JPH01147511A - Production of grooves spacer - Google Patents

Production of grooves spacer

Info

Publication number
JPH01147511A
JPH01147511A JP62305917A JP30591787A JPH01147511A JP H01147511 A JPH01147511 A JP H01147511A JP 62305917 A JP62305917 A JP 62305917A JP 30591787 A JP30591787 A JP 30591787A JP H01147511 A JPH01147511 A JP H01147511A
Authority
JP
Japan
Prior art keywords
spacer
inner layer
extrusion
spacer body
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305917A
Other languages
Japanese (ja)
Inventor
Masaaki Nakasuji
中筋 正章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62305917A priority Critical patent/JPH01147511A/en
Publication of JPH01147511A publication Critical patent/JPH01147511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a spacer having twisting grooves as designed by providing an inner layer, which consists of a thermoplastic resin whose viscosity is lower than the melt viscosity of a thermoplastic resin constituting the spacer main body, on the inside of the spacer main body having the twisting grooves and obtaining the spacer main body by extrusion coating in the state where the outside part of this inner layer is melted. CONSTITUTION:A coated steel wire 3 is inserted through a cross head 4 for spacer main body extrusion coating, and this cross head 4 is rotated to form the spacer main body by extrusion coating of a high density polyethylene having 0.30 MFR. At this time, the shape and dimensions of the hole of a die 5 provided in the cross head 4 are as shown in the figure, and a spacer 7 with SZ grooves which has twisting grooves 6 of 500mm pitch and has 8mm diameter is obtained in case of 2m/min linear speed, 150 deg.C extrusion resin temperature, 2.9mm extrusion nipple diameter, + or -100 deg. inversion of rotation of the cross head 4, and 4/min inversion period.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明は、周面に光ファイバや電線等を収納・保持する
ねじれ溝を有し、光ケーブルや通信用銅ケーブル等の製
造に使用される溝付スペーサの製造方法に関し、更に詳
言すると、歪みのないねじれ溝を有する溝付スペーサが
容易に製造できるように工夫したものである。
[Detailed Description of the Invention] <Industrial Application> The present invention has a twisted groove on the circumferential surface for storing and holding optical fibers, electric wires, etc., and is used for manufacturing optical cables, communication copper cables, etc. More specifically, the method of manufacturing a grooved spacer is devised so that a grooved spacer having a distortion-free twisted groove can be easily manufactured.

〈従来の技術〉 第4図には溝付スペーサの一例を示す。この溝付スペー
サ01は、中心に抗張力UA02を備えたスペーサ本体
03の周面に4本のねじれ溝04が形成されてなり、ね
じれ溝o4はねじれながらスペーサ本体03の長手方向
に伸びている。また、このねじれ溝04は一方向1こね
じれる螺旋状の場合と、スペーサ本体03の長手方向に
関して一定間隔毎にねじれ方向が反転している場合とが
あり、図にはねじれ溝04のねじれ方向が一定間隔毎に
反転してサインカーブ状となっている、いわゆるSZス
ペーサを示しである。なお、抗張力線02は、鋼線、鋼
撚線、FRP (繊維強化プラスチック)等からなり、
また、スペーサ本体03は例えばポリエチレン、ポリア
ミド。
<Prior Art> FIG. 4 shows an example of a grooved spacer. This grooved spacer 01 has four twisted grooves 04 formed on the circumferential surface of a spacer body 03 having a tensile strength UA02 at the center, and the twisted grooves o4 extend in the longitudinal direction of the spacer body 03 while being twisted. In addition, this twisted groove 04 may have a spiral shape with one twist in one direction, or the twist direction may be reversed at regular intervals in the longitudinal direction of the spacer body 03. This shows a so-called SZ spacer in which the spacer is reversed at regular intervals to form a sine curve. In addition, the tensile strength wire 02 is made of steel wire, steel stranded wire, FRP (fiber reinforced plastic), etc.
Further, the spacer body 03 is made of, for example, polyethylene or polyamide.

ポリエステル等の熱可塑性樹脂からなる。Made of thermoplastic resin such as polyester.

このような溝付スペーサは一般に、第5図に示すように
、原料供給用のニップル05と押出成形される溝付スペ
ーサの形状を決定するダイス06とを備えたクロスヘツ
ド07に抗張力!ts02を挿通し、該抗張力線02及
びクロスヘツド07の何れか一方又は両者を回転させな
がら押出被覆することにより製造されている。
As shown in FIG. 5, such a grooved spacer generally has a crosshead 07 equipped with a nipple 05 for supplying raw materials and a die 06 that determines the shape of the grooved spacer to be extruded. It is manufactured by inserting the ts02 and extrusion coating the tensile strength wire 02 and/or the crosshead 07 while rotating either or both.

〈発明が解決しようとする問題点〉 上述したような製造方法では、抗張力線02とクロスヘ
ツド07との相対的な回転によりねじれ溝04のねしれ
状態が決定されるが、溶融状態にある原料の熱可塑性樹
脂の粘性の影響により、一方の回転が他方に伝達され、
例えば抗張力線02が予定外にねじれてしまい、ねじれ
溝02の形状が設計とずれるという問題があった。この
問題は、ねじれ溝04のねじれ方向が適宜間隔毎に反転
するいわゆるSZスペーサの製造において特に重大であ
り、第6図に示すように、理想的なサインカーブaのね
じれ溝を得ようとしても実際にはbのようにずれたもの
しか得られなかった。
<Problems to be Solved by the Invention> In the manufacturing method described above, the torsion state of the helical groove 04 is determined by the relative rotation between the tensile strength line 02 and the crosshead 07. Due to the effect of the viscosity of the thermoplastic, rotation from one side is transmitted to the other,
For example, there was a problem that the tensile strength line 02 was twisted unexpectedly, and the shape of the twisted groove 02 was deviated from the design. This problem is particularly serious in the manufacture of so-called SZ spacers in which the twist direction of the twist groove 04 is reversed at appropriate intervals. In reality, only deviations like b were obtained.

例えば、抗張力線;よそのままでクロスヘツドを回転さ
せろ場合、りqスヘッドの回転が溶融樹脂を介して抗張
力線に伝達され、クロスヘツドの左右への各180”の
回転により抗張力線も左右者50°程度回転してしまう
。勿論、この程度は抗張力線の剛性、太さによっても異
なる。
For example, if the crosshead is rotated while the tensile strength line remains unchanged, the rotation of the squirrel head will be transmitted to the tensile strength line through the molten resin, and by rotating the crosshead 180" to the left and right, the tensile strength line will also rotate approximately 50 degrees on both sides. It will rotate.Of course, the degree of this will vary depending on the stiffness and thickness of the tensile strength line.

本発明は、このような事情に鑑み、設計通りのねじれ溝
を有する溝付スペーサを製造しうる溝付スペーサの製造
方法を提供することを目的とする。
In view of such circumstances, an object of the present invention is to provide a method for manufacturing a grooved spacer that can manufacture a grooved spacer having a twisted groove as designed.

く問題点を解決するための手段〉 前記目的を達成する本発明の構成は、抗張力線に熱可塑
性樹脂を押出被覆することにより、周面に光ファイバ、
電線等を収納するねじれ溝を有する溝付スペーサを製造
する方法において、上記ねじれ溝を有するスペーサ本体
の内側に、該スペーサ本体を構成する熱可塑性樹脂の溶
融粘度より小さい溶融粘度を有する熱可塑性樹脂からな
る内層を設け、該内層の少なくとも外側部分が溶融状態
の下で上記スペーサ本体を押出被覆することを押出被覆
する。
Means for Solving the Problems〉 The structure of the present invention that achieves the above-mentioned object is to coat the tensile strength wire with a thermoplastic resin by extrusion, thereby forming an optical fiber on the peripheral surface.
In a method for manufacturing a grooved spacer having a twisted groove for storing electric wires, etc., a thermoplastic resin having a melt viscosity lower than the melt viscosity of the thermoplastic resin constituting the spacer body is placed inside the spacer body having the twisted groove. and extrusion coating the spacer body, at least an outer portion of the inner layer being extrusion coated under molten conditions.

本発明において上記内層とスペーサ本体とは別々に押出
被覆してもよいし、同時に押出被覆してもよい。
In the present invention, the inner layer and the spacer body may be extrusion coated separately or may be extrusion coated simultaneously.

予じめ抗張力線に内層まで被覆した後、スペーサ本体を
押出被覆すると、この被覆の際、スペーサ本体を構成す
る溶融した熱可塑性樹脂の熱により上記内層の少なくと
も外側が溶融するO即ち・内層の少なくとも外側部分カ
ダ溶融状態の下でスペーサ本体が押出被覆されろことに
なる。なお、この場合、内層側を予め加熱しておけばス
ペーサ本体被覆の際に該内層の外側が溶融し易くなる。
After coating the tensile strength wire up to the inner layer in advance, if the spacer body is extruded and coated, during this coating, at least the outside of the inner layer will melt due to the heat of the molten thermoplastic resin that constitutes the spacer body. The spacer body will be extrusion coated while at least the outer portion of the spacer body is in a molten state. In this case, if the inner layer side is heated in advance, the outer side of the inner layer will easily melt when the spacer body is coated.

一方、例えハ2 @押出クロスヘツドなどにより、内層
とスペーサ本体とを同時に押出被覆するようにしても、
内層が溶融状態のときにスペーサ本体が押出被覆される
ことになる。
On the other hand, even if the inner layer and the spacer body are extruded and coated at the same time using an extrusion crosshead or the like,
The spacer body will be extrusion coated while the inner layer is in the molten state.

このように、内層の少なくとも外側部分が溶融状態の下
で上記スペーサ本体を押出被覆すると、この際、抗張力
線あるいは押出ヘッドを回転させても、相互間の回転の
伝達が内房の溶融した少なくとも外側部分により吸収さ
れるので、ねじれ溝が設計通りに形成されろ。即ち、例
えば、押出ヘッドを回転させながらスペーサ本体を押出
被覆しても、溶融状態にある該スペーサ本体の原料の熱
可塑性樹脂の粘性を介しての回転力が、内層の溶融部分
で吸収され、直接抗張力線に伝わることがなくなる。
In this way, when the spacer body is extruded and coated while at least the outer portion of the inner layer is in a molten state, even if the tensile strength line or the extrusion head is rotated, rotational transmission between the inner layer and at least the molten outer portion of the inner layer is prevented. Since it is absorbed by the part, the twisted groove should be formed as designed. That is, for example, even if the spacer body is extruded and coated while rotating the extrusion head, the rotational force through the viscosity of the thermoplastic resin that is the raw material of the spacer body in a molten state is absorbed by the molten part of the inner layer. The tensile force is no longer transmitted directly to the tensile line.

スペーサ本体を構成する熱可塑性樹脂としては、ポリエ
チレン、ポリアミド、ポリエステルなどを挙げることが
できるが、例えば高密度ポリエチレンの場合にはMFR
(メルトフロレート)が0.5〜5程度の溶融粘度を用
いるのが好ましい。一方、内層を構成する熱可塑性樹脂
も同様のものが使用できるが、例えば高密度ポリエチレ
ンの場合にはMFRが10〜50程度の溶融粘度を有す
るものを用いるのが好ましい。なお、スペーサ本体は必
要に応じて複数の層で構成してもよく、また、内層の内
側に別の被覆石を設けても差支えない。
Examples of the thermoplastic resin constituting the spacer body include polyethylene, polyamide, and polyester. For example, in the case of high-density polyethylene, MFR
It is preferable to use a melt viscosity of about 0.5 to 5 (melt fluorate). On the other hand, similar thermoplastic resins can be used for forming the inner layer, but for example, in the case of high-density polyethylene, it is preferable to use one having a melt viscosity with an MFR of about 10 to 50. Note that the spacer body may be composed of a plurality of layers as necessary, and another covering stone may be provided inside the inner layer.

また、抗張力線としては、鋼線、ステンレススチール線
、FRPI%、プラスチック線等の単線あるいは撚線な
と並びに鋼線等にプラスチック被覆を施したものを挙げ
ることができる。
Further, examples of the tensile strength wire include steel wires, stainless steel wires, FRPI% wires, plastic wires, and other single wires or stranded wires, as well as steel wires coated with plastic.

〈実 施 例〉 実施例1 第1図に示すように、直径2.4開の鋼線からなる抗張
力線1にMFRが35の高密度ポリエチレンからなる内
M2を厚さ0.15mmに押出被覆し、直径2.7胴の
被覆鋼線3を準備した。この際の押出条件は、線速10
m/分、押出樹脂温度180℃、押出ニップル径2.6
mm、押出ダイ径2.8mmであった。
<Example> Example 1 As shown in Fig. 1, a tensile strength wire 1 made of a steel wire with a diameter of 2.4 mm was extruded and coated with an inner M2 made of high-density polyethylene with an MFR of 35 to a thickness of 0.15 mm. Then, a coated steel wire 3 having a diameter of 2.7 mm was prepared. The extrusion conditions at this time were a linear speed of 10
m/min, extrusion resin temperature 180℃, extrusion nipple diameter 2.6
mm, and the extrusion die diameter was 2.8 mm.

この被覆鋼線3をスペーサ本体押出被覆用クロスヘツド
4に押通し、該クロスヘツド4を回転させながらMFR
が0.30の高密度ポリエチレンを押出被覆してスペー
サ本体を形成した。このときのクロスヘツド4に備えら
れたダイス5の穴形状、穴寸法は第2図に示す通りであ
った。この押出被覆の条件は、線速2m/分、押出樹脂
温度150℃、押出ニップル径2.9mmで、クロスヘ
ツド4の回転は±100度の反転とし、反転周期は4回
/分とした。
This coated steel wire 3 is pushed through the crosshead 4 for extrusion coating the spacer body, and while rotating the crosshead 4, the MFR is
The spacer body was formed by extrusion coating high density polyethylene having a diameter of 0.30. At this time, the hole shape and hole dimensions of the die 5 provided in the crosshead 4 were as shown in FIG. The conditions for this extrusion coating were a line speed of 2 m/min, an extrusion resin temperature of 150°C, an extrusion nipple diameter of 2.9 mm, a rotation of the crosshead 4 of ±100 degrees, and a reversal period of 4 times/min.

これにより第3図(alに示す断面形状を有し、第3図
(b)に示すように反転角度±100度、ピッチ500
 mmのねじれ溝6を有する直径8mmのSZ型溝付ス
ペーサ7を得た。
As a result, it has a cross-sectional shape as shown in FIG.
An SZ type grooved spacer 7 having a diameter of 8 mm and having a twisted groove 6 of mm in diameter was obtained.

この溝付スペーサ7のねじれ溝6はほぼθ= 100 
幽(工L)となっており、理想的なねじれ溝となってい
た。なお、ここでθ(度)はスペーサ7のねじれ溝6の
基準点からのねじれ角度、1(mm)はスペーサの基準
点からの長さ、p(mm)はピッチを示す。
The twisted groove 6 of this grooved spacer 7 is approximately θ=100
It had a rough shape (engineering L), making it an ideal twisting groove. Here, θ (degrees) indicates the twist angle of the twisted groove 6 of the spacer 7 from the reference point, 1 (mm) indicates the length of the spacer from the reference point, and p (mm) indicates the pitch.

実施例2 2種類の熱可塑性樹脂を面心円状に同時に押出被覆でき
るクロスヘツド、いわゆる2Ni押出型クロスヘツドを
用いて実施例1と同様な溝付スペーサを製造した。
Example 2 A grooved spacer similar to that of Example 1 was manufactured using a so-called 2Ni extrusion type crosshead, which is a crosshead capable of simultaneously extruding and coating two types of thermoplastic resins in a face-centered circle.

2層押出型クロスヘツドに直径2.4mmの鋼線を挿通
し、第1層の内層にはMFR35の高密度ポリエチレン
、第2層のスペーサ本体にはMFRo、30の高密度ポ
リエチレンを使用し、線速2m/分で同時に押出被覆し
た。
A steel wire with a diameter of 2.4 mm is inserted into a two-layer extruded crosshead, and the inner layer of the first layer is made of high-density polyethylene with an MFR of 35.The inner layer of the second layer is made of high-density polyethylene with an MFR of 30. Coating was carried out simultaneously by extrusion at a speed of 2 m/min.

なお、この押出時の樹脂温度は150℃とし、第1層と
なる内層押出用のニップルは径2.5mm1ダイ(第2
層のスペーサ本体用のポイントを兼ねろ)は径2.6m
m、第2層のスペーサ本体用のダイは実施例1と同様第
3図に示す穴形状、寸法を有するものを用いた。また、
クロスヘツドの回転は実施例1と同様とした。
The resin temperature during this extrusion was 150°C, and the nipple for extruding the inner layer, which is the first layer, was 1 die with a diameter of 2.5 mm (the second
The diameter of the layer (which also serves as a point for the spacer body) is 2.6 m.
m. The die for the second layer spacer body had the hole shape and dimensions shown in FIG. 3, as in Example 1. Also,
The rotation of the crosshead was the same as in Example 1.

これにより直径8mm、反転角度±100度、ピッチ5
00 mmのSZ型溝付スペーサを得た。
This results in a diameter of 8 mm, an inversion angle of ±100 degrees, and a pitch of 5
00 mm SZ type grooved spacer was obtained.

この溝付スペーサのねじれ溝のねじれ状態を調べたとこ
ろ、実施例1と同様に、はぼθ= 1000I11(1
「)となっていた。
When the twisted state of the twisted groove of this grooved spacer was investigated, it was found that, as in Example 1, θ = 1000I11 (1
).

実施例3 鋼線上に被覆する内層をMFR6,0の高密度ポリエチ
レンとし、被覆鋼線に実施例1と同様にスペーサ本体を
押出被覆する際の予熱温度を170℃とする以外は実施
例1と同様に処理し、実施例1と同様のSZ型溝付スペ
ーサを得た。
Example 3 Same as Example 1, except that the inner layer coated on the steel wire was made of high-density polyethylene with an MFR of 6.0, and the preheating temperature when extruding and coating the coated steel wire with the spacer body was 170°C. The same process was carried out to obtain an SZ type grooved spacer similar to that of Example 1.

比較例1 直径2.4mmの鋼線にMFR3,0の高密度ポリエチ
レンを厚さ0.15mmに被覆し、直径2.7mmの被
覆鋼線を得た。このときの押出条件は、線速10m/分
、押出樹脂温度170℃、押出ニップル径2.6mm、
押出ダイ径2.8隅であった。
Comparative Example 1 A steel wire with a diameter of 2.4 mm was coated with high-density polyethylene having an MFR of 3.0 to a thickness of 0.15 mm to obtain a coated steel wire with a diameter of 2.7 mm. The extrusion conditions at this time were a linear speed of 10 m/min, an extrusion resin temperature of 170°C, an extrusion nipple diameter of 2.6 mm,
The extrusion die diameter was 2.8 corners.

この被覆m線を実施例1と同様のスペーサ本体押出被覆
用クロスヘツドに挿通し、実施例1と全く同一の条件で
MFRo、30の高密度ポリエチレンからなるスペーサ
本体を押出被覆した。
This coated m-wire was passed through a crosshead for extrusion coating of a spacer body similar to that in Example 1, and a spacer body made of MFRo, 30 high density polyethylene was extrusion coated under exactly the same conditions as in Example 1.

乙のようにして!4なSZ型ススペーサ本体ねじれを調
べたところ、その反転角が±72度であり、予定の±1
00度のねじれ溝ではなかった。
Do it like Otsu! When we investigated the torsion of the SZ type spacer body, we found that the inversion angle was ±72 degrees, which was ±1
It was not a 00 degree twist groove.

比較例2 回転クロスヘツド上145度とした以外は比較例1と同
様にして直径8111ffIのSZZ溝付スペーサを得
た。この溝付スペーサの反転角はほぼ±100度であっ
たが、第6図に示す曲線すのように理想的なサインカー
ブaとはずれたものであった。
Comparative Example 2 A SZZ grooved spacer having a diameter of 8111ffI was obtained in the same manner as Comparative Example 1 except that the angle was 145 degrees above the rotating crosshead. The reversal angle of this grooved spacer was approximately ±100 degrees, but it deviated from the ideal sine curve a as shown in FIG.

〈発明の効果〉 以上、実施例とともに具体的に説明したように、本発明
にかかる溝付スペーサの製造方法によれば、歪みのない
設計通りのねじれ溝を有する溝付スペーサを得ることが
できろ。
<Effects of the Invention> As described above in detail with the examples, according to the method for manufacturing a grooved spacer according to the present invention, it is possible to obtain a grooved spacer having a twisted groove as designed without distortion. reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す説明図、第2図は
そのダイスの断面図、第3図(,1は第1実施例の溝付
スペーサの断面図、第3図(b)はそのねじれ溝の状態
を示す説明図、第4図は従来技術にかかる溝付スペーサ
を示す説明図、第5図はその製造の一例を示す説明図、
第6図はそのねじれ溝の状態を示す説明図である。 図  面  中、 1は抗張力線、 2は内層、 3は被覆鋼線、 4はクロスヘツド1 5はダイス、 6はねじれ溝、 7は溝付スペーサである。 特  許  出  願 人 住友電気工業株式会社 代    理    人
1 is an explanatory diagram showing the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the die, and FIG. 3 is a cross-sectional view of the grooved spacer of the first embodiment. b) is an explanatory diagram showing the state of the twisted groove, FIG. 4 is an explanatory diagram showing a grooved spacer according to the prior art, and FIG. 5 is an explanatory diagram showing an example of its manufacture.
FIG. 6 is an explanatory diagram showing the state of the twisted groove. In the drawings, 1 is a tensile strength wire, 2 is an inner layer, 3 is a coated steel wire, 4 is a crosshead 1, 5 is a die, 6 is a twisted groove, and 7 is a grooved spacer. Patent application agent Sumitomo Electric Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 1)抗張力線に熱可塑性樹脂を押出被覆することにより
、周面に光ファイバ、電線等を収納するねじれ溝を有す
る溝付スペーサを製造する方法において、上記ねじれ溝
を有するスペーサ本体の内側に、該スペーサ本体を構成
する熱可塑性樹脂の溶融粘度より小さい溶融粘度を有す
る熱可塑性樹脂からなる内層を設け、該内層の少なくと
も外側部分が溶融状態の下で上記スペーサ本体を押出被
覆することを特徴とする溝付スペーサの製造方法。 2)内層を設けた後、スペーサ本体を押出被覆する特許
請求の範囲第1項記載の溝付スペーサの製造方法。 3)内層の外側にスペーサ本体を押出被覆する際、内層
側を予め加熱する特許請求の範囲第2項記載の溝付スペ
ーサの製造方法。 4)内層とスペーサ本体とを同時に押出被覆する特許請
求の範囲第1項記載の溝付スペーサの製造方法。
[Claims] 1) A method for producing a grooved spacer having a twisted groove on its peripheral surface for accommodating an optical fiber, an electric wire, etc. by extrusion coating a tensile strength wire with a thermoplastic resin, wherein the spacer has the above-mentioned twisted groove. An inner layer made of a thermoplastic resin having a melt viscosity lower than that of the thermoplastic resin constituting the spacer body is provided inside the spacer body, and the spacer body is extruded while at least an outer portion of the inner layer is in a molten state. A method for producing a grooved spacer characterized by coating. 2) The method for manufacturing a grooved spacer according to claim 1, wherein after providing the inner layer, the spacer body is coated by extrusion. 3) The method for manufacturing a grooved spacer according to claim 2, wherein the inner layer side is heated in advance when extrusion coating the spacer body on the outside of the inner layer. 4) The method for manufacturing a grooved spacer according to claim 1, wherein the inner layer and the spacer body are simultaneously extruded and coated.
JP62305917A 1987-12-04 1987-12-04 Production of grooves spacer Pending JPH01147511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305917A JPH01147511A (en) 1987-12-04 1987-12-04 Production of grooves spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305917A JPH01147511A (en) 1987-12-04 1987-12-04 Production of grooves spacer

Publications (1)

Publication Number Publication Date
JPH01147511A true JPH01147511A (en) 1989-06-09

Family

ID=17950855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305917A Pending JPH01147511A (en) 1987-12-04 1987-12-04 Production of grooves spacer

Country Status (1)

Country Link
JP (1) JPH01147511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638478A (en) * 1994-07-06 1997-06-10 The Furukawa Electric Co., Ltd. Optical fiber cable having a grooved spacer formed with one or more SZ-spiral grooves on its outer circumference along the longitudinal direction of the spacer the inverting angle of each groove being at least 180°
WO2000023839A1 (en) * 1998-10-21 2000-04-27 Sumitomo Electric Industries, Ltd. Device and method for producing optical cable slot rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638478A (en) * 1994-07-06 1997-06-10 The Furukawa Electric Co., Ltd. Optical fiber cable having a grooved spacer formed with one or more SZ-spiral grooves on its outer circumference along the longitudinal direction of the spacer the inverting angle of each groove being at least 180°
WO2000023839A1 (en) * 1998-10-21 2000-04-27 Sumitomo Electric Industries, Ltd. Device and method for producing optical cable slot rod
EP1122572A1 (en) * 1998-10-21 2001-08-08 Sumitomo Electric Industries, Ltd. Device and method for producing optical cable slot rod
EP1122572A4 (en) * 1998-10-21 2002-06-19 Sumitomo Electric Industries Device and method for producing optical cable slot rod

Similar Documents

Publication Publication Date Title
JP3578076B2 (en) Self-supporting cable and method of manufacturing the same
JP3367415B2 (en) Flexible tube for endoscope and method for manufacturing the same
EP0287427A1 (en) Process for the production of profiles of a thermoplastic resin reinforced with continual fibres, device for obtaining them
JPH05508361A (en) Method of manufacturing tensile strength reinforced plastic sleeve
JP3954777B2 (en) Manufacturing method of strain sensing optical cable
JPH01147511A (en) Production of grooves spacer
JPH11510617A (en) Optical fiber cable and manufacturing method
JP3919897B2 (en) Manufacturing method of spacer for optical cable
JPH0248608A (en) Spacer for carrying optical fiber
JP3821930B2 (en) Optical fiber support spacer
JPH089685Y2 (en) Grooved spacer
CN100339734C (en) Method for manufacturing the spacer for optical fiber cable
US4907854A (en) Spacer for carrying optical fibers
JPH01166012A (en) Grooved spacer and its manufacture
JPH075328A (en) Slot for carrying optical fiber and its production, optical fiber cable using this slot and its production
JPH03110509A (en) Manufacture of spacer for carrying optical fiber
JPH0753044Y2 (en) Spacer for supporting optical fiber having spiral grooves that are alternately inverted
JPS6318311A (en) Manufacture of spacer for carrying optical fiber
JPH11190813A (en) Spacer for optical fiber cable and spacer manufacturing method
JPH05203849A (en) Self-supporting type cable
JP3040107B2 (en) Apparatus and method for manufacturing optical fiber supporting spacer having colored portion for identification
JPH09265027A (en) Production of single groove spiral slot
JP4199882B2 (en) Method for producing thermoplastic resin foam linear material
JPH09265028A (en) Production of double groove spiral slot
JPH02166411A (en) Assembled optical fiber cable and production thereof