JPH01148436A - Resin coated sand - Google Patents

Resin coated sand

Info

Publication number
JPH01148436A
JPH01148436A JP30626887A JP30626887A JPH01148436A JP H01148436 A JPH01148436 A JP H01148436A JP 30626887 A JP30626887 A JP 30626887A JP 30626887 A JP30626887 A JP 30626887A JP H01148436 A JPH01148436 A JP H01148436A
Authority
JP
Japan
Prior art keywords
sand
resin
aggregate
foundry
silica sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30626887A
Other languages
Japanese (ja)
Other versions
JPH069726B2 (en
Inventor
Akira Ohashi
明 大橋
Mitsuo Norikuni
範国 三男
Norihiko Kanemoto
範彦 金本
Hiroyuki Isaki
裕之 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamakawa Sangyo Co Ltd
Original Assignee
Yamakawa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamakawa Sangyo Co Ltd filed Critical Yamakawa Sangyo Co Ltd
Priority to JP62306268A priority Critical patent/JPH069726B2/en
Publication of JPH01148436A publication Critical patent/JPH01148436A/en
Publication of JPH069726B2 publication Critical patent/JPH069726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To obtain low expanding ability together with easy-collapsibility by using mixing material of molding sand having low expansion obtd. from the specific Ni ore slag and silica sand for casting as aggregate. CONSTITUTION:The molding sand having extremely excellent low expanding ability obtd. from nickel ore slag containing MgO, SiO2 as main components is used together with the silica sand for casting. By this method, the collapsibility is improved without any bad influence to the low expanding ability. The nickel ore slag is the one which anthracite and lime stone are blended to the Ni ore and discharged after smelting with a rotary kiln and crushing and dressing, and is basic granular material having ore composition of MgO and SiO2. Grinding treatment is executed to this and spheroidized. By this method, cleaning of aggregate grain surface composing of the mixing material of the molding sand and the casting silica sand, increase of coating layer caused by decrease of specific surface area and improvement of heat conductivity caused by increase of packing density, etc., are promoted. Therefore, by coating the aggregate of the mixing material with resin for coating, the resin coated sand providing low expanding ability together with easy-collapsibility is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低膨張性場よび易崩壊性を兼ね備えたシェル
モールドに用いるレジンコーテツドサンドに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a resin coated sand used for shell molds that has both low expansion properties and easy disintegration properties.

[従来の技術] 鋳物工業において精密鋳型を作る方法の1つとして例え
ばヘキサメチレンテトラミンを添加したノボラック樹脂
などの合成樹脂を以って被覆したレジンコーテツドサン
ド(Regin Coated 5and 。
[Prior Art] One method of making precision molds in the foundry industry is to use resin coated sand coated with a synthetic resin such as novolac resin to which hexamethylenetetramine is added.

以下RC5と略記する)を予熱した模型上に充填接触さ
せてシェル型を模型上に形成させ加熱してシェル鋳型ま
たは中子を作る方法が一般に用いられている。この場合
樹脂で被覆される骨材である鋳物砂として最も一般的な
ものは、シリカ(SiO□)含有量が90%以上の高純
度ケイ砂であり、この高純度ケイ砂は、すぐれた耐熱性
と高強度を有し、粘結剤との濡れ性も良いので各種鋳物
用に広く使用されている。
A commonly used method is to make a shell mold or a core by filling and contacting a preheated model (hereinafter abbreviated as RC5) to form a shell mold on the model and heating it. In this case, the most common foundry sand that is the aggregate coated with resin is high-purity silica sand with a silica (SiO□) content of 90% or more, and this high-purity silica sand has excellent heat resistance. It is widely used for various castings because it has high strength and properties, and has good wettability with binders.

[発明が解決しようとする問題点] しかし、この高純度ケイ砂を骨材として用いた鋳型(特
に中子)は、注湯によってかなり膨張するため鋳物の寸
法精度の向上に充分対応することができなかった。
[Problems to be solved by the invention] However, molds (particularly cores) using this high-purity silica sand as aggregate expand considerably when poured, so they cannot sufficiently respond to improvements in the dimensional accuracy of castings. could not.

本発明者らは、先にMgOとSin□を含有する塩基性
の粒状ニッケル鉱滓からなる鋳物砂が低膨張特性に優わ
ていることを見出し、資源的にも乏しい高純度ケイ砂に
優る極めて好適な鋳物砂として前記鉱滓からなる鋳物砂
を提案した(特願昭60−288237 、同60−2
88238 、同6O−282444)。MgO・Si
O2を主成分とするニッケル鉱滓より得られる低膨張鋳
物砂(以下NEサンド略記する)を骨材としたRCSは
、その優れた低膨張特性により高度な寸法粒度を要求さ
れる製品(たとえば自動車部品など)を得る際に極めて
好適に用いられてきた。
The present inventors have previously discovered that foundry sand made of basic granular nickel slag containing MgO and Sin□ has superior low expansion properties, and has found that it is extremely superior to high-purity silica sand, which is a scarce resource. As a suitable foundry sand, foundry sand made from the slag was proposed (Japanese Patent Application No. 60-288237, No. 60-2).
88238, 6O-282444). MgO・Si
RCS, which uses low-expansion foundry sand (hereinafter abbreviated as NE sand) obtained from nickel slag containing O2 as its main component, is used as an aggregate for products that require a high degree of particle size (for example, automobile parts) due to its excellent low-expansion properties. etc.) has been used very suitably.

しかし、NEサンドを骨材としたRCSは、たとえば中
子砂として使用した場合、低膨張であるが故に注湯時の
熱膨張に伴う砂の移動が少いことなどに起因して、振動
やノック圧が低い型バランの現場作業条件下では崩壊性
の点で問題を生じる場合がありなお改善の余地が大きい
However, when RCS with NE sand as aggregate is used as core sand, for example, it has low expansion, so there is little movement of sand due to thermal expansion during pouring, resulting in vibration and vibration. Under on-site working conditions for type baluns with low knock pressure, problems may arise in terms of disintegration, and there is still much room for improvement.

たとえばエンジンのシリンダヘッド等の内部構造の複雑
な製品を鋳造する場合に使用される中子の場合などは、
注湯時には湯の圧力に充分耐えられるだけの強度を維持
し、かつ鋳込後における崩壊性が特に良好でなければな
らない。このために、たとえばフェノールレジンの低温
域での分解を目的としてレジン製造時において有機臭素
化合物、無機臭素化合物などのハロゲン化合物などを添
加したフェノールレジン組成物等(以下易崩壊性レジン
と略記する)をNEサンドに添加して行うか、またはた
とえばフェノール、ホルムアルデヒドおよびビスフェノ
ールA精製残渣(ビスフェノールAをフェノールとジメ
チルケトンとの縮合によ)て合成し、これを精製する際
に生ずる残渣)を配合し、酸性触媒の存在下で反応させ
て得られる樹脂、ビスフェノールAを生ずる際に得られ
るビスフェノールAを含む副生成物をアルカリ性触媒の
存在下高温で処理し、低沸点酸物を系外に除去したあと
に残る高分子量のフェノール性水酸基を有する開裂残渣
または該開裂残漬とフェノール類を酸性触媒下にホルム
アルデヒドと縮合させて得られるノボラック型フェノー
ル樹脂と、芳香族カルボン酸および/または、その無水
物を配合してなる樹脂組成物など(以下低膨張レジンと
略記する)を前記高純度ケイ砂に添加して行う等の方法
が採用されているのが現状である。
For example, in the case of cores used for casting products with complex internal structures such as engine cylinder heads,
It must maintain sufficient strength to withstand the pressure of hot water during pouring, and must have particularly good disintegration properties after pouring. For this purpose, for example, phenol resin compositions, etc., in which halogen compounds such as organic bromine compounds and inorganic bromine compounds are added during resin production for the purpose of decomposing the phenol resin at low temperatures (hereinafter abbreviated as easily disintegrating resin), etc. or by blending, for example, phenol, formaldehyde and bisphenol A purification residue (residue produced when bisphenol A is synthesized by condensation of phenol and dimethyl ketone and purified). , a resin obtained by reacting in the presence of an acidic catalyst, a by-product containing bisphenol A obtained when producing bisphenol A, was treated at high temperature in the presence of an alkaline catalyst, and the low-boiling point acid was removed from the system. A novolac type phenolic resin obtained by condensing the cleavage residue having a high molecular weight phenolic hydroxyl group or the cleavage residue and phenol with formaldehyde under an acidic catalyst, and an aromatic carboxylic acid and/or its anhydride. At present, a method is employed in which a resin composition containing the following (hereinafter abbreviated as low expansion resin) is added to the high-purity silica sand.

然しながら、RCSの構成は通常骨材である鋳物砂約9
7重量部に対し添加レジン量は約3重量部であり、かか
るイ)少のレジンのみで鋳物砂の特性を改善し実質的に
問題点のないRCSを得ることは困難であり、根本的な
解決策には至っていない。
However, the composition of RCS is usually foundry sand, which is an aggregate of about 9
The amount of resin added is about 3 parts by weight compared to 7 parts by weight, and it is difficult to improve the properties of foundry sand and obtain RCS with virtually no problems with just a) small amount of resin, and it is difficult to obtain RCS with virtually no problems. No solution has been reached.

かかる実情に鑑み、本発明は前記ニッケル鉱滓より得ら
れる低膨張鋳物砂と鋳物用ケイ砂との混合物を骨材とし
て用いることにより前記諸問題点を解決し、低膨張性お
よび易崩壊性を兼ね備えたRCSを提供することを目的
とするものである。
In view of these circumstances, the present invention solves the above problems by using a mixture of low expansion foundry sand obtained from the nickel slag and foundry silica sand as an aggregate, and has both low expansion and easy disintegration properties. The purpose is to provide an RCS with a

[問題点を解決するための手段] 本発明に係るRCSは、MgO−5iO□を主成分とす
るニッケル鉱滓より得られる低膨張鋳物砂と鋳物用ケイ
砂との混合物からなる骨材を被覆用レジンを以て被覆し
たことを特徴としている。すなわち本発明は、MgO・
SiO2を主成分とするニッケル鉱滓より得られる極め
て低膨張性に優れた鋳物砂の慈母れた特性の故に発現す
る崩壊性の不充分さを改善すべく種々研究を行った結果
、鋳物用ケイ砂を前記低膨張鋳物砂と併用することによ
り、実用上低膨張性を害することなく、崩壊性を向上せ
しめ得ることを見出して完成されたものである。
[Means for Solving the Problems] The RCS according to the present invention uses an aggregate made of a mixture of low expansion foundry sand and foundry silica sand obtained from nickel slag containing MgO-5iO□ as a main component for coating. It is characterized by being coated with resin. That is, the present invention provides MgO・
As a result of conducting various researches in order to improve the insufficient collapsibility that occurs due to the favorable characteristics of foundry sand, which has excellent extremely low expansion properties obtained from nickel slag containing SiO2 as the main component, we have developed silica sand for foundry use. The inventors have discovered that by using the above-mentioned low expansion foundry sand in combination with the above-mentioned low expansion foundry sand, it is possible to improve the collapsibility without practically impairing the low expansion property.

ニッケルスラグは、例えばニッケル鉱石に無煙炭および
石灰石を配合し、ロータリーキルンで製錬したのち、粉
砕と選鉱(比重選鉱、磁力選鉱等)を行った後に排出さ
れるものでニッケルIFを得るのに約50tのスラグが
発生すると言われている。このニッケルスラグは、Mg
O・SiO2の鉱物組成を有する塩基性の粒状物であり
、従来はコンクリートおよびアスファルトの骨材として
少量が使用されていたものである。
Nickel slag is produced by mixing anthracite coal and limestone with nickel ore, smelting it in a rotary kiln, and then crushing and beneficiation (gravitational beneficiation, magnetic beneficiation, etc.). Approximately 50 tons are required to obtain nickel IF. It is said that slag is generated. This nickel slag is Mg
It is a basic granular material with a mineral composition of O.SiO2, and has traditionally been used in small amounts as an aggregate for concrete and asphalt.

このようなニッケルスラグは、比重差によって偏析した
不純物が表面に残存しており、しかも粉砕工程によって
粒形も悪化しているのでそのまま骨材としての鋳物砂と
して使用した場合は、強度および耐熱性上の問題が生ず
る場合があるので、前記ニッケルスラグに磨鉱処理を施
し粒形係数1.4以下の粒状物として用いることがより
好ましい。
In such nickel slag, impurities segregated due to the difference in specific gravity remain on the surface, and the particle shape has deteriorated due to the crushing process, so if it is used as foundry sand as aggregate, it will have poor strength and heat resistance. Since the above problem may occur, it is more preferable to subject the nickel slag to a polishing treatment and use it as a granule having a grain size coefficient of 1.4 or less.

この種の磨鉱処理としては、通常ニューマチックリクレ
ーマ、またはインパクトスクライバ−等を用いる乾式磨
鉱処理が採用される。上記ニッケルスラグもこのような
乾式処理方法によって好ましい粒形係数1.4以下とす
ることも不可能でないが、この方法は一般的に処理能力
が低いため、実生産ラインでは、設備的に大規模となり
設備費が高価となる。したがって湿式スクラビング磨鉱
機を用いて磨鉱処理を行うのがより好ましい。湿式磨鉱
処理としては、数種のものがあるが、なかでもトラフ式
の磨鉱機を用いてバルブ濃度、すなわちニッケルスラグ
と水の比率が、重量比でニッケルスラグ:水=1:0.
1〜0.25の条件で行なうのが好ましい。水の量をこ
れよりも多くすると流動性が向上するため共擦り効果が
減少する。逆に水の量をこれよりも少なくするとニッケ
ルスラグの送りが困難になる。なお、場合によってはト
ラフ式の磨鉱機で水を使わず乾式の磨鉱処理を施しても
よい。
As this type of polishing treatment, dry polishing treatment using a pneumatic reclaimer, an impact scriber, or the like is usually employed. It is not impossible to reduce the above-mentioned nickel slag to a preferable particle size coefficient of 1.4 or less by such a dry processing method, but this method generally has a low processing capacity, so in an actual production line, large-scale equipment is required. This results in high equipment costs. Therefore, it is more preferable to perform the polishing treatment using a wet scrubbing polisher. There are several types of wet polishing, but among them, a trough-type polishing machine is used to adjust the valve concentration, that is, the ratio of nickel slag to water in a weight ratio of nickel slag:water = 1:0.
It is preferable to carry out under the conditions of 1 to 0.25. If the amount of water is greater than this, the co-rubbing effect will decrease because the fluidity will improve. On the other hand, if the amount of water is less than this, it becomes difficult to feed the nickel slag. In some cases, dry grinding may be performed using a trough-type grinding machine without using water.

スラグの磨鉱は最終粒形係数が!、4以下となるまで行
なうことが前記の如く好ましく、さらに1.3以下とな
るまで行なうことがより好適である。粒形係数は完全な
球形を1とし、これに近いほど球に近い形状であること
をあられすもので、粒形係数を1.4以下とすることに
より鋳型強度等の改善がもたらされるのは、骨材粒子表
面の清浄化と比表面積の減少による粘結層(被覆層)の
増加と充填密度の増加による熱伝導率の向上環が促進さ
れることによるものと考えられる。
The final grain shape coefficient of slag grinding ore! As mentioned above, it is preferable to carry out the process until the value becomes 4 or less, and it is more preferable to carry out the process until the value becomes 1.3 or less. The grain shape coefficient is defined as 1 for a perfect spherical shape, and the closer it is to 1, the closer the shape is to a sphere.The fact that setting the grain shape coefficient to 1.4 or less improves mold strength, etc. This is thought to be due to the improvement of thermal conductivity due to the increase in the caking layer (coating layer) due to cleaning of the surface of the aggregate particles and the decrease in the specific surface area, and the increase in the packing density.

本発明に用いられる鋳物用ケイ砂は、従来鋳物砂として
用いられているケイ砂であれば差し支えなく、特に限定
されないが最も一般的なものはシリカ(SiO□)含有
量90%以上の高純度ケイ砂であり、このようなケイ砂
がより好適に用いられる。
The foundry silica sand used in the present invention may be any silica sand conventionally used as foundry sand, and is not particularly limited, but the most common one is high purity with a silica (SiO□) content of 90% or more. It is silica sand, and such silica sand is more preferably used.

骨材として用いるNEサンドと鋳物用ケイ砂の混合割合
により本発明の効果の程度が異なる一面があり、本発明
の効果をより確実に、より効果的に享受するためには、
NEサンドと鋳物用ケイ砂との混合割合をNEサンドI
O〜75重量部に対し、鋳物用ケイ砂25〜90重量部
とすることがより好ましい。
The extent of the effects of the present invention varies depending on the mixing ratio of NE sand and foundry silica sand used as aggregates, and in order to enjoy the effects of the present invention more reliably and more effectively,
The mixing ratio of NE sand and foundry silica sand is NE Sand I.
It is more preferable to use 25 to 90 parts by weight of foundry silica sand to 0 to 75 parts by weight.

