JPH01148340A - Deodorant composition - Google Patents

Deodorant composition

Info

Publication number
JPH01148340A
JPH01148340A JP62307158A JP30715887A JPH01148340A JP H01148340 A JPH01148340 A JP H01148340A JP 62307158 A JP62307158 A JP 62307158A JP 30715887 A JP30715887 A JP 30715887A JP H01148340 A JPH01148340 A JP H01148340A
Authority
JP
Japan
Prior art keywords
aluminosilicate
mol
porous material
deodorizing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307158A
Other languages
Japanese (ja)
Inventor
Akira Ueno
彰 上野
Koichi Yamada
幸一 山田
Kazuo Enomoto
一雄 榎本
Kenichi Sato
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Mizusawa Industrial Chemicals Ltd
Original Assignee
Lion Corp
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Mizusawa Industrial Chemicals Ltd filed Critical Lion Corp
Priority to JP62307158A priority Critical patent/JPH01148340A/en
Publication of JPH01148340A publication Critical patent/JPH01148340A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To increase the deodorizing speed of a deodorant compsn. and to improve the durability by preparing the compsn. with aluminosilicate having a specified compsn. consisting of SiO2, Al2O3 and other metal oxide and a porous material having >=500m<2>/g specific surface area. CONSTITUTION:Aluminosilicate consisting of 5-80mol% SiO2, 5-65mol% MOn/2 (M is Zn, Cu, Ag, Co, Ni, Fe, Ti, Ba, Sn or Zr and n is the valence of the metal M) and 1-60mol% Al2O3 is produced. The aluminosilicate is blended with a porous material having >=500m<2>/g specific surface area to prepare a deodorant compsn. The porous material may be activated carbon, silica gel or synthetic zeolite. The pref. amt. of the alumlnosilicate used is 30-95wt.% and that of the porous material is 5-70wt.%.

Description

【発明の詳細な説明】 伎監光災 本発明は優れた消臭力を有し、し尿、排水、生ゴミ等に
より発生する生活悪臭、バルプ工場、化学工場等に発生
する産業悪臭に対し、広範囲に利用できる消臭基剤に関
する。
[Detailed description of the invention] The present invention has excellent deodorizing power, and is effective against daily life odors generated by human waste, wastewater, garbage, etc., and industrial odors generated at bulk factories, chemical factories, etc. This invention relates to a deodorizing base that can be used in a wide range of applications.

従来1権 日常生活の都市化、多様化につれ、身の回りの匂いに対
する関心が強まり、特に・悪臭に対する批判の目が厳し
くなってきている。悪臭の処理方法としては、一般に以
下のようなものが知られている。
As people's daily lives become more urbanized and diversified, people become more concerned about the smells around them, and in particular, bad odors are being criticized more harshly. The following methods are generally known as methods for treating bad odors.

■感覚的消臭・・・香料によるマスキング■物理的消臭
・・・活性炭等による吸着。シクロデキストリンによる
吸収、包接。
■Sensory deodorization...masking with perfume ■Physical deodorization...adsorption with activated carbon, etc. Absorption and inclusion by cyclodextrin.

■化学的消臭・・・酸、アルカリによる中和。■Chemical deodorization...neutralization with acids and alkalis.

酸化、還元剤による酸化、還元。ラウリルメタアクリレ
ート類などによる付加。
Oxidation, oxidation and reduction with reducing agents. Addition with lauryl methacrylates, etc.

■生物的消臭・・・殺菌剤の殺菌作用による消臭および
微生物あるいは酵素による効果。
■Biological deodorization: Deodorization due to the bactericidal action of disinfectants and the effect of microorganisms or enzymes.

しかし、■の感覚的消臭は、香料により悪臭の質を変化
させるものであって、悪臭自身は存在し香料とのバラン
スを失えば逆に嫌悪感をいだくことさえある。
However, in the sensory deodorization method (2), the quality of the bad odor is changed by the fragrance, and the bad odor itself exists, and if it loses its balance with the fragrance, it may even create a feeling of disgust.

■の物理的消臭は、悪臭を吸着または吸収包接するもの
であるが、各種悪臭ガスに対する吸着容量が十分でない
という問題があった。
The physical deodorizing method (2) adsorbs or absorbs and includes malodors, but there is a problem in that the adsorption capacity for various malodorous gases is insufficient.

■の化学的消臭は、安全性の点で問題となるものもあり
、また、単一の悪臭に対しては効果があるが、現在の複
雑な日常生活の悪臭に対しては万能でありえない。
■Chemical deodorization has some safety issues, and although it is effective against a single type of bad odor, it cannot be a panacea against the complex odors of today's daily life. .

■の生物的消臭は、効果速度や持続性に欠点があり、単
独の消臭方法だけでは万全でない。
Biological deodorization (2) has shortcomings in terms of speed and sustainability, and a single deodorization method alone is not sufficient.

活性炭は、消臭剤として最も一般的に使用されているも
のであり、種々の悪臭成分を吸着することが知られてい
る。しかし、悪臭成分のうち硫化水素、アンモニアに対
しての消臭力は劣っている。
Activated carbon is the most commonly used deodorant and is known to adsorb various malodorous components. However, it has poor deodorizing power against hydrogen sulfide and ammonia among malodorous components.

この点を改良するために、活性炭にハロゲン化物を担持
させること(特開昭55−51421号公報)。
In order to improve this point, activated carbon is made to support a halide (Japanese Unexamined Patent Publication No. 55-51421).

金属を担持させること(特開昭53−137089号公
報)、酸・アルカリを添着させることが研究されている
が、未だ十分なものではなかった。また、これらの活性
炭は、水分などの付着により酸・アルカリの性質を示し
、腐食の原因となったり、危険物としての取扱いが必要
となるので、日常の生活での使用には適さない。
Research has been carried out on supporting metals (Japanese Patent Laid-Open No. 137089/1989) and impregnating acids and alkalis, but these have not yet been satisfactory. In addition, these activated carbons exhibit acidic/alkali properties due to adhesion of moisture, etc., causing corrosion and requiring handling as hazardous materials, so they are not suitable for use in daily life.

また、二価の鉄塩あるいは二価の鉄塩を消臭剤として用
いることが知られている(特開昭58−156539号
、同59−146578号)。特に二価の鉄塩がアンモ
ニアなどの塩基性悪臭に対して消臭効果を有することが
報告されているが、硫化水素、メルカプタン等に対する
消臭力は十分でない。
It is also known to use divalent iron salts or divalent iron salts as deodorants (Japanese Patent Laid-open Nos. 58-156539 and 59-146578). In particular, it has been reported that divalent iron salts have a deodorizing effect on basic malodors such as ammonia, but their deodorizing power against hydrogen sulfide, mercaptans, etc. is not sufficient.

さらに、上記各公報等では一般的に各種悪臭に対する消
臭性能が述べられているが、消臭剤の用途を考えるに、
消臭速度、消臭量も大きな要素となっている。
Furthermore, the above-mentioned publications generally describe deodorizing performance against various types of bad odors, but when considering the uses of deodorants,
Deodorization speed and amount of deodorization are also important factors.

本発明者らは先に、酸化物として表わした3成分比とし
て、特定量でS i O,、MOユおよびAM、O□を
含む組成のアルミノケイ酸塩を、消臭剤として用いるこ
とを提案した(特願昭62−54860号)。この消臭
剤は、各種悪臭に対して優れた消臭効果を示す。
The present inventors previously proposed the use of an aluminosilicate having a composition containing SiO, MOY and AM, O□ in specific amounts as a deodorant, as a three-component ratio expressed as an oxide. (Patent Application No. 62-54860). This deodorizer exhibits excellent deodorizing effects against various types of bad odors.

見匪立■孜 本発明は、各種悪臭に対して優れた消臭効果を示し、し
かも消臭速度が大きく、持続性に優れた消臭剤組成物を
提供するものである。
INDUSTRIAL APPLICABILITY The present invention provides a deodorant composition that exhibits an excellent deodorizing effect against various types of bad odors, has a high deodorizing speed, and has excellent durability.

1班夙I威 本発明の消臭剤組成物は、以下の(a)および(b)成
分を含有することを特徴とする。
The deodorant composition of the present invention is characterized by containing the following components (a) and (b).

(a)酸化物として表わした3成分組成比で下記に相当
する組成のアルミノケイ酸塩。
(a) An aluminosilicate having a three-component composition ratio expressed as an oxide corresponding to the following.

SiO,:5〜80モル% MO:5〜65モル% 砧 A Q 、 O,: 1〜60モ/L1%(Mは亜鉛、
銅、銀、コバルト、ニッケル。
SiO,: 5 to 80 mol% MO: 5 to 65 mol% Kinuta Q, O,: 1 to 60 mo/L1% (M is zinc,
Copper, silver, cobalt, nickel.

鉄、チタン、バリウム、スズ、ジルコニウムから選ばれ
る少なくとも一種の金属を、nは金属の原子価を表わす
) (b)比表面積500r&/g以上を有する多孔質物質
(b) A porous material containing at least one metal selected from iron, titanium, barium, tin, and zirconium, where n represents the valence of the metal. (b) A porous material having a specific surface area of 500 r&/g or more.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

(a)成分のアルミノ金属ケイ酸塩は、酸化物として表
わした3成分組成比で上記範囲の値を有し、好ましくは
下記の通りである。
The alumino metal silicate of component (a) has a three-component composition ratio expressed as an oxide within the above range, and is preferably as follows.

S i O,: 25〜75モ/L/%MO,:15〜
60モ)L1% A nil、O,: 1〜45−T−/L/%(a)成
分のアルミ二ノケイ酸塩は、白色ないしは淡色の粉体と
して得られ、上記組成比に相当する量の水溶性ケイ酸塩
、水溶性金属塩さらに水溶性アルミニウム塩および/ま
たは水溶性アルミン酸塩等を水の存在下に反応させ、必
要により得られる沈澱を水の存在下に加熱することによ
り製造される。
S i O,: 25-75 MO/L/% MO,: 15-
60Mo) L1% A nil, O,: 1 to 45-T-/L/% The aluminosilicate of component (a) is obtained as a white or light-colored powder, and the amount corresponding to the above composition ratio Manufactured by reacting a water-soluble silicate, a water-soluble metal salt, a water-soluble aluminum salt and/or a water-soluble aluminate, etc. in the presence of water, and heating the resulting precipitate in the presence of water if necessary. be done.

この反応は、いわゆる複分解法により容易に進行する。This reaction easily proceeds by the so-called double decomposition method.

即ち、シリカ成分としてケイ酸ソーダの如きケイ酸アル
カリを用い、金属酸化物成分として塩化物、硝酸塩、硫
酸塩等の水溶性金馬場を用い、さらにアルミナ分として
アルミン酸ソーダおよび/または塩化アルミニウム、硫
酸アルミニウム等の水溶性アルミニウム塩を用い、これ
らを水分の存在下に混合し、複分解により反応を行なわ
せる。
That is, an alkali silicate such as sodium silicate is used as the silica component, a water-soluble metal such as chloride, nitrate, or sulfate is used as the metal oxide component, and sodium aluminate and/or aluminum chloride is used as the alumina component. A water-soluble aluminum salt such as aluminum sulfate is used, and these are mixed in the presence of water to cause a reaction to occur by metathesis.

この複分解反応を均質に行なわせるためには、あらかじ
めシリカを分散させた水中に、ケイ酸塩水溶液、金属塩
水溶液およびアルミナ成分を含む水溶液を同時に注加し
つつ反応を行なわせることが好ましい。
In order to carry out this metathesis reaction homogeneously, it is preferable to carry out the reaction while simultaneously pouring an aqueous silicate solution, an aqueous metal salt solution, and an aqueous solution containing an alumina component into water in which silica has been previously dispersed.

複分解による反応は室温で十分であるが、加熱下に行な
うこともでき1例えば95℃程度までの加熱下における
反応は勿論可能である。
The reaction by metathesis is sufficient at room temperature, but it can also be carried out under heating (for example, reaction under heating up to about 95°C is of course possible).

同時注加時における反応系のPHは5〜10、特に6〜
9の範囲に維持するのがよい。このために必要があれば
、酸あるいはアルカリを反応系に加えて、液のpHを上
記範囲内に維持する。
The pH of the reaction system during simultaneous injection is 5-10, especially 6-10.
It is best to keep it within the range of 9. For this purpose, if necessary, an acid or alkali is added to the reaction system to maintain the pH of the solution within the above range.

同時注加によって、水溶液組成にほぼ対応する組成のア
ルミノケイ酸塩の沈澱が生成する。
The simultaneous addition produces an aluminosilicate precipitate whose composition approximately corresponds to the aqueous solution composition.

この沈澱を分離し、あるいは必要に応じて水分の存在下
に加熱することにより、白色ないし淡色の粉粒状物とし
て得られる。
By separating this precipitate or, if necessary, heating it in the presence of moisture, it is obtained as a white to light-colored powdery substance.

(b)成分としては、BET比表面積500イ/g以上
、好ましくは700以上を有する多孔質物質が用いられ
る。このような多孔質物質としては活性炭、シリカゲル
、合成ゼオライトが代表的である。活性炭は、石炭、石
油残渣、木炭、果実殻などを水蒸気、炭酸ガスなどをガ
ス賦活法により、あるいは塩化亜鉛などの薬品賦活法に
より処理することにより得られ、BET比表面積が50
0〜2000ゴ/g、好ましくは700〜2000ホ/
gのものが好適に用いられ、(、)成分のアルミノケイ
酸塩は、消臭剤組成物中に30〜95重量%、好ましく
は50〜90重量%の量で用いることが好適である。
As the component (b), a porous material having a BET specific surface area of 500 i/g or more, preferably 700 or more is used. Activated carbon, silica gel, and synthetic zeolite are typical examples of such porous materials. Activated carbon is obtained by treating coal, petroleum residue, charcoal, fruit shells, etc. with water vapor, carbon dioxide, etc. by a gas activation method, or by a chemical activation method such as zinc chloride, and has a BET specific surface area of 50.
0-2000 go/g, preferably 700-2000 go/g
The aluminosilicate of component (,) is preferably used in the deodorant composition in an amount of 30 to 95% by weight, preferably 50 to 90% by weight.

(b)成分の多孔質物質は、消臭剤組成物中に5〜70
重量%、好ましくは10〜50重量%の量で用いること
が好適である。
The porous material of component (b) has a content of 5 to 70% in the deodorant composition.
It is suitable to use it in an amount of 10 to 50% by weight, preferably 10 to 50% by weight.

(b)成分の活性炭量が5重量%に満たないと消臭速度
が必ずしも十分に大きくならず、一方、70重量%を超
えると消臭量の増大が認められなくなる。
If the amount of activated carbon in component (b) is less than 5% by weight, the deodorizing rate will not necessarily be sufficiently high, while if it exceeds 70% by weight, no increase in the amount of deodorizing will be observed.

日常生活で発生する悪臭ガスは、一般に多数の成分から
成っている1代表的な悪臭成分として、その発生量が多
いアンモニア、アミン等の窒素系ガス、硫化水素、メル
カプタン類等の硫黄系ガスが知られている。しかし、こ
れら窒素系の悪臭成分と硫黄系の悪臭成分とでは挙動が
異なるため、両悪臭成分に有効な消臭基材はなかった。
Foul-smelling gases generated in daily life generally consist of many components.1 Typical malodorous components include nitrogen-based gases such as ammonia and amines, and sulfur-based gases such as hydrogen sulfide and mercaptans, which are generated in large amounts. Are known. However, since these nitrogen-based malodorous components and sulfur-based malodorous components behave differently, there has been no deodorizing base material that is effective against both malodorous components.

本発明では、(a)成分として特定のアルミノケイ酸塩
を用いることで、両悪臭成分に対しての消臭を可能とし
た。消臭剤として求められる性能は、このように各種悪
臭に対して効果がある事の他、消臭速度が大きい事およ
び消臭量が大きい事、即ち持続性に優れている事がある
In the present invention, by using a specific aluminosilicate as component (a), it is possible to deodorize both malodorous components. In addition to being effective against various types of bad odors, the performance required for a deodorant is that it has a high deodorizing speed and a large amount of deodorizing, that is, it has excellent sustainability.

本発明では、(a)成分のアルミノケイ酸塩を用いる事
で各種悪臭に対する消臭力を発現せしめ。
In the present invention, by using the aluminosilicate as the component (a), the product exhibits deodorizing power against various bad odors.

さらに(b)成分として特定の多孔物質を組合せる事に
より、消臭速度および消臭量を改善した。
Furthermore, by combining a specific porous material as component (b), the deodorizing speed and amount were improved.

アルミノケイ酸塩は、固体酸と固体酸基の特性をもつと
言われ、シリカ−アルミナ系触媒などではアルミナの含
有量により酸性質が変わり、また、アルミナとシリカと
の含量の比率でも酸性度が異なると言すれている〔岡部
浩三著:酸塩基触媒、183頁(1967年)〕、さら
に、(a)成分のアルミノケイ酸塩は、酸性のS i 
O,と塩基性の金属酸化物が結合した構造をもっている
ことから、塩基性と酸性の極性を有し1、両方の悪臭成
分に対して主として化学吸着、化学反応に基づき、消臭
効果を示すと思われる。
Aluminosilicate is said to have the characteristics of a solid acid and a solid acid group, and in silica-alumina catalysts, the acidity changes depending on the alumina content, and the acidity changes depending on the content ratio of alumina and silica. It is said that the aluminosilicate of component (a) is different from the acidic Si
Because it has a structure in which O, and a basic metal oxide are combined, it has basic and acidic polarity.1 It exhibits deodorizing effects mainly based on chemisorption and chemical reactions against both types of malodorous components. I think that the.

一方、活性炭に代表される比表面積 500rrr/g以上の多孔質物質は、物理吸着に優れ
ている。
On the other hand, porous materials with a specific surface area of 500 rrr/g or more, such as activated carbon, are excellent in physical adsorption.

本発明の消臭剤組成物における消臭メカニズムは定かで
はないが、平衡吸着に至るまで物理吸着が非常に早い速
度で進行し、続いて化学吸着、化学反応が起こると考え
られる。即ち、(b)成分の多孔質物質と(a)成分の
アルミノケイ酸塩とを組合せることにより、比表面積の
大きな多孔質物質の物理吸着の速さと、物理吸着した悪
臭をアルミノケイ酸が化学吸着・化学反応する効果とが
相乗的に作用し、いっそう効果的に消臭するものと考え
られる。
Although the deodorizing mechanism of the deodorant composition of the present invention is not clear, it is thought that physical adsorption proceeds at a very rapid rate until reaching equilibrium adsorption, followed by chemical adsorption and chemical reaction. That is, by combining the porous material of component (b) and the aluminosilicate of component (a), the speed of physical adsorption of the porous material with a large specific surface area and the chemical adsorption of the physically adsorbed bad odor by aluminosilicate・It is thought that the chemical reaction effect works synergistically to deodorize even more effectively.

また、化学吸着、化学反応によって捕らえられた臭気は
、もはや臭気となって再び放出されることがなくなり、
物理吸着の欠点である臭気の脱離が抑えられ、消臭効果
の持続性が向上したと考えられる。
In addition, odors captured through chemisorption and chemical reactions are no longer released as odors.
It is thought that the desorption of odors, which is a disadvantage of physical adsorption, was suppressed and the sustainability of the deodorizing effect was improved.

見豆立処果 本発明の消臭剤組成物によれば、(a)成分の特定のア
ルミノケイ酸塩と、(b)成分の比表面積が50On−
r/g以上の多孔質物質とを併用することにより、各々
単独で用いた場合よりも優れた消臭力を示し、各種悪臭
成分に対して優れた消臭力を示し、しかも、大きな消臭
速度で消臭効果を速やかに発現するとともに、消臭効果
を長期に亘って持続することができる。
According to the deodorant composition of the present invention, the specific aluminosilicate as the component (a) and the specific surface area of the component (b) are 50 On-
By using a porous material of r/g or more in combination, it shows superior deodorizing power than when each is used alone, and shows excellent deodorizing power against various malodorous components, and has a large deodorizing effect. It is possible to express the deodorizing effect quickly and maintain the deodorizing effect for a long period of time.

人体、屋内、生活環境、産業施設などで発生する悪臭に
は、各種悪臭成分が混在するが、本発明の消臭剤はこれ
らを速やかに、かつ長期に亘って消臭するので、広範囲
に利用することができる。
Bad odors emitted from the human body, indoors, living environments, industrial facilities, etc. contain various malodorous components, but the deodorizer of the present invention quickly and over a long period of time deodorizes these components, so it can be used widely. can do.

以下、(a)成分のアルミノケイ酸塩の合成例。The following is an example of the synthesis of aluminosilicate as component (a).

これを用いた消臭剤組成物の実施例およびこの評価結果
順次説明する。
Examples of deodorant compositions using this and the evaluation results will be explained in order.

合成例1 3号ケイ酸ソーダ(S i O,: 22.0%。Synthesis example 1 No. 3 sodium silicate (S i O,: 22.0%.

Na2Oニア、0%)109gと水酸化ナトリウム94
g(NaOH分: 2.35モル)を水に溶かして全量
をIQとシ、コれをA液(S i 02分: 0.4−
1−jLz) トする。
109g of Na2O (0%) and 94g of sodium hydroxide
Dissolve g (NaOH content: 2.35 mol) in water, add the entire amount to IQ, and add this to liquid A (Si02 min: 0.4-
1-jLz).

一方、塩化亜鉛(無水塩)95gと塩化アルミニウム(
6水塩)97gを水に溶かして全量を1aとし、これを
B液(ZnO分=0.7モル、Afi、O。
On the other hand, 95 g of zinc chloride (anhydrous salt) and aluminum chloride (
Dissolve 97 g of hexahydrate salt in water to make the total amount 1a, and add this to Solution B (ZnO content = 0.7 mol, Afi, O.

分:0.2モル)とする。minute: 0.2 mol).

5Qのビーカーに水IQを入れ、撹拌下、A液とB液を
それぞれ約25cc/分の速度で同時に注加した。注加
終了後この反応液のpHは6.9であった。
Water IQ was placed in a 5Q beaker, and while stirring, liquids A and B were simultaneously added at a rate of about 25 cc/min. After the addition was completed, the pH of the reaction solution was 6.9.

さらに撹拌を続け、30分間熟成した後、水浴上85〜
90℃で2時間加熱した。反応液を吸引濾過し、水洗し
、110℃で乾燥した。得られたケーキを篩により仕分
け、8〜16メツシユの粒状物として、アルミノケイ酸
亜鉛の白色粒状物を得た。
After further stirring and aging for 30 minutes, 85~
Heated at 90°C for 2 hours. The reaction solution was suction filtered, washed with water, and dried at 110°C. The resulting cake was sorted through a sieve to obtain white granules of zinc aluminosilicate as granules of 8 to 16 meshes.

得られた粒状物の3成分組成比およびBET比表面積は
以降の合成例と共にまとめて合成例12の後に示した。
The three-component composition ratio and BET specific surface area of the obtained granules are shown after Synthesis Example 12 together with the subsequent Synthesis Examples.

合成例2 合成例1と同様に3号ケイ酸ソーダ(S i O□:2
2%、Na、Oニア、0%)139gと水酸化ナトリウ
ム88g(NaOH分:2.2モル)を水に溶かして全
量をIQとし、これをA液(Sin2分:0.51モル
)とする。
Synthesis Example 2 As in Synthesis Example 1, No. 3 sodium silicate (S i O□: 2
Dissolve 139 g of sodium hydroxide (2%, Na, Onia, 0%) and 88 g of sodium hydroxide (NaOH content: 2.2 mol) in water, make the total amount IQ, and add this to liquid A (Sin 2 min: 0.51 mol). do.

一方、塩化亜鉛(無水塩)65gと塩化アルミニウム(
6水塩)126gをIQとし、これをB液(Zn0分:
 0.48モル、AQ、O,分: 0.26モル)とす
る。
On the other hand, 65 g of zinc chloride (anhydrous salt) and aluminum chloride (
126g of hexahydrate salt was taken as IQ, and this was used as solution B (Zn0 min:
0.48 mol, AQ, O, min: 0.26 mol).

5Qのビーカーに水IQを入れ、撹拌下、A液とB液を
それぞれ約25cc/分の速度で同時に注加した。注加
終了後この反応液のPHは8.6であった。
Water IQ was placed in a 5Q beaker, and while stirring, liquids A and B were simultaneously added at a rate of about 25 cc/min. After the addition was completed, the pH of the reaction solution was 8.6.

以下、実施例1と同様に処理を行ない、8〜16メツシ
ユの粒状物としてアルミノケイ酸亜鉛を得た。
Thereafter, the same treatment as in Example 1 was carried out to obtain zinc aluminosilicate as granules of 8 to 16 meshes.

合成例3 3号ケイ酸ソーダ(S i O,: 22,0% 。Synthesis example 3 No. 3 sodium silicate (SiO,: 22.0%).

Na、Oニア、0%)273gと水酸化ナトリウム60
g(NaOH分=1.5モル)を水に溶かして全量をI
Qとし、これをA液(Sin2分:1.0モル)とする
273g of Na, Onia, 0%) and 60g of sodium hydroxide
Dissolve g (NaOH content = 1.5 mol) in water and add the entire amount to I
This will be referred to as Q and this will be referred to as Solution A (Sin 2 min: 1.0 mol).

一方、硝酸銀34gおよび硝酸アルミニウム(9水塩)
225 gを水に溶かして全量をIQとし、これをB液
(AgzO分:0.1モル、AQ、O,分:0.3モル
)とする。
On the other hand, 34 g of silver nitrate and aluminum nitrate (9 hydrate)
Dissolve 225 g in water to make the total amount IQ, and use this as Solution B (AgzO content: 0.1 mol, AQ, O, content: 0.3 mol).

5Qのビーカーに水IQを入れ、撹拌下、A液とB液を
それぞれ約25oc/分の速度で同時に注加した。注加
終了後この反応液のPHは8.9であった。
Water IQ was placed in a 5Q beaker, and while stirring, solutions A and B were simultaneously added at a rate of about 25 oc/min. After the addition was completed, the pH of the reaction solution was 8.9.

さらに撹拌を続け、1時間熟成した。得られたケーキを
篩に仕分け8〜16メツシユの粒状物としてアルミノケ
イ酸銀を得た。実施例9〜11合成例4〜11 合成例3(銀塩)と同様に、それぞれ下記第1表のA液
およびB液を用い、コバルト、ニッケル、鉄、銅、チタ
ン、バリウム、スズ、ジルコニウムを含むアルミノケイ
酸塩を作成した。
Stirring was continued and the mixture was aged for 1 hour. The resulting cake was sorted through a sieve to obtain silver aluminosilicate as granules of 8 to 16 meshes. Examples 9 to 11 Synthesis Examples 4 to 11 Cobalt, nickel, iron, copper, titanium, barium, tin, and zirconium were prepared in the same manner as in Synthesis Example 3 (silver salt) using Liquids A and B in Table 1 below, respectively. created an aluminosilicate containing

(以下余白) 合成例12 3号ケイ酸ソーダ(SiO,:22%、Na、Oニア、
0%)109 gと水酸化ナトリウム94g(NaOH
分: 2.35モル)を水に溶かして全量をIQとし、
これをA液(SiO□分=0.4モル)とする。
(Left below) Synthesis Example 12 No. 3 Sodium Silicate (SiO,: 22%, Na, Onia,
0%) and 94 g of sodium hydroxide (NaOH
2.35 mol) in water and take the total amount as IQ,
This is called liquid A (SiO□ min=0.4 mol).

一方、塩化銅(無水塩)47gおよび塩化亜鉛(無水塩
)48gと塩化アルミニウム(6水塩)97gを水に溶
かして全量を1nとし、これをB液(Cu 0分: 0
.35モル、Zn0分: 0.35モル。
On the other hand, 47 g of copper chloride (anhydrous salt), 48 g of zinc chloride (anhydrous salt), and 97 g of aluminum chloride (hexahydrate) were dissolved in water to make a total volume of 1 n, and this was dissolved in solution B (Cu 0 min: 0
.. 35 mol, Zn0 min: 0.35 mol.

AQ、O,分:0.2モル)とする。AQ, O, min: 0.2 mol).

5Qのビーカーに水12を入れ撹拌下、A液とB液をそ
れぞれ約25cc/分の速度で同時に注油した。注油終
了後この反応液のpHは6.8であった・ さらに撹拌を続け、1時間熟成した1反応液を吸引−過
し、水洗し、110℃で乾燥した。得られたケーキを篩
に仕分け、8〜16メツシユの青白色の粒状物としてア
ルミノケイ酸塩(亜鉛。
Water 12 was placed in a 5Q beaker, and while stirring, liquid A and liquid B were each simultaneously injected at a rate of about 25 cc/min. After the oil filling was completed, the pH of this reaction solution was 6.8. Stirring was continued, and the reaction solution 1, which had been aged for 1 hour, was suction-filtered, washed with water, and dried at 110°C. The resulting cake is sorted through a sieve and aluminosilicate (zinc) is removed as a blue-white granulate of 8 to 16 meshes.

銅)を得た。Copper) was obtained.

合成例1〜12によって得られた粉粒状物の3成分組成
比、比表面積の測定結果を第2表に記載する。
Table 2 shows the measurement results of the three-component composition ratio and specific surface area of the powdery products obtained in Synthesis Examples 1 to 12.

実施例1 合成例1の方法で得られたアルミノケイ酸亜鉛800g
と、三菱化成■製の活性炭(ダイヤソーブG・6〜1O
)(比表面積900イ/ g )200 gとを混合し
て、消臭剤組成物を調製した。
Example 1 800 g of zinc aluminosilicate obtained by the method of Synthesis Example 1
and activated carbon manufactured by Mitsubishi Kasei (Diasorb G・6~1O
) (specific surface area: 900 i/g) to prepare a deodorant composition.

この組成物の評価結果は、実施例2〜11と共に後記し
た。
The evaluation results of this composition will be described later together with Examples 2 to 11.

実施例2〜10 合成例3〜12で得られたアルミノケイ酸塩をそれぞれ
用いる以外は実施例1と同様にして。
Examples 2 to 10 Same as Example 1 except that the aluminosilicates obtained in Synthesis Examples 3 to 12 were used, respectively.

消臭剤組成物を調製した。A deodorant composition was prepared.

消臭効果の評価1 6Qのデシケータに肉、野菜、魚等をいれて2週間放置
し、人工の生ゴミ臭を作成した。
Evaluation of deodorizing effect 1 Meat, vegetables, fish, etc. were placed in a 6Q desiccator and left for two weeks to create an artificial garbage odor.

上記の消臭剤組成物5gを不織布で包み、1.8Qの広
口瓶に入れてサンプルとした。
5 g of the above deodorant composition was wrapped in a nonwoven fabric and placed in a 1.8Q wide mouth bottle to prepare a sample.

さらに、6Qのデシケータより人工生ゴミ臭のヘッドス
ペースガス10m Qを広口瓶に入れ。
Furthermore, from a 6Q desiccator, put 10 mQ of headspace gas with an artificial raw garbage odor into a wide-mouthed bottle.

経時における臭気強度を、以下の基準により官能で評価
した。
The odor intensity over time was sensory evaluated using the following criteria.

評価は5名の専門パネルで行い、上下2名をカットし3
名の平均を四捨五入した。
The evaluation was done by a panel of 5 people, and the top and bottom two people were cut out.
The average of the names was rounded off.

結果を第3表に示す。The results are shown in Table 3.

(以下余白) 実施例12 合成例2の方法で得られたアルミノケイ酸塩750gと
粉末活性炭(三菱化成■製ダイヤソーブF−100:比
表面積1050 m2 / g )250 gとを混合
し、水500gを加え乳鉢を用いて混練した後110℃
で乾燥してケーキを得た。このケーキを篩にて篩分けし
、4〜8メツシユの灰色粒状物として消臭剤組成物を得
た。
(Left below) Example 12 750 g of the aluminosilicate obtained by the method of Synthesis Example 2 and 250 g of powdered activated carbon (Diasorb F-100 manufactured by Mitsubishi Kasei ■, specific surface area 1050 m2/g) were mixed, and 500 g of water was added. 110℃ after addition and kneading using a mortar
and dried to obtain a cake. This cake was sieved through a sieve to obtain a deodorant composition as gray granules of 4 to 8 meshes.

この組成物の評価結果は、実施例13と共に後記した。The evaluation results of this composition will be described later together with Example 13.

実施例13 合成例2の方法で得られたアルミノケイ酸亜鉛250g
と、実施例1と同じ活性炭750gとを混合する以外は
実施例12と同様にして、消臭剤組成物を調製した。
Example 13 250 g of zinc aluminosilicate obtained by the method of Synthesis Example 2
A deodorant composition was prepared in the same manner as in Example 12, except that 750 g of the same activated carbon as in Example 1 were mixed.

消臭効果の確認2 実施例12および13により得られた組成物を用いて、
豚100匹飼育の豚舎の排ガス処理を行った。排ガス処
理は、豚舎の天井部に空気吸入口を設け、豚舎の下部側
壁から排気ファンにより強制排気した。排気ファンの前
段および後段でそれぞれ消臭剤組成物層を通過させて豚
舎の空気を強制排気した。後段の消臭剤組成物層を通過
してくる排ガスを3Qの臭い袋に採取し、官能評価によ
り臭気強度を求めた。
Confirmation of deodorizing effect 2 Using the compositions obtained in Examples 12 and 13,
Exhaust gas treatment was carried out in a pigpen housing 100 pigs. For exhaust gas treatment, an air inlet was installed in the ceiling of the pigsty, and the air was forcibly exhausted from the lower side wall of the pigsty using an exhaust fan. The air in the pigpen was forcibly exhausted by passing through the deodorant composition layer at the front and rear stages of the exhaust fan. The exhaust gas passing through the latter deodorant composition layer was collected in a 3Q odor bag, and the odor intensity was determined by sensory evaluation.

官能評価の評価基準および算出法は、消臭効果の確認1
に準拠した。以上の結果を第4表に示した。
The evaluation criteria and calculation method for sensory evaluation are as follows: Confirmation of deodorizing effect 1
Compliant with. The above results are shown in Table 4.

(以下余白) 実施例14 合成例1で得られたアルミノケイ酸亜鉛塩を小型衝撃粉
砕機(サンプルミル)を用いて粉砕し。
(Left below) Example 14 The zinc aluminosilicate salt obtained in Synthesis Example 1 was pulverized using a small impact pulverizer (sample mill).

白色微粉末とした。It was made into a white fine powder.

この白色微粉末800 gと粉末活生炭(三菱化成■製
ダイヤソーブF−100)200 gとを混合し、水3
00gを加え、乳鉢を用いて混練した後、 110℃で
乾燥してケーキを得た。このケーキを篩にて篩分けし、
8〜16メツシユの灰色粒状物として消臭剤組成物を得
た。
Mix 800 g of this white fine powder with 200 g of powdered activated carbon (Diasorb F-100 manufactured by Mitsubishi Kasei ■), and add 3 ml of water.
00g was added and kneaded using a mortar, followed by drying at 110°C to obtain a cake. Sieve this cake through a sieve,
The deodorant composition was obtained as gray granules of 8 to 16 meshes.

得られた組成物を小鳥カゴの床底に敷き、カナリヤ2羽
を飼育したところ、鳥の糞尿臭は7日経時後でも発生し
なかった。
When the obtained composition was spread on the floor bottom of a bird cage and two canaries were raised, no bird excrement odor was generated even after 7 days.

Claims (1)

【特許請求の範囲】 1、(a)酸化物として表わした3成分組成比でSiO
_2:5〜80モル% MO_n:5〜65モル% Al_2O_3:1〜60モル% (Mは亜鉛、銅、銀、コバルト、ニッケル、鉄、チタン
、バリウム、スズおよびジル コニウムから選ばれる少なくとも一種の 金属を、nは金属の原子価を表わす) に相当する組成を有するアルミノケイ酸 塩と、 (b)比表面積500m^2/g以上を有する多孔質物
質 とを含有することを特徴とする消臭剤組 成物。 2、前記多孔質物質が活性炭である特許請求の範囲第1
項に記載の消臭剤組成物。
[Claims] 1. (a) SiO in a three-component composition ratio expressed as an oxide
_2: 5 to 80 mol% MO_n: 5 to 65 mol% Al_2O_3: 1 to 60 mol% (M is at least one metal selected from zinc, copper, silver, cobalt, nickel, iron, titanium, barium, tin, and zirconium) , n represents the valence of the metal); and (b) a porous substance having a specific surface area of 500 m^2/g or more. Composition. 2. Claim 1, wherein the porous material is activated carbon.
The deodorant composition described in section.
JP62307158A 1987-12-04 1987-12-04 Deodorant composition Pending JPH01148340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307158A JPH01148340A (en) 1987-12-04 1987-12-04 Deodorant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307158A JPH01148340A (en) 1987-12-04 1987-12-04 Deodorant composition

Publications (1)

Publication Number Publication Date
JPH01148340A true JPH01148340A (en) 1989-06-09

Family

ID=17965724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307158A Pending JPH01148340A (en) 1987-12-04 1987-12-04 Deodorant composition

Country Status (1)

Country Link
JP (1) JPH01148340A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171554A (en) * 1987-12-28 1989-07-06 Mizusawa Ind Chem Ltd Deodorant
JP2006051417A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006051416A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006161223A (en) * 2004-12-09 2006-06-22 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006159119A (en) * 2004-12-09 2006-06-22 Tokushu Paper Mfg Co Ltd Contaminated gas eliminating paper
JP2006223645A (en) * 2005-02-18 2006-08-31 Kaisui Kagaku Kenkyusho:Kk Deodorant
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
CN110237291A (en) * 2019-05-31 2019-09-17 广州市龙能城市运营管理股份有限公司 A kind of active carbon base agent of deodorising and sterilizing and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171554A (en) * 1987-12-28 1989-07-06 Mizusawa Ind Chem Ltd Deodorant
JP2006051417A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006051416A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006161223A (en) * 2004-12-09 2006-06-22 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper
JP2006159119A (en) * 2004-12-09 2006-06-22 Tokushu Paper Mfg Co Ltd Contaminated gas eliminating paper
JP2006223645A (en) * 2005-02-18 2006-08-31 Kaisui Kagaku Kenkyusho:Kk Deodorant
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
CN110237291A (en) * 2019-05-31 2019-09-17 广州市龙能城市运营管理股份有限公司 A kind of active carbon base agent of deodorising and sterilizing and preparation method thereof

Similar Documents

Publication Publication Date Title
US7662354B2 (en) Deodorant
JPS59132937A (en) Deodorant
EP0282287B1 (en) Deodorizer
EP0376448B1 (en) Deodorizer composition
EP0503067B1 (en) Adsorbent composition and method of producing same
JPH01148340A (en) Deodorant composition
JP2006511268A (en) Deodorant carbon nanoball
JPS63220874A (en) Deodorant composition
JP2824594B2 (en) Deodorant composition and deodorant sheet
JP4164759B2 (en) Method for producing deodorant
JPH02157039A (en) Deodorant
JP4354267B2 (en) Pet toilet sand
JPH08103487A (en) Deodorant
KR100969639B1 (en) Adsorbent for the removal of odor in an apparatus for heating and drying food waste and method for removing malodors by using the same
JP2585157B2 (en) Adsorbent composition and method for producing the same
JP3618186B2 (en) Manufacturing method of improved deodorant
JPH0584283A (en) Deodorant
EP0638320A1 (en) Air cleaning agent and production thereof
JP2782740B2 (en) Method for producing deodorant
JP3724675B2 (en) Deodorant composition for tobacco
JPS63258644A (en) Deodorizer
JP7471679B1 (en) Powder deodorant
JPH02233138A (en) Deodorizing sheet
JPS63302856A (en) Deodorant
JPH01171555A (en) Deodorant component