに記載の方法。
[Claims] 1) Support for silicon ribbon support and crystal nucleation (1)
) is used as a reticulated fiber fabric that is resistant to molten silicon (2) and exhibits a high radiation coefficient, and this support is horizontally (v) in contact with the surface of the silicon melt in the melting tank (3). In a process by horizontal drawing of ribbon-shaped silicon crystals (7) which are drawn and covered with a silicone layer, the inner width of the mesh of the reticulated fiber fabric used as support (1) forms the drawn silicon ribbon crystal (7). ) A horizontal drawing method for ribbon-shaped silicon crystals, characterized in that the temperature gradient in the silicon melt (2) is set to 20 mm or less when the temperature gradient in the silicon melt (2) is 25 K/cm or less in accordance with the maximum thickness of 300 μm. 2) Process according to claim 1, characterized in that a fiber fabric of graphite fibers or graphitic quartz fibers is used. 3) A fiber fabric with a mesh inner width of 1.7 mm is used,
3. A method as claimed in claim 1, characterized in that the temperature gradient within the silicon melt is maintained at 15 K/cm. 4) A fiber fabric with a mesh inner width of 1.3 mm is used,
3. A method as claimed in claim 1, characterized in that the temperature gradient within the silicon melt is maintained at 15 K/cm. 5) Process according to one of the preceding claims, characterized in that a fiber fabric is used in which the warp and weft threads are mutually located at the point of intersection by a simple linen bond. 6) A fiber fabric is used in which the outer edge, which is not wetted by the melt ratio, exhibits a thread bond extending in the warp direction at the intersection of the warp and weft yarns for stabilization in the warp direction. The method described in one of the above. 7) Process according to one of claims 1 to 6, characterized in that it is used for the production of ribbon-shaped silicon crystals for semiconductor devices, in particular solar cells.
JP27060288A 1987-10-27 1988-10-25 Method for horizontally drawing silicon cystal of ribbon shape Pending JPH01148793A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873736341 DE3736341A1 (en) 1987-10-27 1987-10-27 Method for manufacturing strip-shaped silicon crystals by horizontal pulling from the melt
DE3736341.7 1987-10-27

Publications (1)

Publication Number Publication Date
JPH01148793A true JPH01148793A (en) 1989-06-12

Family

ID=6339181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27060288A Pending JPH01148793A (en) 1987-10-27 1988-10-25 Method for horizontally drawing silicon cystal of ribbon shape

Country Status (2)

Country Link
JP (1) JPH01148793A (en)
DE (1) DE3736341A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803769A1 (en) * 1988-02-08 1989-08-17 Siemens Ag Method for producing thin, strip-shaped silicon crystals having a planar surface, suitable for fabrication of solar cells
WO2004035877A2 (en) * 2002-10-18 2004-04-29 Evergreen Solar, Inc. Method and apparatus for crystal growth
US6814802B2 (en) 2002-10-30 2004-11-09 Evergreen Solar, Inc. Method and apparatus for growing multiple crystalline ribbons from a single crucible

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174234A (en) * 1978-04-12 1979-11-13 Semix, Incorporated Silicon-impregnated foraminous sheet
DE2850805C2 (en) * 1978-11-23 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Process for the production of disk-shaped or ribbon-shaped silicon crystals with a columnar structure for solar cells
DE3010557C2 (en) * 1980-03-19 1986-08-21 Siemens AG, 1000 Berlin und 8000 München Method and device for manufacturing large-area silicon bodies for solar cells
DE3209548A1 (en) * 1982-03-16 1983-10-20 Siemens AG, 1000 Berlin und 8000 München Solar cell arrangement in thin-layer construction made from semiconductor material, and process for the fabrication thereof
DE3302934A1 (en) * 1983-01-28 1984-08-02 Hans Georg 8000 München März Solar generator
EP0170119B1 (en) * 1984-07-31 1988-10-12 Siemens Aktiengesellschaft Process and apparatus for making silicon crystal films with a horizontal pulling direction

Also Published As

Publication number Publication date
DE3736341A1 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
US4329195A (en) Lateral pulling growth of crystal ribbons
US3759671A (en) Horizontal growth of crystal ribbons
LaBelle Jr EFG, the invention and application to sapphire growth
US4075055A (en) Method and apparatus for forming an elongated silicon crystalline body using a <110>{211}orientated seed crystal
CA1081586A (en) Method and apparatus for forming silicon crystalline bodies
JPH01148793A (en) Method for horizontally drawing silicon cystal of ribbon shape
US5114528A (en) Edge-defined contact heater apparatus and method for floating zone crystal growth
JPH035392A (en) Production device of silicon single crystal
JPH11268987A (en) Silicon single crystal and its production
US4664745A (en) Method and apparatus for manufacturing tape-shaped silicon crystals with a threaded carrier
KR940004639B1 (en) Apparatus for manufacturing silicon single crystals
KR930005407B1 (en) Apparatus for manufacturing silicon single crystals
US7201801B2 (en) Heater for manufacturing a crystal
US5127982A (en) Polycrystal piezoelectric device and method of producing the same
US3162507A (en) Thick web dendritic growth
JPH01226798A (en) Production of ribbon like silicon crystal
US3413098A (en) Process for varying the width of sheets of web material
JPS59203798A (en) Apparatus for preparing belt-shaped silicon crystal
KR960000061B1 (en) Lids for improved dendritic web ribbon crystal growth
JPS5912636B2 (en) How to pull ribbon-shaped single crystals
CN1029327C (en) Rutile single crystals and their grouth processes
JPS59102891A (en) Preparation of silicon single crystal
KR20210097966A (en) Crucible and apparatus for growing silicon single crystal ingot including the same
JP3542444B2 (en) Crystal manufacturing apparatus and method
KR20190074152A (en) A crucible designed with protrusion for crystal growth using solution