本発明に用いる被覆用レジンとしては、ノボラック樹脂
、レゾール樹脂、アンモニアレゾール樹脂、ベンジルエ
ーテル樹脂などのフェノール系樹脂、さらに該樹脂と臭
素含有有機化合物または臭素含有無機化合物との組成物
、並びに前記の低膨張性レジン、易崩壊性レジン等があ
る。特に前記の低膨張性レジンおよび易崩壊性レジンが
より好ましい。被覆用レジンの添加量は、鋳造品の形状
等からのRCSへの要求性能により適宜選定されるが、
骨材100重量部当り0.5〜10重量部、より好まし
くは1.0〜4.0重量部の被覆用レジンが添加された
とき、より優れた低膨張性と易崩壊性を兼ね備えたRC
Sとなり得る。この場合、前記低膨張性レジンまたは易
崩壊性レジンは、前記被覆用レジン添加量の10〜10
0重量%を前記レジンのいづれかが占める如く、単独も
しくは、併用添加して用いるのが好ましい。
The coating resin used in the present invention includes phenolic resins such as novolak resin, resol resin, ammonia resol resin, and benzyl ether resin, compositions of the resin and bromine-containing organic compounds or bromine-containing inorganic compounds, and the above-mentioned compositions. There are low expansion resins, easily disintegrating resins, etc. In particular, the above-mentioned low expansion resins and easily disintegrating resins are more preferred. The amount of coating resin added is selected as appropriate depending on the performance required for RCS from the shape of the cast product, etc.
When 0.5 to 10 parts by weight, more preferably 1.0 to 4.0 parts by weight, of the coating resin is added per 100 parts by weight of aggregate, RC with better low expansion and easy disintegration properties can be obtained.
It can be S. In this case, the low expansion resin or easily disintegrating resin is added in an amount of 10 to 10 times the amount of the coating resin added.
It is preferable to use one of the above resins alone or in combination so that 0% by weight is occupied by one of the resins.

なお、前記低膨張鋳物砂、鋳物用ケイ砂および被覆用レ
ジンが前記より好適な範囲外にある場合には、より好適
な条件下にある場合に比しRCSの膨張率が若干増加し
たり残留強度の上昇に伴う多少の崩壊性の悪化を来たし
たりするので、たとえばエンジンのシリンダヘッド等の
内部構造の複雑な製品を鋳造するときに使用される中子
に本発明のRCSが適用される場合の如く、特に易崩壊
性が要求される場合には各構成要素が前記好適な領域に
あるRCSを用いることかより好ましい。
Note that if the low expansion foundry sand, foundry silica sand, and coating resin are outside the more preferred ranges, the expansion rate of RCS may increase slightly or residual When the RCS of the present invention is applied to a core used for casting a product with a complex internal structure, such as an engine cylinder head, for example, the RCS of the present invention may cause a slight deterioration of collapsibility as the strength increases. In particular, when easy disintegration is required, it is more preferable to use an RCS in which each component falls within the above-mentioned preferred range.

[発明の作用および効果] 以上説明したように本発明に係るRCSは、NEサンド
に混合添加された鋳物用ケイ砂がNEサンドの低膨張性
機能を損うことなく出所性を高める作用を果し、優れた
低膨張性と5崩解性を兼ねそなえたものとなっている。
[Operations and Effects of the Invention] As explained above, in the RCS according to the present invention, the foundry silica sand mixed and added to the NE sand has the effect of improving the originability without impairing the low expansion function of the NE sand. However, it has both excellent low expansion properties and 5-disintegrability.

したがって本発明にかかるRC3を造形した場合、鋳型
としての具備条件を充分満足すると同時に、自動車部品
を代表とする寸法精度の高い製品をつくるために不可欠
な特性、すなわち低膨張性および晶出解性を備えたすぐ
れた鋳型を得ることが可能となった。
Therefore, when molding RC3 according to the present invention, it fully satisfies the requirements for a mold, and at the same time has the characteristics essential for manufacturing products with high dimensional accuracy, such as automobile parts, such as low expansion and crystallization/decomposition properties. It became possible to obtain an excellent mold with

[実施例] 以下実施例を挙げて本発明の詳細な説明するが本発明は
これら実施例に限定されるものではない。
[Examples] The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例に用いたRC5の特性の測定法は下記の通りであ
る。
The method for measuring the characteristics of RC5 used in the Examples is as follows.

