JPH01147824A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01147824A
JPH01147824A JP30588687A JP30588687A JPH01147824A JP H01147824 A JPH01147824 A JP H01147824A JP 30588687 A JP30588687 A JP 30588687A JP 30588687 A JP30588687 A JP 30588687A JP H01147824 A JPH01147824 A JP H01147824A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
polycrystalline
silicon
section
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30588687A
Other languages
Japanese (ja)
Inventor
Yutaka Ito
豊 伊藤
Genichi Yamazaki
山崎 弦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP30588687A priority Critical patent/JPH01147824A/en
Publication of JPH01147824A publication Critical patent/JPH01147824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a single crystal reflecting the surface orientation of polycrystalline Si onto an insulating film by selectively implanting ions in high concentration to the insular thin-film polycrystalline Si having surface orientation anisotropy shaped onto the insulating film and melting and recrystallizing the polycrystalline Si by laser beams. CONSTITUTION:Poly Si 3 having surface orientation anisotropy is formed insularly onto an insulating film 2 composed of SiO2 etc., shaped onto a substrate 1 consisting of Si, etc., through a CVD method, etc. One parts of poly Si 3 are covered with resists 4, ions 5 in high concentration such as Si, Ar, etc., are implanted from an upper section, and the surface of an ion implanting section in the poly Si 3 is brought to an amorphous state, The resists 4 are removed, and laser beams are scanned in the direction of the arrow 6. Since the optical absorption of amorphous Si is better than poly Si, a polycrystalline section 3A is brought to a semifused state, and a section 7, the surface of which has an amorphous section, can be brought to a completely melted state. Consequently, since an unmelted crystalline nucleus in the semifused section 3A is used as a nucleus and recrystallization is generated, single crystal Si reflecting the surface orientation of polycrystalline Si3 can be shaped onto the insulator 2. A design is made freer than conventional examples and a process simpler than them.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特に高集積、高速の高
性能な完全絶縁分離された半導体集積回路、即ち、S 
OI (Semiconductor On In5u
lator )デバイス用基体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, particularly a highly integrated, high-speed, high-performance, fully insulated semiconductor integrated circuit, that is, an S
OI (Semiconductor On In5u
(lator) The present invention relates to a method of manufacturing a substrate for a device.

従来の技術 近年、半導体集積回路の高密度化、高速化を目指して積
層デバイスの開発が活発に行われている。
BACKGROUND OF THE INVENTION In recent years, stacked devices have been actively developed with the aim of increasing the density and speed of semiconductor integrated circuits.

積層デバイスを形成する除液も重要となるのは、絶縁物
上に単結晶半導体層を形成する技術である。
Liquid removal for forming stacked devices is also important in the technology of forming a single crystal semiconductor layer on an insulator.

そのなかでも、絶縁物上に絶縁分離形成された島状非単
結晶半導体にレーザビームや電子ビーム等のエネルギー
ビームを照射して前記島状非単結晶半導体を溶融し、単
結晶化する技術は比較的容易に単結晶層が得られる技術
である。しかし、単純に非単結晶層を溶融し、単結晶化
しただけでは単結晶化半導体の面方位は揃わず、デバイ
ス特性にばらつきを生じる。そこで単結晶化半導体の面
方位を制御する努力がなされている。
Among these, there is a technology that melts the island-shaped non-single crystal semiconductor by irradiating an energy beam such as a laser beam or an electron beam onto an island-shaped non-single-crystal semiconductor formed in isolation on an insulator to make it into a single crystal. This is a technique that allows a single crystal layer to be obtained relatively easily. However, simply melting the non-single-crystal layer and turning it into a single crystal does not align the plane orientations of the single-crystal semiconductor, resulting in variations in device characteristics. Therefore, efforts are being made to control the plane orientation of single crystal semiconductors.

従来、絶縁物上の非単結晶シリコンのレーザ再結晶化法
で、面方位の制御された単結晶シリコンを形成するには
、絶縁物に開口部を設けたシリコン基板からのシードを
用いたものとシード無しの方法があった。シード無しの
レーザ再結晶化法で面方位の制御された単結晶シリコン
を形成する方法には、2ステツプレーザアニール法〔文
献昭和69年秋応用物理学会予稿集 412〕や、部分
的に溝状のヒートミンクを設けた多結晶シード法〔文献
昭和61年秋応用物理学会予稿集 486〕などがある
Conventionally, laser recrystallization of non-single-crystal silicon on an insulator uses seeds from a silicon substrate with openings in the insulator to form single-crystal silicon with controlled plane orientation. There was a method without seeds. Methods for forming single-crystal silicon with a controlled plane orientation using a seedless laser recrystallization method include the two-step laser annealing method [Reference Proceedings of the Japan Society of Applied Physics, Autumn 1988, Proceedings 412], and partially groove-shaped There is a polycrystalline seed method using a heat mink [Reference Proceedings of the Japan Society of Applied Physics, Autumn 1986, 486].

第3図を用いて、2ステツプレーザアニール法を説明す
ると、まず、絶縁膜30上に面方位異方性のめる島状多
結晶シリコン31を形成する。そして第1ステツプレー
ザアニールとして、第3図の構造では島状多結晶シリコ
ン31の長手方向に対して垂直にレーザ光を矢印31の
ごとく走査し、島状多結晶シリコン31を溶融し、もと
の多結晶シリコンの面方位を反映した人工種結晶部33
を形成する。次に、第2ステツプレーザアニールとして
、島状多結晶シリコン31の長手方向に対して平行にレ
ーザ光を矢印34のごとく走査し、多結晶7リコン31
を再結晶化する。このとき人工種結晶部分33は、他の
多結晶シリコン部分より結晶粒が大きく、レーザ光の反
射率が大きいため、適当なレーザパワーを選べば人工種
結晶部分33は半溶融、その他の部分は完全溶融の状態
にすることができる。この時、結晶成長は半溶融の人工
種結晶部分33の未溶融核からおこり、もとの島状多結
晶シリコツ310面方位を反映した単結晶シリコンが得
られる。
The two-step laser annealing method will be explained with reference to FIG. 3. First, an island-shaped polycrystalline silicon 31 having a plane orientation anisotropy is formed on an insulating film 30. In the first step laser annealing, in the structure shown in FIG. 3, a laser beam is scanned perpendicularly to the longitudinal direction of the island-like polycrystalline silicon 31 as shown by an arrow 31 to melt the island-like polycrystalline silicon 31 and return it to the original state. Artificial seed crystal part 33 reflecting the plane orientation of polycrystalline silicon
form. Next, as a second step laser annealing, a laser beam is scanned parallel to the longitudinal direction of the island-shaped polycrystalline silicon 31 as shown by an arrow 34, and the polycrystalline silicon 31 is
recrystallize. At this time, the artificial seed crystal part 33 has larger crystal grains than other polycrystalline silicon parts and has a higher reflectance of laser light, so if an appropriate laser power is selected, the artificial seed crystal part 33 will be semi-molten, and the other parts will be half-molten. It can be brought to a completely molten state. At this time, crystal growth occurs from the unfused core of the semi-molten artificial seed crystal portion 33, and single crystal silicon reflecting the original 310-plane orientation of the island-shaped polycrystalline silicon is obtained.

次に、ヒートシンクを設けた多結晶シードレーザ再結晶
化について説明する。(第4図参照)。
Next, polycrystalline seed laser recrystallization provided with a heat sink will be described. (See Figure 4).

まず、シリコン基板4o上に、シリコンより熱伝導率の
悪い絶縁膜41を設けその上に面方位異方性を持つ島状
多結晶シリコン42を形成する。またこのとき、島状多
結晶シリコン42下の絶縁膜の一部にシリコン基板まで
は達しない溝43を設け、ヒートシンクとする。この島
状多結晶シリコン42の長手方向に沿ってレーザ光を走
査再結晶化すると、絶縁物は多結晶シリコン42より熱
伝導率が悪く、溝43の部分は下地絶縁膜41が他の部
分より薄いので、熱がシリコン基板4oに逃ケヤスく、
適当なレーザパワーと溝深さを選ぶことにより、溝43
部分の多結晶シリコンを半溶融としその他の部分を完全
溶融の状態にすることができる。このとき、島状多結晶
シリコン42は、溝43部分の未溶融シリコン粒を核と
して結晶成長し、もとの多結晶シリコン42の面方位を
反映した単結晶シリコンが得られる。
First, an insulating film 41 having a thermal conductivity lower than that of silicon is provided on a silicon substrate 4o, and an island-shaped polycrystalline silicon 42 having surface orientation anisotropy is formed thereon. Also, at this time, a groove 43 that does not reach the silicon substrate is provided in a part of the insulating film under the island-like polycrystalline silicon 42 to serve as a heat sink. When a laser beam is scanned and recrystallized along the longitudinal direction of this island-like polycrystalline silicon 42, the insulator has a lower thermal conductivity than the polycrystalline silicon 42, and the base insulating film 41 is lower in the groove 43 than in other parts. Because it is thin, heat easily escapes to the silicon substrate 4o.
Groove 43 can be formed by selecting appropriate laser power and groove depth.
It is possible to make the polycrystalline silicon in some parts semi-molten and in other parts completely melted. At this time, the island-like polycrystalline silicon 42 grows crystals using the unmelted silicon grains in the groove 43 portion as nuclei, and single crystal silicon reflecting the plane orientation of the original polycrystalline silicon 42 is obtained.

発明が解決しようとする問題点 シリコン基板からのシードを用いる方法では、積層デバ
イスを作成する際に積層の度にシード位置をずらす必要
があり、設計の自由度、デノ(イス作成有効面積という
点で問題がある。一方シード無しの方法を見ると、2ス
テ、ンプレーザアニール法(第3図参照)では、レーザ
アニール工程が2段階必要であり、しかも、矢印32で
示す第1ステツプレーザアニールでは、レーザ光のあた
った多結晶シリコンは好む好まずにかかわらずすべて人
工種結晶化してしまい、人工種結晶位置の自由度という
点でも問題があり、設計面にも制約を生じる。
Problems to be Solved by the Invention In the method of using seeds from a silicon substrate, it is necessary to shift the seed position each time the layers are stacked when creating a multilayer device, which reduces the degree of freedom in design and the effective area for creating a denomination (chair). On the other hand, if we look at the seedless method, the two-step laser annealing method (see Figure 3) requires two laser annealing steps, and the first step laser annealing process shown by arrow 32 requires two laser annealing steps. In annealing, all polycrystalline silicon exposed to laser light turns into artificial seed crystals whether we like it or not, which poses a problem in terms of the degree of freedom in the position of artificial seed crystals, and also creates constraints in terms of design.

また、第4図のような溝43状のヒートシンクを有する
島状多結晶シリコン42のレーザ再結晶化については、
溝43の部分で、多結晶シリコン42に段差が存在する
ため、再結晶化の時に、段差部分で粒界が発生するなど
良好な再結晶化は困難である。また、この段差をなくす
ため、埋め込み型にするには工程数の増加を招く。
Regarding laser recrystallization of the island-shaped polycrystalline silicon 42 having a groove 43-shaped heat sink as shown in FIG.
Since there is a step in the polycrystalline silicon 42 at the groove 43, good recrystallization is difficult because grain boundaries are generated at the step during recrystallization. Furthermore, in order to eliminate this level difference, the number of steps will increase if a buried type is used.

本発明は以上のような従来の絶縁膜上の多結晶シリコン
のシードなしのレーザ再結晶化による再結晶化シリコン
の面方位制御法の欠点をかんがみてなされたものであっ
て、絶縁物上多結晶シリコンをシードなしでレーザ光に
よる再結晶化を行うとともに前述した問題を克服した方
法を提供するものである。
The present invention has been made in view of the drawbacks of the conventional method of controlling the plane orientation of recrystallized silicon by seedless laser recrystallization of polycrystalline silicon on an insulating film. The present invention provides a method for recrystallizing crystalline silicon using laser light without seeds and overcoming the above-mentioned problems.

問題点を解決するための手段 本発明の半導体装置の製造方法は、絶縁膜上に面方位異
方性を持つ島状薄膜多結晶シリコンを形成し、前記多結
晶シリコンに選択的に高濃度イオン注入することにより
、前記多結晶シリコンのイオン注入部表面を非晶質化し
た後、レーザ光で前記イオン注入部に対して適当な条件
で前記多結晶シリコンの再結晶化を行うことにより、前
記多結晶シリコンのイオン注入部を完全溶融、前記多結
晶シリコンのイオン未注入部を半溶融の状態にし、前記
イオン未注入部の未溶融多結晶シリコン粒を核として結
晶成長さ?、前記多結晶シリコンの面方位を反映した単
結晶を前記絶縁膜上に形成する方法である。
Means for Solving the Problems The method for manufacturing a semiconductor device of the present invention involves forming an island-shaped thin film polycrystalline silicon having plane orientation anisotropy on an insulating film, and selectively applying high concentration ions to the polycrystalline silicon. After the surface of the ion-implanted portion of the polycrystalline silicon is made amorphous by implantation, the polycrystalline silicon is recrystallized under appropriate conditions for the ion-implanted portion using a laser beam. The ion-implanted part of the polycrystalline silicon is completely melted, the ion-unimplanted part of the polycrystalline silicon is left in a semi-molten state, and crystals are grown using the unmelted polycrystalline silicon grains in the ion-unimplanted part as nuclei. , a method of forming a single crystal reflecting the plane orientation of the polycrystalline silicon on the insulating film.

作用 本発明のごとく、島状多結晶シリコンに選択的高濃度イ
オン注入すると注入部分表面が非晶質化する。この非晶
質化部分は光の吸収係数が非注入部分より増大している
。この状態で、島状多結晶シリコンの長手方向にレーザ
光を走査することにより、注入部分が完全溶融、非注入
部分が半溶融という状態にし、非注入部分の未溶融シリ
コン粒を核とした結晶成長を実現し、多結晶シリコンの
面方位を反映させ、再結晶化シリコンの面方位を制御す
る。したがって、段差が生じることなく、かつ好みの場
所に好みの形状で任意かつ容易に種結晶を形成すること
が可能となり、1回のレーザ照射で多結晶シリコンの再
結晶化を行うことができる。
Effect When selectively high concentration ions are implanted into island-shaped polycrystalline silicon as in the present invention, the surface of the implanted portion becomes amorphous. The amorphous portion has a higher light absorption coefficient than the non-injected portion. In this state, by scanning the laser beam in the longitudinal direction of the island-shaped polycrystalline silicon, the injected part is completely melted and the non-injected part is semi-molten, and crystals are formed with the unmolten silicon grains in the non-injected part as nuclei. Growth is realized, the plane orientation of polycrystalline silicon is reflected, and the plane orientation of recrystallized silicon is controlled. Therefore, it is possible to arbitrarily and easily form a seed crystal in a desired shape at a desired location without creating a step, and recrystallization of polycrystalline silicon can be performed with one laser irradiation.

実施例 以下図面に基づいて更に詳しく説明する。Example A more detailed explanation will be given below based on the drawings.

第1図に絶縁物2上に形成した島状ポリ(多結晶)シリ
コン3を示す。絶縁物2には例えばCvD(化学的気相
成長法)法などで作成したSiO□などを用いる。基板
1には例えばシリコンや石英基板を用い、シリコン基板
には半導体素子が形成されている。
FIG. 1 shows an island-like poly(polycrystalline) silicon 3 formed on an insulator 2. As shown in FIG. The insulator 2 is made of, for example, SiO□ produced by a CvD (chemical vapor deposition) method. For example, a silicon or quartz substrate is used for the substrate 1, and a semiconductor element is formed on the silicon substrate.

島状ポリシリコン3は、CVD(化学的気相成長法)法
などによって形成した強い面方位異方性を持つ多結晶シ
リコン膜から成形したもので、前記多結晶シリコン膜と
同様な面方位異方性を持つ。
The island-shaped polysilicon 3 is formed from a polycrystalline silicon film with strong plane orientation anisotropy formed by CVD (chemical vapor deposition) method, etc., and has the same plane orientation anisotropy as the polycrystalline silicon film. It has directionality.

次表は、LPGVD (減圧化学的気相成長法)法、ム
pcvo(常圧化学的気相成長法)法によって形成した
多結晶シリコン膜の面方位配向性を示す。
The following table shows the plane orientation of polycrystalline silicon films formed by the LPGVD (low pressure chemical vapor deposition) method and the MPCVO (normal pressure chemical vapor deposition) method.

この表に示すようにCVD (化学的気相成長法)法に
よって形成した多結晶シリコン膜はその形成温度によっ
て強い面方位異方性を持つ。本発明における島状多結晶
シリコン3としては、例えばLPOVD(減圧化学的気
相成長法)法を用いて700°Cで形成した強い(10
0)面配向性を持つ多結晶シリコン膜を形成する。
As shown in this table, polycrystalline silicon films formed by CVD (chemical vapor deposition) have strong plane orientation anisotropy depending on the formation temperature. In the present invention, the island-shaped polycrystalline silicon 3 may be formed using a strong (10
0) Form a polycrystalline silicon film with planar orientation.

次に、w11図の島状多結晶シリコン3に選択的にイオ
ン注入するには、第1図すに示すように、フォトマスク
露光工程により島状多結晶シリコン3の一部をレジスト
4で覆う。次に上部から高濃度イオン6を注入すること
により、島状多結晶シリコン3のレジストのない部分の
表面は、非晶質化される。注入するイオンは例えば8i
やムrなどを用いる。
Next, in order to selectively implant ions into the island-shaped polycrystalline silicon 3 shown in FIG. . Next, by implanting high-concentration ions 6 from above, the surface of the resist-free portion of the island-like polycrystalline silicon 3 is made amorphous. For example, the ions to be implanted are 8i
and mur etc. are used.

そして、第1図Gのように島状多結晶シリコン3の長手
方向6に、レーザ光を走査する。第1図Cにおいて、3
ムはイオンの注入されていない多結晶部分、7は表面が
非晶質となったイオン注入部である。非晶質シリコン7
は、ポリシリコンよりも光の吸収係数が大きい、、第2
図は、光の波長に対する単結晶シリコンと非晶質シリコ
ンの光吸収係数を示すグラフである。第2図をみると、
例えばYAGレーザの発振光の波長1μmの光では結晶
Siで吸収係数的102(tttt−’ )、イオン打
ち込み非晶質シリコンで約5X10’(cm−’)  
と約60倍の違いがある。多結晶Siの吸収係数は、結
晶シリコンより幾分大きいが非晶質シリコンに比べると
かなり小さい。
Then, as shown in FIG. 1G, the laser beam is scanned in the longitudinal direction 6 of the island-shaped polycrystalline silicon 3. In Figure 1C, 3
7 is a polycrystalline portion into which ions are not implanted, and 7 is an ion implanted portion whose surface is amorphous. Amorphous silicon 7
has a larger light absorption coefficient than polysilicon.
The figure is a graph showing the light absorption coefficients of single crystal silicon and amorphous silicon with respect to the wavelength of light. Looking at Figure 2,
For example, for YAG laser oscillation light with a wavelength of 1 μm, crystalline Si has an absorption coefficient of 102 (tttt-'), and ion-implanted amorphous silicon has an absorption coefficient of approximately 5X10'(cm-').
There is a difference of about 60 times. The absorption coefficient of polycrystalline Si is somewhat larger than that of crystalline silicon, but considerably smaller than that of amorphous silicon.

したがって、レーザ光を走査する時、照射する光のパワ
ーや波長を最適化することにより、高濃度イオン注入さ
れ表面が非晶質シリコンの部分7を完全溶融、多結晶シ
リコンの部分3ムを半溶融という状態を実現できる。こ
のとき、結晶成長は半溶融部分3人の未溶融シリコン粒
を核としておこり、再結晶化された島状単結晶シリコン
はもとの島状多結晶シリコン3の結晶軸を反映したもの
になる。このようにして、シードなしレーザ再結晶化法
で絶縁物上に面方位の制御された単結晶を形成できる。
Therefore, by optimizing the power and wavelength of the irradiated light when scanning the laser beam, the part 7 where high concentration ions are implanted and whose surface is amorphous silicon can be completely melted, and the polycrystalline silicon part 3 can be melted by half. A state called melting can be achieved. At this time, crystal growth occurs with the unmolten silicon grains of the three semi-molten parts as nuclei, and the recrystallized island-like single crystal silicon reflects the crystal axis of the original island-like polycrystalline silicon 3. . In this way, a single crystal with controlled plane orientation can be formed on an insulator by seedless laser recrystallization.

発明の効果 本発明による、絶縁物上の多結晶シリコンを核として非
晶化されたシリコンのレーザ再結晶化による再結晶化シ
リコンの結晶軸制御方法は以上のような方法よりなるも
のであり、レーザ再結晶化する際段差がなく、しかも種
結晶部分を形成するのに、フォトマスク露光とイオン注
入を用いているのみで好みの場所に、好みの形状で、し
かも容易にかつ任意に、種結晶部分を形成でき、実際に
半導体素子を作製するにあたって設計の自由度も大きく
、レーザ照射も1回でよく、工程上も有利である。した
がって、本発明は特に大積層化半導体集積回路等におけ
るシリコン結晶の形成に大きく寄与するものである。
Effects of the Invention The method of controlling the crystal axis of recrystallized silicon by laser recrystallization of amorphous silicon using polycrystalline silicon on an insulator as a core, according to the present invention, comprises the above-mentioned method. There are no steps during laser recrystallization, and the seed crystal can be easily and arbitrarily formed in any desired location and shape by simply using photomask exposure and ion implantation to form the seed crystal. It is possible to form a crystalline part, has a large degree of freedom in design when actually producing a semiconductor device, and requires only one laser irradiation, which is advantageous in terms of process. Therefore, the present invention greatly contributes particularly to the formation of silicon crystals in large stacked semiconductor integrated circuits and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の結晶化工程を示す半導体
基板の斜視図、第2図は単結晶シリコン及び非晶質シリ
コンの光波長−吸収係数特性を示す図、第3図は従来の
2ステツプレーザアニール法を示す半導体基板の斜視図
、第4図は従来のヒートシンクを用いた多結晶シードレ
ーザ再結晶化法を示す半導体基板の斜視図である。 1・・・・・・基板、2・・・・・・絶縁物、3・・・
・・・島状多結晶シリコン、4・・・・・・レジスト、
7・・・・・・非晶質部分、3ム・・・・・・多結晶部
分、6・・・・・・レーザ光走査方向。 特許出願人 工業技術院長 飯 塚 幸 三゛第2図 XA  匈几λ 第3図 第4図
FIG. 1 is a perspective view of a semiconductor substrate showing the crystallization process of an embodiment of the present invention, FIG. 2 is a diagram showing the optical wavelength-absorption coefficient characteristics of single crystal silicon and amorphous silicon, and FIG. 3 is a diagram showing the conventional method. FIG. 4 is a perspective view of a semiconductor substrate showing a two-step laser annealing method, and FIG. 4 is a perspective view of a semiconductor substrate showing a polycrystalline seed laser recrystallization method using a conventional heat sink. 1...Substrate, 2...Insulator, 3...
... Island-shaped polycrystalline silicon, 4 ... Resist,
7... Amorphous part, 3... Polycrystalline part, 6... Laser beam scanning direction. Patent applicant Yuki Iizuka Director of the Agency of Industrial Science and Technology Figure 2 XA XA Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  絶縁膜上に面方位異方性を持つ島状薄膜多結晶シリコ
ンを形成し、前記多結晶シリコンに選択的に高濃度イオ
ン注入することにより、前記多結晶シリコンのイオン注
入部表面を非晶質化した後、レーザ光で前記イオン注入
部に対して適当な条件で前記多結晶シリコンの再結晶化
を行うことにより、前記多結晶シリコンのイオン注入部
を完全溶融、前記多結晶シリコンのイオン未注入部を半
溶融の状態にし、前記イオン未注入部の未溶融多結晶シ
リコン粒を核として結晶成長させ、前記多結晶シリコン
の面方位を反映した単結晶を前記絶縁膜上に形成するこ
とを特徴とする半導体装置の製造方法。
By forming an island-like thin film of polycrystalline silicon with plane orientation anisotropy on an insulating film and selectively implanting high concentration ions into the polycrystalline silicon, the surface of the ion-implanted portion of the polycrystalline silicon is made amorphous. After that, the polycrystalline silicon is recrystallized using a laser beam under appropriate conditions for the ion-implanted part, so that the ion-implanted part of the polycrystalline silicon is completely melted, and the ions of the polycrystalline silicon are completely melted. The implanted region is brought into a semi-molten state, and the unfused polycrystalline silicon grains in the ion-unimplanted region are used as nuclei for crystal growth to form a single crystal reflecting the plane orientation of the polycrystalline silicon on the insulating film. A method for manufacturing a featured semiconductor device.
JP30588687A 1987-12-04 1987-12-04 Manufacture of semiconductor device Pending JPH01147824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30588687A JPH01147824A (en) 1987-12-04 1987-12-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30588687A JPH01147824A (en) 1987-12-04 1987-12-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01147824A true JPH01147824A (en) 1989-06-09

Family

ID=17950497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30588687A Pending JPH01147824A (en) 1987-12-04 1987-12-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01147824A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170518A (en) * 1981-04-14 1982-10-20 Toshiba Corp Fabrication of semiconductor thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170518A (en) * 1981-04-14 1982-10-20 Toshiba Corp Fabrication of semiconductor thin film

Similar Documents

Publication Publication Date Title
KR100582484B1 (en) Gas immersion laser annealing method suitable for use in the fabrication of reduced-dimension integrated circuits
US6602758B2 (en) Formation of silicon on insulator (SOI) devices as add-on modules for system on a chip processing
EP0047140B1 (en) Method of converting areas of semiconductor material into single crystal areas
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
JPH10294281A (en) Dislocation reducing method
US4773964A (en) Process for the production of an oriented monocrystalline silicon film with localized defects on an insulating support
US4661167A (en) Method for manufacturing a monocrystalline semiconductor device
JPS62160712A (en) Manufacture of semiconductor device
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPH01147824A (en) Manufacture of semiconductor device
JPS61135110A (en) Manufacture of semiconductor device
JP2695462B2 (en) Crystalline semiconductor film and method for forming the same
JPS59121823A (en) Fabrication of single crystal silicon film
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS6147627A (en) Manufacture of semiconductor device
JPS6159820A (en) Manufacture of semiconductor device
JPH11121765A (en) Manufacture of semiconductor device
KR20030015618A (en) Method of manufacturing a crystalloid silicone
JPS63265464A (en) Manufacture of semiconductor device
JPH059089A (en) Method for growing crystal
JPH02177534A (en) Manufacture of semiconductor device
JPH01264215A (en) Manufacture of semiconductor device
JPH06342912A (en) Thin-film semiconductor device and manufacture thereof
JPS63271916A (en) Formation of silicon thin film
JPH05152334A (en) Manufacturing method of thin film transistor