JPH01148327A - Dehumidifier - Google Patents

Dehumidifier

Info

Publication number
JPH01148327A
JPH01148327A JP62304972A JP30497287A JPH01148327A JP H01148327 A JPH01148327 A JP H01148327A JP 62304972 A JP62304972 A JP 62304972A JP 30497287 A JP30497287 A JP 30497287A JP H01148327 A JPH01148327 A JP H01148327A
Authority
JP
Japan
Prior art keywords
hydrogen
cathode
electrode
air
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304972A
Other languages
Japanese (ja)
Other versions
JPH0649129B2 (en
Inventor
Junichi Kawamura
河村 淳一
Hisashi Kudo
工藤 寿士
Masakado Yamaji
山地 正矩
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62304972A priority Critical patent/JPH0649129B2/en
Publication of JPH01148327A publication Critical patent/JPH01148327A/en
Publication of JPH0649129B2 publication Critical patent/JPH0649129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To obtain the dehumidifier which condenses and removes the water vapor in the air at the normal temp. by combining a 1st electrochemical cell constituted by integrating an oxygen generating electrode, a hydrogen generating electrode and cation exchanging membranes with a hydrogen-air fuel cell. CONSTITUTION:An anode 2 and a cathode 2' effective to generate oxygen and hydrogen, and a positive electrode 3 and a negative electrode 3' effective for absorption are respectively disposed on both surface of the cation exchange membranes 1, 1' to be integrally connected. An anode current collector 5 is disposed between the cathode 2' and the negative electrode 3' to connect each other in a hermetical common space. The positive electrode 3 and the negative electrode 3' are short-circuited. A direct current voltage is impressed between the anode 2 and the cathode 2', and the air to be dehumidified is brought into contact with the anode. Then, the water vapor in the air is absorbed by the cation exchange membrane 1 and oxygen is generated at the anode 2 and the hydrogen is generated at the cathode 2'. The hydrogen is changed at the negative electrode 3': 2H2 4H<+>+4e<->; and at the positive electrode 3: O2+4H<+>+4e<-> 2H2O. The generated water drops are collected through a drain opening 12, and the dehumidified air is discharged from a dehumidified air discharge opening 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気化学的な手法を用いた除湿器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dehumidifier using an electrochemical method.

従来の技術 従来の除湿方法を大別すると、露点以下に温度を下げて
空気などの気体中の水蒸気を凝縮させてから加熱して元
の温度に戻す凝縮法と、シリカゲルや塩化カルシウムな
どの乾燥剤に水蒸気を吸着させる吸着法とに分類できる
Conventional technology Conventional dehumidification methods can be roughly divided into two: condensation methods, which lower the temperature below the dew point to condense water vapor in air or other gases, and then heat them to return to the original temperature; It can be classified into two types: adsorption methods, in which water vapor is adsorbed onto a chemical agent.

発明が解決しようとする問題点 凝縮法では冷却と加熱の両操作を行なうための熱交換器
が必要であり、小型化は困難で、室内用等、大形の除湿
器になってしまう。さらに、熱媒体を気化・凝縮する目
的で使用されるコンプレッサー等から発生する騒音も大
きい。また、配電盤・制御盤・その他の電気機器内部に
おける比較的小容量の除湿用としてはベルチェ効果を応
用した冷却加熱素子を用いる方法も知られているが、吸
放熱フィン(ヒートシンク)が必要なため、除湿量の少
ないものでも相対的に大きな体積・重量になってしまう
Problems to be Solved by the Invention The condensation method requires a heat exchanger for both cooling and heating operations, making it difficult to downsize and resulting in a large dehumidifier for indoor use. Furthermore, the noise generated by compressors and the like used for the purpose of vaporizing and condensing the heat medium is also large. Additionally, a method using a cooling/heating element that applies the Beltier effect is known for dehumidifying relatively small volumes inside power distribution panels, control panels, and other electrical equipment, but this method requires heat absorption and dissipation fins (heat sinks). Even if the amount of dehumidification is small, the volume and weight will be relatively large.

一方、吸着法は乾燥剤の再生処理の時間が必要なうえ、
除湿空気に乾燥剤の微粉末が混入する可能性が高いため
、居住空間や、半導体をはじめとする各種電気部品の製
造現場などの除湿には向いていない。
On the other hand, the adsorption method requires time to regenerate the desiccant, and
It is not suitable for dehumidifying living spaces or manufacturing sites for various electrical components such as semiconductors, as there is a high possibility that fine desiccant powder will be mixed into the dehumidified air.

問題点を解決するための手段 本発明は陽イオン交換膜の片面に酸素発生極としての陽
極を、他面に水素発生極としての陰極をそれぞれ一体に
接合した陽イオン交換膜−電極接合体から成る第一の電
気化学セルの陽陰両極間に直流電圧を印加し、前記陽極
に除湿の対象となる空気を供給し、陽イオン交換膜に吸
収させる空気中の水分を電解して陽極で酸素を、陰極で
水素を発生せしめ、前記とは別の陽イオン交換膜の片面
に空気中酸素の電解還元反応を起させる正極と、他面に
水素の電解酸化反応を起させる負極をそれぞれ一体に接
合した陽イオン交換膜−電極接合体から成る第二の電気
化学セル、すなわち、水素−空気燃料電池の負極に前記
第一の電気化学セルの陰極で発生した水素を供給接触せ
しめると共に、該セルの正極に空気を供給し、正極と負
極間を短絡することによって、正極側で水を生成せしめ
ることにより、空気中の水蒸気を液状の水として捕集ま
たは系外に排出する除湿器を提供するものであり、従来
の除湿器における諸問題を一挙に解決するものである。
Means for Solving the Problems The present invention is based on a cation exchange membrane-electrode assembly in which an anode as an oxygen generating electrode is integrally bonded to one side of a cation exchange membrane, and a cathode as a hydrogen generating electrode is integrally bonded to the other side. A DC voltage is applied between the positive and negative electrodes of the first electrochemical cell, supplying air to be dehumidified to the anode, electrolyzing the moisture in the air to be absorbed by the cation exchange membrane, and converting it into oxygen at the anode. Hydrogen is generated at the cathode, and a positive electrode that causes an electrolytic reduction reaction of oxygen in the air on one side of a cation exchange membrane different from the above, and a negative electrode that causes an electrolytic oxidation reaction of hydrogen on the other side are integrated. supplying hydrogen generated at the cathode of the first electrochemical cell to the negative electrode of a second electrochemical cell, i.e., a hydrogen-air fuel cell, comprising the bonded cation exchange membrane-electrode assembly; To provide a dehumidifier that collects water vapor in the air as liquid water or discharges it out of the system by supplying air to a positive electrode and short-circuiting between the positive and negative electrodes to generate water on the positive electrode side. It solves all the problems of conventional dehumidifiers at once.

作  用 陽イオン交換膜の両表面に酸素と水素の発生に有効な触
媒電極からなる陽、陰極をそれぞれ一体に接合した3層
の接合体の陽極に、除湿しようとする空気を接触させる
と、空気中の水蒸気が陽イオン交換膜に吸収される。陽
イオン交換膜に水分が吸収されると、この膜は固体電解
質として機能し、電気化学セルとなる。このセルの陽極
と陰極との間に直流電圧を印加すると、ある一定の電圧
以上では、陽極で 2H20→02 + 4H” +48−    (1)
なる反応によって酸素が生成し、陰極で4H” +4e
−−42H2(2) なる反応によって水素が生成する。この反応は空気中の
水蒸気の水電解反応であり、定電圧を印加した場合には
相対湿度に比例した電解電流が流れ、湿度が高いほど、
除湿はすみやかに行なわれる。
Function: When the air to be dehumidified is brought into contact with the anode of the three-layer assembly, which has an anode and a cathode, each consisting of a catalytic electrode effective for generating oxygen and hydrogen, bonded together on both surfaces of a cation exchange membrane, Water vapor in the air is absorbed by the cation exchange membrane. When water is absorbed into the cation exchange membrane, the membrane acts as a solid electrolyte and becomes an electrochemical cell. When a DC voltage is applied between the anode and cathode of this cell, at a certain voltage or higher, the anode changes as follows: 2H20 → 02 + 4H" +48- (1)
Oxygen is generated by the reaction, and 4H" +4e at the cathode.
--42H2(2) Hydrogen is produced by the reaction. This reaction is a water electrolysis reaction of water vapor in the air, and when a constant voltage is applied, an electrolytic current proportional to the relative humidity flows, and the higher the humidity, the more
Dehumidification occurs promptly.

しかし、除湿効果はあっても、両極で酸素と水素が発生
するので、除湿しようとする一定空間中にそのまま放出
すると腐蝕性、安全性の面では好ましくない。
However, even though it has a dehumidifying effect, oxygen and hydrogen are generated at both electrodes, so if it is directly released into a certain space to be dehumidified, it is not preferable in terms of corrosion and safety.

そこで、生成した水素を触媒充填カラムなどに通過させ
て酸化する方法も考えられるが、水素を完全に除去する
には複雑な構造が必要となり、装置全体も大きくなる。
Therefore, a method of oxidizing the generated hydrogen by passing it through a catalyst-packed column or the like may be considered, but this would require a complicated structure to completely remove the hydrogen, and the overall size of the device would also increase.

本発明はこの水素を酸化して水を生成させるための新規
な装置に関するものである。即ち、前述の陽イオン交f
!j!膜の陰極で生成した水素を、これとは別の陽イオ
ン交換膜−電極接合体の片面に供給し、他面に酸素源と
しての空気を供給する。この接合体の構成は、陽イオン
交換膜の両面に水素および酸素の吸収に有効な触媒電極
をそれぞれ一体に接合した3層構造にする。画電極を短
絡しておくと、陽イオン交換膜が固体電解質として機能
し、水素供給側を負極とし、酸素供給側を正極とした、
いわゆる燃料電池が構成される。すなわち、負極で 2H2448”   +4e−(3) なる反応によって水素が消費され、正極では02 + 
48” +4e  −+ 2820   (4)なる反
応によって水が生成する。正極で生成する水は水蒸気の
形ではなく、液体の形で正極の背面に水滴となって漏出
してくる。かくして、気体の水を液体の水として捕集す
ることが可能となる。
The present invention relates to a novel device for oxidizing this hydrogen to produce water. That is, the aforementioned cation exchange f
! j! Hydrogen produced at the membrane cathode is supplied to one side of a separate cation exchange membrane-electrode assembly, and air as an oxygen source is supplied to the other side. This assembly has a three-layer structure in which catalytic electrodes effective for absorbing hydrogen and oxygen are integrally bonded to both sides of a cation exchange membrane. When the picture electrode is short-circuited, the cation exchange membrane functions as a solid electrolyte, with the hydrogen supply side serving as the negative electrode and the oxygen supply side serving as the positive electrode.
A so-called fuel cell is constructed. In other words, hydrogen is consumed at the negative electrode by the reaction 2H2448" +4e-(3), and at the positive electrode 02 +
48” +4e −+ 2820 (4) Water is produced by the reaction.The water produced at the positive electrode is not in the form of water vapor, but in liquid form and leaks out as water droplets on the back of the positive electrode.Thus, the gas It becomes possible to collect water as liquid water.

以上述べた如く、本発明による除湿器は第一段階で空気
中の水蒸気から酸素と水素を生成させ、第二段階で生成
した水素を酸素で酸化し、水とし  。
As described above, the dehumidifier according to the present invention generates oxygen and hydrogen from water vapor in the air in the first stage, and oxidizes the generated hydrogen with oxygen in the second stage to turn it into water.

て捕集もしくは系外に排出することによって除湿を行な
うものである。本発明の除湿器においては、第一段階で
酸素が生成するが、第2段階ではこれと等量の酸素が消
費されるので、系全体の酸素の収支は零である。
Dehumidification is performed by collecting or discharging the water from the system. In the dehumidifier of the present invention, oxygen is generated in the first stage, but the same amount of oxygen is consumed in the second stage, so the oxygen balance of the entire system is zero.

空気中の水蒸気の電解反応(1)、(2)式に有効な陽
極と陰極とは同じ触媒電極でよい。陽イオン交換膜への
触a[極の接合方法としては、例えば、陽イオン交換膜
の両面に白金族金属を無電解メツキ法によって析出一体
化させる方法や、白金族金属粉末とフッ素樹脂結着剤と
の混合物をホットプレスすることによって加圧一体化さ
せる方法がある。
The anode and cathode effective for the electrolytic reactions (1) and (2) of water vapor in the air may be the same catalytic electrode. Touching the cation exchange membrane a There is a method of pressurizing and integrating the mixture with the agent by hot pressing.

また、水の生成反応(3)、(4)式に有効な負極と正
極とは同じ触媒電極でよいが、前記の水電解用の電極と
はやや異なり、一般にガス拡散電極と呼ばれるものが有
効である。例えば、白金族金属もしくは白金族金属を担
持したカーボンとフッ素樹脂結着剤との混合物、もしく
は、これらの混合物に陽イオン交換樹脂を混合したちの
を陽イオン交換膜にホットプレスした多孔性のものがよ
い。
In addition, the negative and positive electrodes that are effective for the water production reactions (3) and (4) can be the same catalyst electrode, but they are slightly different from the electrodes for water electrolysis mentioned above, and are generally called gas diffusion electrodes. It is. For example, a mixture of a platinum group metal or carbon supporting a platinum group metal and a fluororesin binder, or a mixture of these and a cation exchange resin is hot-pressed into a cation exchange membrane. Things are good.

実  施  例 第1図は本発明の一実席例にかかる除湿器の該略図であ
る。
Embodiment FIG. 1 is a schematic diagram of a dehumidifier according to one practical example of the present invention.

パーフルオロカーボンスルフオン酸樹脂からなる陽イオ
ン交換膜1.下の両面に酸素と水素の発生に有効な電極
2.2′と、吸収に有効な電極3゜3′がそれぞれ一体
に接合されている。陽極2と陰極2′は白金からなり、
陽イオン交換膜1に無電解メツキ法によって接合されて
いる。正極3と負極3′は白金触媒を担持したカーボン
粉末とポリ4フツ化エチレンの水懸濁液、ならびに低級
脂肪族アルコールを溶媒としたパーフルオロカーボンス
ルフオン酸樹脂溶液を混合したものを、陽イオン交換膜
下の両面にホットプレス法によって接合することにより
構成されている。
Cation exchange membrane made of perfluorocarbon sulfonic acid resin 1. Electrodes 2.2' effective for generating oxygen and hydrogen, and electrodes 3.3' effective for absorption are integrally joined to the lower surfaces. The anode 2 and the cathode 2' are made of platinum,
It is bonded to the cation exchange membrane 1 by electroless plating. The positive electrode 3 and the negative electrode 3' are made of a mixture of carbon powder supporting a platinum catalyst, an aqueous suspension of polytetrafluoroethylene, and a perfluorocarbon sulfonic acid resin solution using a lower aliphatic alcohol as a solvent. It is constructed by joining both sides under the exchange membrane using a hot press method.

陽・陰極2.2′の背面には白金メツキを施したエキス
パンデッドチタンからなる陽極集電体4と陰極集電体5
がそれぞれ配設され、これら集電体は陽極端子6と陰極
端子7を通じて直流電源(図示せず)に接続される。正
極3の背面にも同じく白金メツキを施したエキスパンデ
ッドチタンからなる正i束電体8が配設されているが、
負極3′の背面には前述の陰極集電体5が配設されてい
るから、負極集電体と呼ばれるものは不要である。この
陰極集電体5は陰極端子7と正極端子9を介して正極集
電体8と結線(短絡)されている。陰極2′と負極3′
の間には前記陰極集電体5が配設されているが、陰極2
′で生成した水素が逸散しないように、一定の密閉空間
を形成している。
On the back side of the anode/cathode 2.2' are an anode current collector 4 and a cathode current collector 5 made of expanded titanium plated with platinum.
are respectively arranged, and these current collectors are connected to a DC power source (not shown) through an anode terminal 6 and a cathode terminal 7. A positive i-bundle current body 8 made of expanded titanium plated with platinum is also disposed on the back side of the positive electrode 3.
Since the aforementioned cathode current collector 5 is disposed on the back surface of the negative electrode 3', what is called a negative electrode current collector is not necessary. This cathode current collector 5 is connected (short-circuited) to a positive electrode current collector 8 via a cathode terminal 7 and a positive electrode terminal 9. Cathode 2' and negative electrode 3'
The cathode current collector 5 is disposed between the cathode 2
A certain closed space is formed to prevent the hydrogen generated in ' from escaping.

このように構成された電気化学セル群はケース10の中
に収納されている。該ケース10は空気の取入口11と
、除湿されて生成する水滴の排水口12を備え、除湿後
の空気は除湿空気放出口13よりブロアー14によって
目的とする空間に放出される。この除湿器内の空気の流
れは、先ず、水素を酸化して水を生成、捕集した後、空
気を除湿する順になっているが、本実施例とは逆の配置
や、除湿部と水生成部とが分離した構造、または多セル
構造にすることもできる。
The electrochemical cell group configured in this manner is housed in a case 10. The case 10 includes an air intake port 11 and a drain port 12 for water droplets generated by dehumidification, and the dehumidified air is discharged from a dehumidified air discharge port 13 into a target space by a blower 14. The air flow inside this dehumidifier is such that it first oxidizes hydrogen to generate and collect water, and then dehumidifies the air. A structure in which the generation section is separated or a multi-cell structure can also be used.

本発明の除湿器において、陽・陰極2.2′および正極
3の電極面積を100−とし、陽・陰極端子6.7間に
3Vの直流定電圧を印加し、容積20ft(30℃)の
水蒸気飽和空気を除湿したところ、第2rj!iに示す
如(相対湿度30%まで除湿できた。なお、結露を防止
するだけの目的であるなら、相対湿度が90%前後にな
る程度まで除湿すればよいので、電極面積は本実施例の
115程度で充分であり、寸法等は更に低減できる。
In the dehumidifier of the present invention, the electrode areas of the anode/cathode 2.2' and the cathode 3 are set to 100-, a constant DC voltage of 3V is applied between the anode and cathode terminals 6.7, and the volume is 20ft (30℃). When water vapor saturated air was dehumidified, the second rj! As shown in i (we were able to dehumidify to a relative humidity of 30%. Note that if the purpose is only to prevent condensation, it is sufficient to dehumidify until the relative humidity is around 90%, so the electrode area is the same as that of this example. A value of about 115 is sufficient, and the dimensions can be further reduced.

発明の効果 本発明は常温のままで空気中の水蒸気を凝縮することが
でき、騒音もなく、対象とする除湿空間が小さい場合で
も、それに適した寸法で構成が可能であり、しかも再生
処理を全く必要とせず、清浄な除湿空気が得られ、電気
化学的な除湿方法によって自動制御化も容易で、その工
業的価値は極めて大きい。
Effects of the Invention The present invention can condense water vapor in the air at room temperature, makes no noise, can be configured with dimensions suitable for a small dehumidifying space, and can be regenerated. Clean dehumidified air can be obtained without any need for dehumidification, and automatic control is easy using an electrochemical dehumidification method, so its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除湿器の一実施例を示す概略断面図、
第2図は本発明の除湿器による相対湿度変化を示す図で
ある。 1、丁・・・・・・陽イオン交換膜 2・・・・・・陽極      2′・・・・・・陰極
3・・・・・・正極      3′・・・・・・負極
11・・・・・・空気取入口  12・・・・・・排水
口13・・・・・・除湿空気放出口 年 1  に 1 、  P−−−−1164イ〉忙ン文車間離Z−−
−傷、11   Z’−−−一縛閾舌3−−4繍  3
l−=−it、柵 1t−−−−空支υし入口  tz−−−#P口13−
一一冷1潅資放盲υ
FIG. 1 is a schematic sectional view showing an embodiment of the dehumidifier of the present invention;
FIG. 2 is a diagram showing changes in relative humidity caused by the dehumidifier of the present invention. 1. Cation exchange membrane 2...Anode 2'...Cathode 3...Positive electrode 3'...Negative electrode 11... ... Air intake port 12 ... Drain port 13 ... Dehumidifying air discharge port
-Wound, 11 Z'---Ichibaku Threshold Tongue 3--4 Stitch 3
l-=-it, fence 1t---- air support υshi entrance tz---#P entrance 13-
11 cold 1 irrigation blindness υ

Claims (1)

【特許請求の範囲】[Claims]  空気取入口と除湿空気放出口および排水口を備えたケ
ース内に、陽イオン交換膜の片面に酸素発生極としての
陽極を、他面に水素発生極としての陰極をそれぞれ一体
に接合した陽イオン交換膜−電極接合体から成る第一の
電気化学セルと、陽イオン交換膜の片面に空気中酸素の
電解還元反応を起させる正極を、他面に水素の電解酸化
反応を起させる負極をそれぞれ一体に接合した陽イオン
交換膜−電極接合体から成る第二の電気化学セルを配置
し、前記第一の電気化学セルの陰極と第二の電気化学セ
ルの負極とを密閉した共通空間を介して連絡させ、前記
第二の電気化学セルの正極と負極とを短絡させると共に
第一の電気化学セルの陽・陰極間に直流電圧を印加する
ように構成したことを特徴とする除湿器。
A cation exchange membrane with an anode as an oxygen generation electrode on one side and a cathode as a hydrogen generation electrode on the other side is integrally bonded to a case equipped with an air intake, a dehumidified air outlet, and a drain. A first electrochemical cell consisting of an exchange membrane-electrode assembly, a positive electrode for causing an electrolytic reduction reaction of atmospheric oxygen on one side of the cation exchange membrane, and a negative electrode for causing an electrolytic oxidation reaction of hydrogen on the other side. A second electrochemical cell consisting of an integrally bonded cation exchange membrane-electrode assembly is disposed, and the cathode of the first electrochemical cell and the negative electrode of the second electrochemical cell are connected through a sealed common space. A dehumidifier characterized in that the dehumidifier is configured to short-circuit the positive and negative electrodes of the second electrochemical cell and apply a DC voltage between the positive and negative electrodes of the first electrochemical cell.
JP62304972A 1987-12-02 1987-12-02 Dehumidifier Expired - Lifetime JPH0649129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304972A JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304972A JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Publications (2)

Publication Number Publication Date
JPH01148327A true JPH01148327A (en) 1989-06-09
JPH0649129B2 JPH0649129B2 (en) 1994-06-29

Family

ID=17939526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304972A Expired - Lifetime JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Country Status (1)

Country Link
JP (1) JPH0649129B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121283A (en) * 1996-10-21 1998-05-12 Mitsubishi Electric Corp Ozone and hydrogen peroxide generator
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
US6541144B2 (en) * 2000-04-13 2003-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell system
US9863047B2 (en) 2011-03-24 2018-01-09 Toshiba Lifestyle Products & Services Corporation Electrolysis device and refrigerator
CN112928308A (en) * 2021-03-31 2021-06-08 华中科技大学 Fuel cell bipolar plate for dehumidification and fuel cell stack thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121283A (en) * 1996-10-21 1998-05-12 Mitsubishi Electric Corp Ozone and hydrogen peroxide generator
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
US6541144B2 (en) * 2000-04-13 2003-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell system
US9863047B2 (en) 2011-03-24 2018-01-09 Toshiba Lifestyle Products & Services Corporation Electrolysis device and refrigerator
CN112928308A (en) * 2021-03-31 2021-06-08 华中科技大学 Fuel cell bipolar plate for dehumidification and fuel cell stack thereof

Also Published As

Publication number Publication date
JPH0649129B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US6284399B1 (en) Fuel cell system having humidification membranes
US3012086A (en) Fuel cell
US6329090B1 (en) Enthalpy recovery fuel cell system
JP3219610B2 (en) Electrochemical element
JP2019503047A (en) Humidifier with integrated water separator for fuel cell system, fuel cell system with the same and vehicle
JPS6341993B2 (en)
JP2001283875A (en) Fuel cell and fuel cell system
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
WO2003028138A1 (en) Functional integration of multiple components for a fuel cell power plant
JPH01148327A (en) Dehumidifier
JPH04229960A (en) Gas-recycle battery for electoro- chemical system
US20050053821A1 (en) Self-moisturizing proton exchange membrane, membrane-electrode assembly and fuel cell
JPS61216714A (en) Dehumidification
JP2007323813A (en) Solid polymer electrolyte fuel cell system
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
US20030148157A1 (en) Functional integration of multiple components for a fuel cell power plant
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPH10208757A (en) Fuel cell generating set
JP5076436B2 (en) Fuel cell
CN108151191A (en) Gaseous state hydrone trapping electrolysis unit, preparation method and the application in electrochemistry dehumidifying
WO2003032422A1 (en) Fuel cell system, and fuel cell power generating method
JP4198529B2 (en) Dehumidifying element
JP2001333983A (en) Oxygen supply system
JPS60114325A (en) Dehumidifying method