(+)シェル熱膨張率 a)試験機 熱機械分析装置 (サーモフレックスTMA標準型) (理学電機■製) b)テストピース焼成   200℃X 120sec
C)テストピース寸法   7@X20mmd)昇温速
度       20℃/l!l1nC)試験雰囲気 還元性雰囲気 (N2ガス導通、約300m1/m1n)[)測定温度
範囲     室温〜l000℃2)常温抗圧力、熱間
抗圧力、残留強度(抗圧力) a)試験機 鋳物砂高温試験機 (■東京衡機製造断裂) b)テストピース焼成   250℃X 90secC
)テストピース寸法   30tX50市d)テストピ
ース曝熱   600℃X231!l1ne)曝熱雰囲
気 非酸化性雰囲気 (テストピースをアルミ箔で包んだ) f)テストタイミング 常温抗圧カニ テストピースを焼成後デシケーター内 で放置、24時間後測定 熱間抗圧カニ テストピースを焼成後デシケーター内 で放置、24時間後曝熱し測定 残留強度: テストピースを焼成後デシケーター内 で放置、24時間後曝熱しデシケータ−内で放置、24
時間後測定 粉砕機、濾過機等を通した粒状のニッケル鉱石をロータ
リーキルンで加熱処理し、水砕したのち粉砕機で粉砕し
、比重選鉱機と磁力選鉱機でニッケルを選別した後のス
ラグを原料として使用した。このようなロータリーキル
ン法によフて得られるスラグは、電気炉、溶鉱炉等を用
いたものと異なり、半溶融状態で完全にガラス化しない
ので、水砕によって鋳物砂に相当する粒度分布を有する
砂状スラグとすることができる。
(+) Shell thermal expansion coefficient a) Testing machine thermomechanical analyzer (Thermoflex TMA standard type) (manufactured by Rigaku Denki ■) b) Test piece firing 200°C x 120 sec
C) Test piece dimensions 7@X20mmd) Heating rate 20℃/l! l1nC) Test atmosphere Reducing atmosphere (N2 gas conduction, approx. 300m1/m1n) [) Measurement temperature range Room temperature to 1000℃2) Room temperature resistance pressure, hot resistance pressure, residual strength (resistance pressure) a) Testing machine Foundry sand high temperature Testing machine (Tokyo Hoshiki manufacturing rupture) b) Test piece firing 250℃X 90secC
) Test piece dimensions 30t x 50 city d) Test piece heat exposure 600℃ x 231! l1ne) Heating atmosphere Non-oxidizing atmosphere (test piece wrapped in aluminum foil) f) Test timing After baking the room temperature anti-pressure crab test piece, leave it in a desiccator, measure after 24 hours Baking the hot anti-pressure crab test piece After leaving it in a desiccator, after 24 hours, exposing it to heat, and measuring residual strength: After baking, leaving the test piece in a desiccator, after 24 hours, exposing it to heat, and leaving it in a desiccator, 24 hours.
Measurement after time Granular nickel ore passed through a crusher, filter, etc. is heated in a rotary kiln, crushed into water, crushed in a crusher, and the nickel is sorted using a gravity separator and magnetic separator.The raw material is slag. used as. Unlike slag obtained using an electric furnace, blast furnace, etc., the slag obtained by this rotary kiln method is in a semi-molten state and does not completely vitrify. It can be made into slag.

このスラグを第1図に示す工程(A−1)で処理してN
Eサンドを得た。得られたNEサンドの粒度分布と化学
成分を第1表および第2表に示す。また、実施例に用い
た鋳物用ケイ砂の粒度分布を第1表に示した。
This slag is treated in the step (A-1) shown in Figure 1 and N
I got an E sandwich. The particle size distribution and chemical composition of the obtained NE sand are shown in Tables 1 and 2. Further, the particle size distribution of the foundry sand used in the examples is shown in Table 1.

このNEサンド及び鋳物用ケイ砂を骨材とじ第3表及び
第4表に示す配合(重量基準)でRC5を製造し、膨張
性ならびに強度を測定した。その結果を第5表並びに第
2図および第3図に示した。なお第4表に示す樹脂Aは
一般RC3用樹脂でありノボラック樹脂である。樹脂B
は臭化亜鉛を添加した樹脂Aである。樹脂Cはフェノー
ルホルムアルデヒドおよびビスフェノールA精製残渣を
配合し酸性触媒の存在下に反応させて得られる樹脂であ
る。
This NE sand and foundry silica sand were combined with aggregate to produce RC5 with the formulations (based on weight) shown in Tables 3 and 4, and the expandability and strength were measured. The results are shown in Table 5 and FIGS. 2 and 3. Note that resin A shown in Table 4 is a general RC3 resin and is a novolac resin. Resin B
is resin A to which zinc bromide was added. Resin C is a resin obtained by blending phenol formaldehyde and bisphenol A purification residue and reacting the mixture in the presence of an acidic catalyst.

第1表〜第4表に示す配合で得たRC3を用い250℃
・90秒で焼成した第4図に示すような円筒型(50φ
×50)シェル中子型1を、下記配合で造型した主型2
および押湯型3にセットし普通鋳鉄(FC25相当)の
溶湯を約1430℃で注湯し、第5図に示すコアノック
マシン4を用いエアハンマー(エア圧1.0kg/cm
2)で、ノックアウト時間毎に砂落ち量を測定した。
250℃ using RC3 obtained with the formulations shown in Tables 1 to 4.
・Cylindrical shape (50φ) as shown in Figure 4, fired for 90 seconds
×50) Main mold 2 made by molding shell core mold 1 with the following composition
The molten metal of ordinary cast iron (equivalent to FC25) was poured into the feeder mold 3 at a temperature of about 1430°C, and the core knock machine 4 shown in Fig. 5 was used with an air hammer (air pressure 1.0 kg/cm
In 2), the amount of sand falling was measured at each knockout time.

(主型配合) フセン5号砂(AFS指数40前後)−100重量部フ
ラン樹脂        −1,2重量部/砂第1表 骨材の粒度分布 第2表 化学成分 第3表 RCS配合条件(重量部) 第6表 崩壊性(砂落ち率、%) 硬化剤(有機スルフォン酸)−50重量部/樹脂この崩
壊性試験(砂落ち率)の結果は、第6表に示す通りであ
った。
(Main mold composition) Fusen No. 5 sand (AFS index around 40) - 100 parts by weight Furan resin - 1.2 parts by weight / sand Table 1 Particle size distribution of aggregate Table 2 Chemical components Table 3 RCS compounding conditions (weight Table 6 Disintegration (Sand removal rate, %) Curing agent (organic sulfonic acid) - 50 parts by weight/resin The results of this disintegration test (Sand removal rate) are as shown in Table 6.

これらの実施例および比較例から明らかな如く本発明の
RCSは崩壊性にすぐれた性能、すなわちNCサンドの
低膨張性を損なうことなく崩壊性に優れた特性を有する
ことが明らかである。
As is clear from these Examples and Comparative Examples, it is clear that the RCS of the present invention has excellent disintegration properties, that is, excellent disintegration properties without impairing the low expansion properties of NC sand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、MgO・SiO2を主成分とする低膨張鋳物
砂の製造プロセスを示すフローチャート、第2図、第3
図は、実施例および比較例のRCSの熱膨張率の測定結
果を示す。 第4図(a)、(b)は、崩壊性の確認に用いた鋳型の
概略図であり、第5図は崩壊性測定に用いたコアノック
マシンの斜視図である。
Figure 1 is a flowchart showing the manufacturing process of low expansion molding sand whose main components are MgO/SiO2, Figures 2 and 3.
The figure shows the measurement results of the coefficient of thermal expansion of RCS of Examples and Comparative Examples. FIGS. 4(a) and 4(b) are schematic views of the molds used to confirm the disintegration properties, and FIG. 5 is a perspective view of the core knock machine used to measure the disintegration properties.

Claims (4)

【特許請求の範囲】[Claims] (1)MgO・SiO_2を主成分とするニッケル鉱滓
より得られた低膨張鋳物砂と鋳物用ケイ砂との混合物か
らなる骨材を被覆用レジンで被覆したことを特徴とする
レジンコーテッドサンド。
(1) A resin-coated sand characterized in that an aggregate made of a mixture of low-expansion foundry sand obtained from nickel slag containing MgO.SiO_2 as a main component and foundry silica sand is coated with a coating resin.
(2)骨材が該低膨張鋳物砂10〜75重量部および鋳
物用ケイ砂25〜90重量部からなる混合物である特許
請求の範囲第1項記載のレジンコーテッドサンド。
(2) The resin-coated sand according to claim 1, wherein the aggregate is a mixture consisting of 10 to 75 parts by weight of the low expansion foundry sand and 25 to 90 parts by weight of foundry silica sand.
(3)被覆用レジンが骨材100重量部当り0.5〜1
0重量部である特許請求の範囲第1項または、第2項記
載のレジンコーテッドサンド。
(3) The coating resin is 0.5 to 1 per 100 parts by weight of aggregate.
The resin-coated sand according to claim 1 or 2, which contains 0 parts by weight.
(4)被覆用レジンが低膨張レジンおよび/または易崩
壊性レジンである特許請求の範囲第1項乃至第3項のい
づれかに記載のレジンコーテッドサンド。
(4) The resin-coated sand according to any one of claims 1 to 3, wherein the coating resin is a low expansion resin and/or an easily disintegrating resin.
JP62306268A 1987-12-02 1987-12-02 Resin coated sand Expired - Fee Related JPH069726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306268A JPH069726B2 (en) 1987-12-02 1987-12-02 Resin coated sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306268A JPH069726B2 (en) 1987-12-02 1987-12-02 Resin coated sand

Publications (2)

Publication Number Publication Date
JPH01148436A true JPH01148436A (en) 1989-06-09
JPH069726B2 JPH069726B2 (en) 1994-02-09

Family

ID=17955036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306268A Expired - Fee Related JPH069726B2 (en) 1987-12-02 1987-12-02 Resin coated sand

Country Status (1)

Country Link
JP (1) JPH069726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604474A (en) * 2020-07-09 2020-09-01 四川清贝科技技术开发有限公司 Preparation process of wear-resistant pressure-resistant bent pipe
CN115255281A (en) * 2022-07-19 2022-11-01 石家庄市宏森熔炼铸造有限公司 Casting process of high-precision casting and casting
CN116217109A (en) * 2023-01-30 2023-06-06 江苏砺彩砂品新材料有限公司 Artificial color sand and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263842A (en) * 1986-05-09 1987-11-16 Nippon Yakin Kogyo Co Ltd Molding sand for shell mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263842A (en) * 1986-05-09 1987-11-16 Nippon Yakin Kogyo Co Ltd Molding sand for shell mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604474A (en) * 2020-07-09 2020-09-01 四川清贝科技技术开发有限公司 Preparation process of wear-resistant pressure-resistant bent pipe
CN115255281A (en) * 2022-07-19 2022-11-01 石家庄市宏森熔炼铸造有限公司 Casting process of high-precision casting and casting
CN115255281B (en) * 2022-07-19 2024-04-09 石家庄市宏森熔炼铸造有限公司 Casting process of high-precision casting and casting
CN116217109A (en) * 2023-01-30 2023-06-06 江苏砺彩砂品新材料有限公司 Artificial color sand and preparation method thereof
CN116217109B (en) * 2023-01-30 2023-12-05 东阳市汇捷工贸有限公司 Artificial color sand and preparation method thereof

Also Published As

Publication number Publication date
JPH069726B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP3878496B2 (en) Mold sand and manufacturing method thereof
EP0751917B1 (en) Heat curable foundry binder systems
CN100590098C (en) Environment-protection dry type vibrating material and production method thereof
CN110434278A (en) High temperature resistant, it is low get angry, low bulk, easily defeated and dispersed precoated sand and preparation method thereof
CN108188339B (en) Precoated sand for casting with sintering resistance and low expansion performance
JP2019519379A (en) Core-shell particles for use as fillers for feeder compositions
JPH05169184A (en) High siliceous spherical molding sand and its production
JP6462347B2 (en) Mold sand and its manufacturing method
JP3253579B2 (en) Sand for mold
CN109020607A (en) A kind of dedusting ash ceramsite sand and the preparation method and application thereof
JP4688575B2 (en) Mold aggregate
JPH01148436A (en) Resin coated sand
CN108160913B (en) Additive for precoated sand
JPH0471620B2 (en)
CN108941440B (en) Composite special sand for sand casting and preparation method thereof
JP3043812B2 (en) Binders for thermosetting molds and their uses
CN108838332B (en) Sand mold for large and medium-sized castings and preparation method thereof
JP5355805B1 (en) Method for modifying refractory particles for mold, refractory particles for mold obtained thereby, and method for producing mold
JPH0628773B2 (en) Mold material
JP6595688B2 (en) Mold sand and its manufacturing method
JP2965782B2 (en) Manufacturing method of artificial sand using waste silica sand
JPH02205224A (en) Molding sand and production thereof
JPH0669597B2 (en) Low expansion mold material
JPH08192244A (en) Sprue and riser type products for casting
JP2002113548A (en) Resin coated sand for shell mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees