JPH01148764A - Lightweight refractory and its manufacture - Google Patents

Lightweight refractory and its manufacture

Info

Publication number
JPH01148764A
JPH01148764A JP30450787A JP30450787A JPH01148764A JP H01148764 A JPH01148764 A JP H01148764A JP 30450787 A JP30450787 A JP 30450787A JP 30450787 A JP30450787 A JP 30450787A JP H01148764 A JPH01148764 A JP H01148764A
Authority
JP
Japan
Prior art keywords
mullite
refractory
length
alumina
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30450787A
Other languages
Japanese (ja)
Other versions
JPH0518780B2 (en
Inventor
Kenichi Shibata
研一 柴田
Koichi Kimura
康一 木村
Yuji Kanamori
金森 雄二
Tomohiko Hara
智彦 原
Tatsuo Takagi
達雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP30450787A priority Critical patent/JPH01148764A/en
Publication of JPH01148764A publication Critical patent/JPH01148764A/en
Publication of JPH0518780B2 publication Critical patent/JPH0518780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Abstract

PURPOSE:To obtain the title refractory having the crystal structure consisting essentially of mullite and corundum and having lightness and high strength as well as high heat resistance and durability by constituting it with alumina short fiber, alumina long fiber and refractory powder are mutually bonded by mullite. CONSTITUTION:The lightweight refractory is the porous molded body in which the alumina short fiber having <=2000mu length, the alumina long fiber having 1-40mm length and refractory powder are mutually bonded by mullite. Its crystal structure consists essentially of mullite and corundum, the amount of mullite is regulated to >=12mol.% for the total amount of mullite and corundum, and does not contain free silica substantially. The lightweight refractory can be obtd. by the following method: 10-30wt.% amorphous silica powder is added to the mixture of polycrystal alumina short fiber having 20-2000mu length and the polycrystal alumina long fiber having 1-40mm length or the mixture further added with the refractory powder of their equivalentant or below; the wholly mixture is molded and then sintered at 1400-1600 deg.C till the presence of cristobalite is made nonrecognized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高度の耐熱性を有する軽量耐火物に関するも
のであり、さらにくわしくは、各種セラミックス製品た
とえばセラミックス系電子部品(セラミックコンデンサ
、アルミナ基板、フェライト素子、サーミス夕、バリス
タ等)、セラミックス系摺動材料、一般用陶磁器等を製
造するに当り焼成工程で被焼成物を支持させるために使
用する匣鉢、敷台等の焼成補助具や、各種窯炉における
遮熱板、発熱体支持具等に適した、繰返し加熱冷却に耐
える軽量耐火物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a lightweight refractory having a high degree of heat resistance. , ferrite elements, thermistors, varistors, etc.), ceramic sliding materials, general ceramics, etc., and firing aids such as saggers and stands used to support the object to be fired during the firing process. The present invention relates to a lightweight refractory that can withstand repeated heating and cooling and is suitable for heat shield plates, heating element supports, etc. in various furnaces.

〔従来の技術〕[Conventional technology]

上述の焼成補助具や窯炉構成材は、高温加熱と冷却の繰
返しに耐える高度の耐熱性と用途に応じた機械的強度を
備えていなければならないが、一方では、炉使用時にお
いてそれらが消費する熱エネルギーを少なくするととも
に昇温と冷却に要する時間を短くし、それによりエネル
ギーコストの低減と生産性の向上をはかるため、なるべ
く体積当りの熱容量の小さい軽量のものであることが望
まれる。特に焼成補助具の場合は、搬送その他の取扱を
容易にするためにも、軽量であることが強く望まれる。
The above-mentioned firing aids and kiln constituent materials must have a high degree of heat resistance that can withstand repeated high-temperature heating and cooling, as well as mechanical strength appropriate to the intended use. In order to reduce the thermal energy required for heating and cooling, and to shorten the time required for heating and cooling, thereby reducing energy costs and improving productivity, it is desirable that the device be lightweight and have as small a heat capacity per volume as possible. In particular, in the case of baking aids, it is strongly desired that they be lightweight in order to facilitate transportation and other handling.

このような要望に答えるための軽量耐火物の一つとして
、特開昭59−88378号公報には、アルミナ質、ム
ライト質等の耐火材原料粉末90〜50w【%及びアル
ミナ質、ムライト質等の耐火材繊維10〜50vL%か
らなる骨材100重量部に対して無定形シリカをO−5
〜10重量部添加したものを成形し、次いで1450〜
1600°Cで焼成することにより得られる耐火物が記
載されている。しかしながら、この軽量耐火物は、熱膨
張率の大きい高アルミナ質のものであるため、耐スポー
リング性の点で改良の余地あるものである。
As one of the lightweight refractories to meet such demands, Japanese Patent Application Laid-Open No. 59-88378 describes a powder of refractory materials such as alumina, mullite, etc. 90 to 50 w[%] and alumina, mullite, etc. O-5 of amorphous silica is added to 100 parts by weight of aggregate consisting of 10 to 50 vL% of refractory fibers.
〜10 parts by weight was added, and then 1450〜
A refractory obtained by firing at 1600°C is described. However, since this lightweight refractory is made of high alumina and has a large coefficient of thermal expansion, there is room for improvement in terms of spalling resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上述のような欠点のない軽量耐火物、
すなわち軽量かつ高強度でありながら高度の耐熱性と耐
久性を示す軽量耐火物およびその製造法を提供すること
にある。
The object of the present invention is to provide a lightweight refractory without the drawbacks mentioned above;
That is, the object of the present invention is to provide a lightweight refractory that is lightweight and has high strength, yet exhibits high heat resistance and durability, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明が提供する軽量耐火物は、長さを2000μ以下
にしたアルミナ質短繊維、長さを1〜40mmにしたア
ルミナ質連続繊維、および耐火性粉末がムライトにより
相互に結合されてなる多孔質成形体であって、結晶構造
においてムライトおよびコランダムから主としてなり且
つムライトの量がムライトとコランダムとの合計量の1
2モル%以上であり、遊離のシリカを実質的に含まない
ことを特徴とするものである。
The lightweight refractory provided by the present invention is a porous material in which short alumina fibers with a length of 2000μ or less, continuous alumina fibers with a length of 1 to 40 mm, and refractory powder are bonded together by mullite. A molded body whose crystal structure is mainly composed of mullite and corundum, and the amount of mullite is 1 of the total amount of mullite and corundum.
It is characterized by having a content of 2 mol % or more and substantially free of free silica.

本発明はまた、上記本発明の軽量耐火物の特に有利な製
造法、すなわち長さが20〜2000μになるまで切断
した多結晶質アルミナ質短繊維および長さを1〜40m
mに切断した多結晶質アルミナ質連続繊維またはこれら
と等量以下の耐火性粉末との混合物に10〜30重量%
の無定形シリカ粉末を加えて混合し、得られた混合物を
成形し、次いでクリストバライトの存在が認められなく
なるまで1400〜1600°Cで焼成することを特徴
とする製造法を提供するものである。
The present invention also provides a particularly advantageous method for producing the lightweight refractories of the present invention, namely polycrystalline alumina short fibers cut to a length of 20 to 2000 μm and cut to a length of 1 to 40 m.
10 to 30% by weight of polycrystalline alumina continuous fibers cut into 50 mm or a mixture of these and an equal or less amount of refractory powder.
The present invention provides a manufacturing method characterized by adding and mixing an amorphous silica powder, molding the resulting mixture, and then firing at 1400 to 1600°C until the presence of cristobalite is no longer recognized.

最初に上記製造法について説明すると、原料混合物成形
後の焼成工程において、多結晶質アルミナ質繊維は、そ
の表層部が、無定形シリカ粉末またはそれから生成した
結晶質シリカ・クリストバライトと反応してムーフイト
(3AlzOx・2Si02)を生成し、コノムライト
が結合剤となって、強固な成形体が形成される。
First, to explain the above manufacturing method, in the firing process after forming the raw material mixture, the surface layer of the polycrystalline alumina fiber reacts with the amorphous silica powder or the crystalline silica/cristobalite produced from it, resulting in a moofite ( 3AlzOx・2Si02) is produced, and conomulite acts as a binder to form a strong molded body.

未反応の繊維芯部はアルミナ(コランダム)のまま残り
、繊維形状を保つ。前述の従来法と比較した場合、この
製造法の特色は、多結晶質アルミナ質繊維の一部(好ま
しくは大部分)を微細に切断し、原料混合工程において
繊維がもつれ合わず他の粉体原料(特に無定形シリカ)
と均一に混合されるようにしたうえで、繊維および無定
形シリカの配合比率を高くシj;ことにある。そして高
い繊維比率は製品強度の向上に役立ち、無定形シリカの
配合比率を高くしこれをアルミナと完全に反応させる(
つまりムライト化させる)ようにしたことは、製品中の
アルミナの比率を下げ、製品耐熱性の向上に役立ってい
る。
The unreacted fiber core remains as alumina (corundum) and maintains its fiber shape. Compared to the conventional method described above, this manufacturing method is characterized by cutting a portion (preferably most) of the polycrystalline alumina fibers into fine pieces, preventing the fibers from becoming tangled in the raw material mixing process and separating them from other powders. Raw materials (especially amorphous silica)
The key is to increase the blending ratio of fiber and amorphous silica so that the fibers and amorphous silica are mixed uniformly. A high fiber ratio helps improve product strength, and a high blending ratio of amorphous silica allows it to completely react with alumina (
In other words, making it mullite) lowers the alumina ratio in the product and helps improve the product's heat resistance.

原料の一部である2000μ以下の多結晶質アルミナ質
短繊維は、多結晶質アルミナ質繊維を湿式または乾式の
適当な粉砕機等を用いて切断することにより調製する。
Polycrystalline alumina short fibers of 2000 μm or less, which are part of the raw material, are prepared by cutting polycrystalline alumina fibers using a suitable wet or dry grinder.

別に1〜40mm以上のアルミナ質繊維を使用するにも
かかわらず、この極短小化繊維群は2000μ以下の長
さのものにしなければならない。このように短いものに
すると、繊維は全体としては粉体に近い性質を示し、他
の粉体原料とよく混じり合うようになる。2000μを
こえる繊維長のものは、特に繊維径が小さい場合、原料
混合工程でもつれ易く、その中に他の粉体原料が入り難
い。そのため、無定形シリカの配合量が多いと、無定形
シリカ(またはそれが焼成工程でクリストバライト化し
たもの)と多結晶質アルミナ質繊維との均一な反応が行
われず、シリカの一部が未反応のままクリストバライト
の状態で製品中に残り、製品の耐久性を悪くする(クリ
ストバライト自体の耐熱性は良好であるが、約250°
Cを境にする高温領域と低温領域で安定な結晶形を異に
し、それら二つの結晶形の間を転位する過程で体積変化
を起こすから、耐火物中にクリストバライトが存在する
と加熱−冷却による亀裂発生の原因となる。)。ただし
、繊維長があまり小さいと、低比重でしかも強度や耐久
性に優れている製品を得ることは難しくなるので、約2
0μを下限とすることが望ましい。特に好ましい繊維長
は、約50〜500μ、平均的200μである。
Although alumina fibers having a length of 1 to 40 mm or more are used, the length of this extremely shortened fiber group must be 2000 μm or less. When the fibers are made short in this way, the fibers as a whole exhibit properties similar to those of powder, and mix well with other powder raw materials. Fibers with a fiber length exceeding 2000μ, especially when the fiber diameter is small, tend to become entangled during the raw material mixing process, making it difficult for other powder raw materials to enter therein. Therefore, if a large amount of amorphous silica is blended, the amorphous silica (or its cristobalite in the firing process) and polycrystalline alumina fibers will not react uniformly, and some of the silica will remain unreacted. It remains in the product as cristobalite and deteriorates the durability of the product (cristobalite itself has good heat resistance, but
The stable crystal forms are different in the high-temperature region and the low-temperature region bordering C, and the process of dislocation between these two crystal forms causes a volume change, so if cristobalite is present in a refractory, cracks may occur due to heating and cooling. cause the occurrence. ). However, if the fiber length is too short, it will be difficult to obtain a product with low specific gravity and excellent strength and durability.
It is desirable to set the lower limit to 0μ. A particularly preferred fiber length is about 50 to 500 microns, with an average of 200 microns.

いまひとつの多結晶質アルミナ質連続繊維は、長さ2m
m以上、好ましくは1−41−4O最適には2−20m
mのものとする。この繊維は、主として製品補強のため
に使われるものであるから、少量を(望ましくは、全多
結晶質アルミナ質繊維および耐火性粉末の合計量の0.
5〜10重量%重量音程均一分散させることに留意して
用いる必要がある。好ましい長さは2〜20Lamであ
る。長すぎる繊維や過剰量の使用は製品を不均一組織の
ものとし、かえって物性の悪化を招き易い。
Another polycrystalline alumina continuous fiber is 2m long.
m or more, preferably 1-41-4O optimally 2-20 m
Let it be m. Since this fiber is mainly used for product reinforcement, it should be used in a small amount (preferably 0.05% of the total amount of all polycrystalline alumina fibers and refractory powder).
It is necessary to pay attention to uniformly dispersing the weight pitch by 5 to 10% by weight. The preferred length is 2-20 Lam. Using fibers that are too long or using an excessive amount will result in a product with a non-uniform structure, which is likely to cause deterioration in physical properties.

なおこの繊維は、2000μ以下にして用いる多結晶質
アルミナ質短繊維と長さが異なるだけのものであっても
よいが、やや太い、繊維径5〜20μのもののほうが、
成形材料混合過程でもつれにくく、また粉体原料の凝集
の核となって成形性をよくするので、好ましい。この繊
維として特に適しているのは、連続繊維を切断したもの
、たとえばチョツプドストランド(ただし容易に開繊可
能なように弱く収束されたもの)である。連続繊維から
調製されたものは、繊維径が単繊維内でも単繊維間でも
均一であり長さも揃っているから、最適性状のものを用
いて少量で大きな補強効果を達成することができる。
Note that this fiber may have a length of 2,000 μm or less and only differs in length from the polycrystalline alumina short fiber used, but it is better to use a slightly thicker fiber with a fiber diameter of 5 to 20 μm.
It is preferable because it does not easily become tangled in the process of mixing the molding material, and also serves as a nucleus for agglomeration of the powder raw materials to improve moldability. Particularly suitable fibers are those obtained by cutting continuous fibers, such as chopped strands (but weakly converged so that they can be easily opened). Those prepared from continuous fibers have uniform fiber diameters and lengths both within and between single fibers, so it is possible to achieve a large reinforcing effect with a small amount by using those with optimal properties.

多結晶質アルミナ質繊維としては、結晶相としてα−ア
ルミナを主体とするAl2O,95%、5i025%程
度のもの、結晶相としてムライトをもつA 12037
2%、510□5%程度のもの、結晶相としてa−アル
ミナとムライトとを併有するAlzOs80%、5I0
220%程度のもの、およびA I x Os  S 
i Ox〜B 203系のものを包含する。
Examples of polycrystalline alumina fibers include Al2O, which has α-alumina as its main crystalline phase, approximately 95% and 5i025%, and A12037, which has mullite as its crystalline phase.
2%, about 510□5%, AlzOs 80%, which has both a-alumina and mullite as the crystal phase, 5I0
About 220%, and A I x Os S
i Includes Ox-B 203 series.

無定形シリカ粉末は、多結晶質アルミナ質繊維と耐火性
粉末との合計量の10〜30重量%とする。無定形シリ
カの配合率が10重量%未満の場合は、焼成後に遊離の
シリカが残るおそれは少ないが、製品が高アルミナ質の
ものとなってしまう。反対に無定形シリカの配合率が3
0重量%をこえると、多結晶質アルミナ質繊維を切断し
て均一混合を達成し且つ焼成を充分に行なっても、無定
形シリカの一部が未反応のままクリストバライトの形で
製品中に残り、耐熱性不良の原因になり易い。無定形シ
リカの配合率は、更に、耐火性粉末の形で導入されるア
ルミナまたはムライトをも考慮した場合における全A 
I203/S io 2重量比が70/30〜90/1
0になるようにすることが望ましい。
The amorphous silica powder accounts for 10 to 30% by weight of the total amount of polycrystalline alumina fibers and refractory powder. If the blending ratio of amorphous silica is less than 10% by weight, there is little risk that free silica will remain after firing, but the product will have a high alumina content. On the other hand, the blending ratio of amorphous silica is 3
If it exceeds 0% by weight, even if the polycrystalline alumina fibers are cut to achieve uniform mixing and sufficient firing is performed, some of the amorphous silica remains unreacted in the form of cristobalite. , which tends to cause poor heat resistance. The blending ratio of amorphous silica is the total A when also considering alumina or mullite introduced in the form of refractory powder.
I203/S io 2 weight ratio is 70/30 to 90/1
It is desirable to set it to 0.

無定形シリカとしては、たとえばシリカゾルを用いるこ
とができる。
As the amorphous silica, for example, silica sol can be used.

耐火性粉末としては、アルミナ粉末、ムライト粉末、ア
ルミナムライト粉末など高純度結晶質のものを、多結晶
質アルミナ質繊維100重量部あたり5〜100重量部
の範囲で用いることが望ましいが、ほかに、約5重量%
までならば、コージライト、シャモット、耐火粘土、カ
オリン等を併用してもよい。
As the refractory powder, it is desirable to use high-purity crystalline powder such as alumina powder, mullite powder, and aluminumite powder in a range of 5 to 100 parts by weight per 100 parts by weight of polycrystalline alumina fibers, but in addition, , about 5% by weight
Up to this point, cordierite, chamotte, fireclay, kaolin, etc. may be used in combination.

これらの原料を上述の比率で混合し、さらに混合の前後
において適量の水を加えて、全体を湿潤状態ないしスラ
リー状にする。次いで原料混合物を脱水成形の常法によ
り成形するが、成形は、最終製品のカサ比重が約0.5
〜1.5になるような条件で行うことが望ましい。得ら
れた成形体を乾燥後的1400〜16000Cで焼成す
ると、多結晶質アルミナ質繊維は、繊維状形態を保った
まま、前述のように表層部の一部が、無定形シリカまた
はそれから生成したクリストバライトと反応してムライ
ト化するが、残りの部分はコランダムの状態で安定化す
る。この反応によってクリストバライトが完全に消費さ
れるまで、約1〜10時間を要して焼成を行うと、結晶
構造としてはほぼコランダムおよびムライトからなりそ
のうちムライトが約12〜90モル%を占める製品が得
られる。焼成が不充分でクリストバライトを残したもの
は、前述のようなりリストパライト含有量の欠点を示す
。クリストバライトの消失は、通常の粉末X線回折法に
より確認することができる。
These raw materials are mixed in the above-mentioned ratio, and an appropriate amount of water is added before and after mixing to make the whole into a wet state or a slurry state. Next, the raw material mixture is molded by a conventional method of dehydration molding.
It is desirable to conduct the test under conditions such that the ratio is 1.5 to 1.5. When the obtained molded body is dried and then fired at 1400 to 16000 C, the polycrystalline alumina fibers maintain their fibrous form and, as mentioned above, part of the surface layer becomes amorphous silica or amorphous silica. It reacts with cristobalite to form mullite, but the remaining part is stabilized as corundum. This reaction takes about 1 to 10 hours to completely consume the cristobalite, and when the firing process is carried out, a product with a crystal structure consisting mostly of corundum and mullite, of which mullite accounts for about 12 to 90 mol%, is obtained. It will be done. Insufficient calcinations that leave cristobalite exhibit the drawbacks of listoparite content as described above. Disappearance of cristobalite can be confirmed by ordinary powder X-ray diffraction method.

上述のようにして得られる本発明の軽量耐火物では、短
いとはいえ繊維形状を有する2000μ以下のコランダ
ム質繊維、より長く補強作用にすぐれたコランダム質繊
維および耐火性粉末が、それらの接点においてムライト
により結合されており、多量の微細空隙部を持つ。標準
的かつ好ましい気孔率は約50〜80%であり、それに
よりこの耐火物は0.5〜1.5のカサ比重を有し、単
位体積当りでは緻密質アルミナ系耐火物の約1/3の熱
容量を示す。
In the lightweight refractory of the present invention obtained as described above, corundum fibers having a fiber shape of 2000μ or less, although they are short, corundum fibers having a longer reinforcing effect, and refractory powder are present at their contact points. It is bonded by mullite and has a large amount of microscopic voids. The standard and preferred porosity is about 50-80%, so that the refractory has a bulk specific gravity of 0.5-1.5, and about 1/3 of the dense alumina-based refractory per unit volume. indicates the heat capacity of

本発明の軽量耐火物は、そのまま、あるいは必要に応じ
て切削加工や耐熱性表面コーティング(たとえばジルコ
ニアコーティング)を施して、前述のような焼成補助具
や窯炉構成材として利用することができる。
The lightweight refractory of the present invention can be used as it is, or after being subjected to cutting or heat-resistant surface coating (for example, zirconia coating) as necessary, as a firing aid or a kiln constituent material as described above.

〔発明の効果〕〔Effect of the invention〕

本発明による軽量耐火物は、熱的特性がアルミナよりも
すぐれているムライトの量が多く、且つ遊離のシリカを
実質的に含まないことにより、また、切断された(長さ
において)2種類の多結晶質アルミナ質繊維による補強
の効率がよいことにより、多結晶質アルミナ質繊維を原
料として得られるものでありながら従来の高アルミナ質
軽量耐火物よりもはるかにすぐれた高温耐久性を示す。
The lightweight refractory according to the invention has a large amount of mullite, which has better thermal properties than alumina, and is substantially free of free silica. Due to the high efficiency of reinforcement with polycrystalline alumina fibers, it exhibits far superior high-temperature durability than conventional high-alumina lightweight refractories even though it is obtained using polycrystalline alumina fibers as a raw material.

そしてカサ比重が約1.0以下でも実用上充分な強度を
示すものが容易に得られ、切削加工も容易であるという
特長がある。
Moreover, even if the bulk specific gravity is about 1.0 or less, it is easy to obtain a material showing sufficient strength for practical use, and it is also easy to cut.

〔実施例〕〔Example〕

以下、実施例および比較例を示して本発明を説明する。 The present invention will be described below with reference to Examples and Comparative Examples.

なお、各側において用いた原料は次のとおりである。The raw materials used on each side are as follows.

多結晶質アルミナ質繊維 無処理品:繊維径3μ、平均繊維長約50mmAl、0
.95%、5i025%のもの。
Polycrystalline alumina fiber untreated product: fiber diameter 3μ, average fiber length approximately 50mmAl, 0
.. 95%, 5i025%.

極短小化品:上記無処理品をパルパーで開繊および切断
して約50〜500μの繊維長にしたもの。
Ultra-shortened product: The above-mentioned untreated product is opened and cut with a pulper to have a fiber length of about 50 to 500μ.

補強用繊維=A1□O、−B 20、−3 io。系多
結晶質アルミナ質繊維(A120368%、Si0□2
7%、820.5%、単繊維繊維径15μ、長さ10m
mのチョツプドストランド状;ただし、比較例8は1 
mm、比較例9は30mm)耐火性粉末:焼結アルミナ 無定形シリカ:シリカゾル 以上の原料のうち、まず多結晶質アルミナ質繊維および
耐火性粉末を水に分散させ(チョツプドストランド状の
補強用繊維は単繊維まで開繊する)、次いで無定形シリ
カを加えて攪拌したのち、吸引脱水成形する。
Reinforcing fiber = A1□O, -B 20, -3 io. Polycrystalline alumina fiber (A120368%, Si0□2
7%, 820.5%, single fiber fiber diameter 15μ, length 10m
Chopped strand shape of m; However, Comparative Example 8 is 1
mm, 30 mm for Comparative Example 9) Refractory powder: Sintered alumina Amorphous silica: Silica sol Among the raw materials above, polycrystalline alumina fibers and refractory powder are first dispersed in water (chopped strand reinforcement). After that, amorphous silica is added and stirred, followed by suction dehydration molding.

得られた成形体を、熱風で乾燥後1500〜16000
Cで3時間焼成する。
After drying the obtained molded body with hot air,
Bake at C for 3 hours.

上記製法において原料配合比率および処理条件を種々変
更して行なった実験の結果を、第1表に示した。
Table 1 shows the results of experiments conducted by variously changing the mixing ratio of raw materials and processing conditions in the above manufacturing method.

なお、表中に示した特性値の試験法は次のとおりである
The test method for the characteristic values shown in the table is as follows.

曲げ強さ:厚さ6 mms幅25mm、長さ75mmの
試験片について、スパン50 mms荷重速度Q、2H
/min、温度常温または1400℃の条件で測定。
Bending strength: For a test piece with a thickness of 6 mm, width of 25 mm, and length of 75 mm, span of 50 mm, loading rate Q, 2H
/min, measured at room temperature or 1400°C.

耐スポーリング性:厚さ6 mm、幅200 mm、長
さ200mmの試験片を600°C!、700°Cまた
は800°Cの炉内に入れ、1時間加熱したのち空冷し
、クラックの有無を調べる。クラ7りがない場合、再び
同様の操作を、最高30サイクルまで繰返す。表に示し
た数値はクラックが発生するに至った加熱回数である。
Spalling resistance: A test piece with a thickness of 6 mm, a width of 200 mm, and a length of 200 mm was heated to 600°C! , placed in a furnace at 700°C or 800°C, heated for 1 hour, air cooled, and examined for cracks. If there is no crack, repeat the same operation again up to 30 cycles. The numerical values shown in the table are the number of times of heating that resulted in cracking.

また、実施例1の製品の結晶構造を示すX線回折チャー
トを第1図に示した。
Further, an X-ray diffraction chart showing the crystal structure of the product of Example 1 is shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:実施例1による耐火物の結晶構造を示すX線回
折チャート
Figure 1: X-ray diffraction chart showing the crystal structure of the refractory according to Example 1

Claims (7)

【特許請求の範囲】[Claims] (1)長さを2000μ以下にしたアルミナ質短繊維、
長さを1〜40mmにしたアルミナ質連続繊維、および
耐火性粉末がムライトにより相互に結合されてなる多孔
質成形体であって、結晶構造においてムライトおよびコ
ランダムから主としてなり且つムライトの量がムライト
とコランダムとの合計量の12モル%以上であり、遊離
のシリカを実質的に含まないことを特徴とする軽量耐火
物。
(1) Alumina short fibers with a length of 2000μ or less,
A porous molded body made of alumina continuous fibers with a length of 1 to 40 mm and refractory powder bonded to each other by mullite, and the crystal structure is mainly composed of mullite and corundum, and the amount of mullite is equal to that of mullite. A lightweight refractory, characterized in that the amount is 12 mol % or more based on the total amount of corundum, and that free silica is substantially free.
(2)カサ比重が0.5〜1.5である特許請求の範囲
第1項記載の軽量耐火物。
(2) The lightweight refractory according to claim 1, having a bulk specific gravity of 0.5 to 1.5.
(3)長さを20〜2000μにした多結晶質アルミナ
質短繊維および長さを1〜40mmにした多結晶質アル
ミナ質連続繊維またはこれらと等量以下の耐火性粉末と
の混合物に10〜30重量%の無定形シリカ粉末を加え
て混合し、得られた混合物を成形し、次いでクリストバ
ライトの存在が認められなくなるまで1400〜160
0℃で焼成することを特徴とする軽量耐火物の製造法。
(3) A mixture of polycrystalline alumina short fibers with a length of 20 to 2000 μm, polycrystalline alumina continuous fibers with a length of 1 to 40 mm, or a mixture of these and an equal or less amount of refractory powder. 30% by weight of amorphous silica powder is added and mixed, the resulting mixture is molded, and then heated at 1400 to 160° C. until no cristobalite is present.
A method for producing lightweight refractories characterized by firing at 0°C.
(4)耐火性粉末として粉末状のアルミナ、ムライトま
たはアルミナムライトを用いる特許請求の範囲第3項記
載の製造法。
(4) The manufacturing method according to claim 3, in which powdered alumina, mullite, or aluminumite is used as the refractory powder.
(5)多結晶質アルミナ質連続繊維を全多結晶質アルミ
ナ質繊維および耐火性粉末の合計量の0.5〜10重量
%使用する特許請求の範囲第3項記載の製造法。
(5) The manufacturing method according to claim 3, wherein the polycrystalline alumina continuous fiber is used in an amount of 0.5 to 10% by weight based on the total amount of all polycrystalline alumina fibers and refractory powder.
(6)多結晶質アルミナ質連続繊維として長さ2〜20
mm、直径5〜20μのものを使用する特許請求の範囲
第3項記載の製造法。
(6) Length 2-20 as polycrystalline alumina continuous fiber
3. The manufacturing method according to claim 3, wherein a material having a diameter of 5 to 20 μm is used.
(7)多結晶質アルミナ質連続繊維として連続繊維を切
断したものを用いる特許請求の範囲第3項記載の製造法
(7) The manufacturing method according to claim 3, in which cut continuous fibers are used as the polycrystalline alumina continuous fibers.
JP30450787A 1987-12-03 1987-12-03 Lightweight refractory and its manufacture Granted JPH01148764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30450787A JPH01148764A (en) 1987-12-03 1987-12-03 Lightweight refractory and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30450787A JPH01148764A (en) 1987-12-03 1987-12-03 Lightweight refractory and its manufacture

Publications (2)

Publication Number Publication Date
JPH01148764A true JPH01148764A (en) 1989-06-12
JPH0518780B2 JPH0518780B2 (en) 1993-03-12

Family

ID=17933869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30450787A Granted JPH01148764A (en) 1987-12-03 1987-12-03 Lightweight refractory and its manufacture

Country Status (1)

Country Link
JP (1) JPH01148764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317178A (en) * 1988-03-02 1989-12-21 Inax Corp Porous material of alumina and production thereof
JPH03148668A (en) * 1989-07-28 1991-06-25 Xerox Corp Photoconductive image forming member having polyphosphazene binder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629181A (en) * 1985-03-05 1987-01-17 イビデン株式会社 Light-weight heat-resistant tray for baking ceramics and manufacture thereof
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629181A (en) * 1985-03-05 1987-01-17 イビデン株式会社 Light-weight heat-resistant tray for baking ceramics and manufacture thereof
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317178A (en) * 1988-03-02 1989-12-21 Inax Corp Porous material of alumina and production thereof
JPH03148668A (en) * 1989-07-28 1991-06-25 Xerox Corp Photoconductive image forming member having polyphosphazene binder
JPH0516017B2 (en) * 1989-07-28 1993-03-03 Xerox Corp

Also Published As

Publication number Publication date
JPH0518780B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JPH0465030B2 (en)
JP5379348B2 (en) Ceramic body based on aluminum titanate
EP0037868B2 (en) Method of producing low-expansion ceramic materials
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP6607839B2 (en) Insulation
US5071798A (en) Heat-resistant and inorganic shaped article
JPH01148764A (en) Lightweight refractory and its manufacture
JP2987094B2 (en) High heat resistant inorganic fiber molded body
JPH0236547B2 (en)
JP2001220258A (en) Fireproofing heat-insulation material
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPH01148765A (en) Lightweight refractory and its manufacture
JP3108362B2 (en) High-strength inorganic fiber molded body
JP2853175B2 (en) Method for producing heat-resistant inorganic fiber molded article and heat-resistant lightweight setter
JP2001278676A (en) Inorganic fiber reinforced article
JPH0794347B2 (en) Insulation
JP2508511B2 (en) Alumina composite
JP2001192278A (en) Refractory and heat insulating formed body and method of producing the same
JP2001330375A (en) Fireproof insulating material
JPH0476339B2 (en)
JPH06172010A (en) Heat insulating material and its production
JPH03247556A (en) High-temperature burning jig
JPH02239173A (en) Lightweight heat resistant tray
JPH06305853A (en) Production of heat-resistant fibrous molded article having low-specific gravity
JPH04104952A (en) Zirconia-substance complex refractory composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees