CN100339734C - Method for manufacturing the spacer for optical fiber cable - Google Patents
Method for manufacturing the spacer for optical fiber cable Download PDFInfo
- Publication number
- CN100339734C CN100339734C CNB2005100652434A CN200510065243A CN100339734C CN 100339734 C CN100339734 C CN 100339734C CN B2005100652434 A CNB2005100652434 A CN B2005100652434A CN 200510065243 A CN200510065243 A CN 200510065243A CN 100339734 C CN100339734 C CN 100339734C
- Authority
- CN
- China
- Prior art keywords
- bushing
- covering layer
- optical fiber
- spacer
- fiber cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 14
- 125000006850 spacer group Chemical group 0.000 title abstract 9
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 239000004698 Polyethylene Substances 0.000 claims description 30
- 229920000573 polyethylene Polymers 0.000 claims description 30
- -1 polyethylene Polymers 0.000 claims description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims description 8
- 229920005989 resin Polymers 0.000 abstract description 56
- 239000011347 resin Substances 0.000 abstract description 56
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 239000011247 coating layer Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 abstract 1
- 238000001125 extrusion Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 8
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 241001147388 Uncia Species 0.000 description 6
- 238000002788 crimping Methods 0.000 description 6
- 235000015110 jellies Nutrition 0.000 description 6
- 239000008274 jelly Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 229920000092 linear low density polyethylene Polymers 0.000 description 5
- 239000004707 linear low-density polyethylene Substances 0.000 description 5
- 229920013716 polyethylene resin Polymers 0.000 description 5
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 3
- 229920006026 co-polymeric resin Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/441—Optical cables built up from sub-bundles
- G02B6/4413—Helical structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4407—Optical cables with internal fluted support member
- G02B6/4408—Groove structures in support members to decrease or harmonise transmission losses in ribbon cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/4471—Terminating devices ; Cable clamps
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本申请是中国专利申请01142934.8号的分案申请。This application is a divisional application of Chinese patent application No. 01142934.8.
技术领域technical field
本发明是关于光纤电缆用衬套(スペ一サ)、使用该衬套的光纤电缆及该衬套的制造方法,特别是有关控制收容光纤的螺旋槽的反转部的槽口倾角的技术。The present invention relates to a bushing for an optical fiber cable, an optical fiber cable using the bushing, and a method for manufacturing the bushing, and particularly relates to a technique for controlling the inclination angle of the inversion portion of a spiral groove for accommodating an optical fiber.
背景技术Background technique
为了降低光纤电缆的价格和铺设成本,光纤的小径化、轻量化、光的高密度化的研究已取得很大进展,因此严格要求收容光纤的用聚乙烯(PE)材料制成的光纤电缆用衬套的直径也要小、沟槽要深。In order to reduce the price and laying cost of optical fiber cables, great progress has been made in the research of reducing the diameter of optical fibers, reducing the weight, and increasing the density of light. Therefore, it is strictly required to use polyethylene (PE) materials to accommodate optical fibers The diameter of the bushing should also be small and the groove should be deep.
另外,对于空架的光纤电缆来说,除要求具有高的光密度外,已开始要求光纤末端的分支性能要好,为了满足这些要求,已大量使用了SZ型光纤电缆。这种光纤电缆使用由聚乙烯材料制造的衬套,衬套上收容光纤的螺旋槽的旋向呈周期性地反转(SZ型),并且在每个螺旋槽内收容有多根带状或单芯光纤。In addition, for the optical fiber cable of the empty frame, in addition to requiring high optical density, it has begun to require better branching performance at the end of the optical fiber. In order to meet these requirements, SZ optical fiber cables have been widely used. This kind of fiber optic cable uses a bush made of polyethylene material. The direction of rotation of the helical groove of the bush to accommodate the optical fiber is periodically reversed (SZ type), and a plurality of ribbons or ribbons are contained in each helical groove. single core fiber.
在SZ型衬套中收容硬直的光带(テ一プ)时,应该确保作为收容槽的尺寸而只形成光带必需的空间。When accommodating a rigid tape (tape) in the SZ-type bushing, it should be ensured that only the space necessary for the tape is formed as the size of the storage groove.
另外,构成螺旋槽的凸缘所用的聚乙烯树脂,在挤压成型时会产生三维成型收缩,即聚乙烯固化时再结晶产生的收缩和由于温度下降而引起的体积收缩的总和。In addition, the polyethylene resin used for the flange of the spiral groove will produce three-dimensional molding shrinkage during extrusion molding, that is, the sum of shrinkage caused by recrystallization when polyethylene is solidified and volume shrinkage caused by temperature drop.
在发生这样的成型收缩时,与在纵向没有收缩余量的单向卷拧的螺旋槽不同,在SZ型衬套时,仅在反转部位,能够实现在旋向反转以走捷近形式的凸缘纵向收缩,其结构,这样引起在旋向反转内侧的凸缘产生倾斜。When such molding shrinkage occurs, unlike the one-way spiral groove with no shrinkage allowance in the longitudinal direction, in the case of the SZ type bush, only at the reverse position, the rotation direction can be reversed to approach the form The flange shrinks longitudinally, and its structure is such that the flange on the inner side of the reversal of rotation is inclined.
而且螺旋槽凸缘越高(槽越深),这种倾斜现象就越严重,这一问题和前面提及的螺旋槽要保证足够的空间的问题,都是限制加深SZ型衬套螺旋槽的主要因素。Moreover, the higher the flange of the spiral groove (the deeper the groove), the more serious the inclination phenomenon. This problem and the problem of ensuring sufficient space for the spiral groove mentioned above all limit the deepening of the spiral groove of the SZ-type bushing. major factor.
顺便提一下,关于凸缘的倾斜,除了树脂的成型收缩以外,从喷嘴挤出时,由于树脂脱落的条件等的不同,被覆树脂之间产生的应力也是一个原因。Incidentally, regarding the inclination of the flange, in addition to the molding shrinkage of the resin, the stress generated between the coating resins is also a factor due to the difference in the conditions for the resin to fall out when extruding from the nozzle.
发明内容Contents of the invention
鉴于以上所存在的问题,本发明的目的就是可抑制光纤电缆用带SZ型螺旋槽的衬套在反转部槽的倾斜,并不会使传输损耗恶化而可实现加深SZ形衬套的槽深度。In view of the above problems, the purpose of the present invention is to suppress the inclination of the bushing with SZ-shaped helical groove for optical fiber cables in the groove of the inversion part, and to deepen the groove of the SZ-shaped bushing without deteriorating the transmission loss. depth.
为了解决上述问题,本发明采取以下技术方案:In order to solve the above problems, the present invention takes the following technical solutions:
一种光纤电缆用衬套的制造方法,该衬套的本体覆盖层被覆在中间覆盖层的外围,该衬套本体覆盖层,在中心抗拉体的周围用热可塑性树脂实施中间覆盖层,并具有沿纵向周期性地进行反转、且沿纵向连续的收容光纤用的螺旋槽,其特征在于:上述衬套本体覆盖层成型以后,从离开上述衬套外周一定距离的位置,通过冷却用空气喷嘴,将干燥空气吹向大致垂直于上述衬套的外周而进行冷却。A method for manufacturing a bushing for an optical fiber cable, the body covering layer of the bushing is covered on the periphery of the middle covering layer, the bushing body covering layer is provided with a thermoplastic resin around the central tensile body, and the middle covering layer is formed, and It has a spiral groove for accommodating optical fibers that is periodically inverted in the longitudinal direction and is continuous in the longitudinal direction, and is characterized in that after the covering layer of the bushing body is formed, cooling air passes through it from a position at a certain distance from the outer periphery of the bushing The nozzle blows dry air substantially perpendicularly to the outer periphery of the bush to cool it.
所述光纤电缆用衬套的制造方法,其特征在于:上述冷却用空气喷嘴相对以一定速度移动的衬套,沿上述衬套的移动方向,隔开一定距离而设置多段。The method for manufacturing a bushing for an optical fiber cable is characterized in that the cooling air nozzles are arranged in multiple stages at a certain distance apart from the bushing moving at a constant speed along the moving direction of the bushing.
所述光纤电缆用衬套的制造方法,其特征在于:用上述冷却用空气喷嘴的冷却,在构成上述螺旋槽侧面的凸缘其根部部分是优先提前进行的。The method of manufacturing the bushing for an optical fiber cable is characterized in that the cooling by the cooling air nozzle is preferentially performed at the root portion of the flange constituting the side surface of the spiral groove.
所述光纤电缆用衬套的制造方法,其特征在于:设有上述中间覆盖层的被覆抗拉线,预热而导入形成上述本体覆盖层的挤压机。The method for manufacturing a bush for an optical fiber cable is characterized in that the coated tensile wire provided with the above-mentioned intermediate covering layer is preheated and introduced into an extruder for forming the above-mentioned main body covering layer.
所述光纤电缆用衬套的制造方法,其特征在于:上述中间覆盖层选用与聚乙烯有相溶性的热可塑型树脂。The manufacturing method of the bushing for the optical fiber cable is characterized in that: the above-mentioned intermediate covering layer is made of thermoplastic resin compatible with polyethylene.
一种光纤电缆用衬套,该衬套的本体覆盖层被覆在中间覆盖层的外围,该衬套本体,在中心抗拉体的周围用热可塑性树脂实施中间覆盖层,并具有沿纵向周期性地进行反转、且沿纵向连续的收容光纤用的螺旋槽,其特征在于:上述螺旋槽,构成其侧面的凸缘的最小厚度在1.5~1.85毫米,槽深为2.5~2.8毫米,最大螺旋角在8.3°~11.9°A bushing for an optical fiber cable, the body covering layer of the bushing is covered on the periphery of the middle covering layer, and the bushing body is provided with a thermoplastic resin around the central tensile body, and has a longitudinal periodicity The spiral groove for receiving optical fibers that is reversed in a vertical direction and continuous in the longitudinal direction is characterized in that: the minimum thickness of the flange constituting the side of the spiral groove is 1.5~1.85 mm, the depth of the groove is 2.5~2.8 mm, and the maximum spiral groove The angle is 8.3°~11.9°
所述的光纤电缆用衬套,其特征在于:上述螺旋槽,其反转部的衬套横断面的槽口倾角在18°以下。The above-mentioned bushing for optical fiber cable is characterized in that: the inclination angle of the cross-section of the bushing at the inversion part of the above-mentioned spiral groove is less than 18°.
所述的光纤电缆用衬套,其特征在于:构成上述螺旋槽侧面的凸缘,设成从其根部到顶端部,其密度梯度是逐渐增加的。The above-mentioned bushing for optical fiber cable is characterized in that: the flange constituting the side of the spiral groove is set such that its density gradient gradually increases from the root to the top.
所述的光纤电缆用衬套,其特征在于:上述密度梯度是其根部的树脂密度与顶端部和中部的树脂密度相比较为最小。The above-mentioned bushing for an optical fiber cable is characterized in that the above-mentioned density gradient is such that the resin density at the root is the smallest compared with the resin density at the top and middle.
一种光纤电缆,其特征在于:使用了如权利要求1或4所述的光纤电缆用衬套,至少一个以上的上述螺旋槽内,收容有带状等的光纤。An optical fiber cable, characterized in that a fiber optic cable bushing according to
本发明用挤压成型的加工方法在中心抗拉体的周围被覆上热可塑性树脂材料中间覆盖层;在上述中间覆盖层的外围被覆上衬套本体覆盖层,该衬套本体覆盖层中开设有沿纵向连续的、收容光纤用的螺旋槽,并且该螺旋槽的旋向沿纵向周期性地反转;上述螺旋槽凸缘的最小厚度在1.0毫米以上,槽深2.0毫米以上,最大螺旋角在8°以上。In the present invention, an intermediate covering layer of thermoplastic resin material is coated on the periphery of the central tensile body by extrusion molding; the outer periphery of the above-mentioned intermediate covering layer is covered with a bushing body covering layer, and the bushing body covering layer has a A spiral groove that is continuous in the longitudinal direction for accommodating optical fibers, and the direction of rotation of the spiral groove is periodically reversed in the longitudinal direction; the minimum thickness of the flange of the spiral groove is more than 1.0 mm, the depth of the groove is more than 2.0 mm, and the maximum helix angle is Above 8°.
在此,对本发明的螺旋角进行说明:如图5所示,衬套上开设有多条螺旋槽,该螺旋槽与衬套纵轴或与其平行的轴之间的夹角θ,本发明中定义为螺旋角,其最大值叫最大螺旋角。Here, the helix angle of the present invention is described: as shown in Figure 5, a plurality of helical grooves are provided on the bushing, and the angle θ between the helical grooves and the longitudinal axis of the bushing or an axis parallel to it, in the present invention Defined as the helix angle, and its maximum value is called the maximum helix angle.
在衬套螺旋槽旋向反转部位的横截面中,上述螺旋槽的槽口倾角能够控制在18°以下。In the cross-section of the helical groove of the bush where the rotation direction is reversed, the inclination angle of the helical groove can be controlled below 18°.
在本发明的光纤电缆用衬套中,上述螺旋槽的凸缘,其材料密度从近根部到顶部逐渐增加,与顶部和中部的树脂密度相比,靠近根部的树脂密度最小。In the bushing for an optical fiber cable according to the present invention, the material density of the flange of the spiral groove increases gradually from near the root to the top, and the resin density near the root is the smallest compared with the resin density at the top and middle.
采用上述方法制成的光纤电缆用衬套,其上面至少有一条以上的螺旋槽内收容有带状或其他形状的光纤。In the bushing for optical fiber cable produced by the above method, at least one or more spiral grooves on the upper surface accommodate ribbon-shaped or other shaped optical fibers.
另外,在本发明的光纤电缆用衬套的制造方法中,上述衬套本体覆盖层(该衬套的本体覆盖层被覆在中间覆盖层的外围,本体覆盖层中开设有沿纵向连续的、收容光纤用的螺旋槽,其旋向沿纵向周期性地反向;上述中间覆盖层用热可塑性树脂材料制成,被覆在中心抗拉体的周围)成型以后,在上述衬套外围离开一定距离的位置上放置冷却用喷气嘴;干燥空气以近似垂直的方向吹向上述衬套的外围对衬套进行冷却。In addition, in the manufacturing method of the bushing for optical fiber cable of the present invention, the above-mentioned bushing body covering layer (the body covering layer of the bushing is covered on the periphery of the middle covering layer, and the body covering layer is provided with longitudinally continuous, accommodating The spiral groove for optical fiber, whose direction of rotation is periodically reversed along the longitudinal direction; the above-mentioned intermediate covering layer is made of thermoplastic resin material, and is covered around the central tensile body) Air nozzles for cooling are placed on the position; dry air is blown to the periphery of the above-mentioned bushing in an approximately vertical direction to cool the bushing.
上述冷却用喷气嘴对准以一定速度前进的衬套,沿上述衬套的前进方向设置若干组,组与组之间隔开一定距离。The above-mentioned cooling air nozzles are aimed at the bushes advancing at a certain speed, and several groups are arranged along the advancing direction of the above-mentioned bushes, and the groups are separated by a certain distance.
用这样的方法制造光纤电缆用衬套,衬套本体覆盖层成型以后,用如下方法进行冷却:在上述衬套外围离开一定距离的位置上放置冷却用喷气嘴,干燥空气以近似垂直的方向吹向上述衬套。The bushing for optical fiber cable is manufactured in this way. After the covering layer of the bushing body is formed, it is cooled by the following method: a cooling air nozzle is placed on the outer periphery of the bushing at a certain distance, and the dry air is blown in an approximately vertical direction. to the above bushing.
在这种冷却方法中,干燥空气能够直接吹到螺旋槽的沟底,使螺旋槽凸缘的根部较中部提前优先冷却,因此能够有效地防止螺旋槽凸缘倒向反向弯曲处的内侧;能够制得直径较小的衬套,该衬套中螺旋槽凸缘的最小厚度在1.0毫米以上,槽深2.0毫米以上,最大螺旋角在8°以上,且其旋向反转部位横断面的槽口倾角在18°以下。In this cooling method, the dry air can be directly blown to the bottom of the spiral groove, so that the root of the spiral groove flange is preferentially cooled earlier than the middle part, so it can effectively prevent the spiral groove flange from falling to the inner side of the reverse bend; A bushing with a smaller diameter can be produced, the minimum thickness of the helical groove flange in the bushing is more than 1.0mm, the groove depth is more than 2.0mm, the maximum helix angle is more than 8°, and the cross section of the reverse direction of the helix The inclination angle of the notch is below 18°.
另外,如果槽口倾角在18°以下,螺旋槽内收容光纤制成光纤电缆时,能够降低传导损失。In addition, if the inclination angle of the notch is less than 18°, the conduction loss can be reduced when the optical fiber is accommodated in the spiral groove to make an optical fiber cable.
在本发明中,上述被覆了中间覆盖层的中心抗拉体,可以在预加热以后导入加工上述本体覆盖层的挤压成型机。In the present invention, the above-mentioned central tensile body coated with the intermediate covering layer may be introduced into an extrusion molding machine for processing the above-mentioned main covering layer after being preheated.
另外,在本发明中,上述中间覆盖层的材料可以选用聚乙烯或与聚乙烯具有相溶性的热可塑型树脂。In addition, in the present invention, the material of the above-mentioned intermediate covering layer can be selected from polyethylene or a thermoplastic resin compatible with polyethylene.
附图的简要说明Brief description of the drawings
图1本发明所涉及的光纤电缆用衬套制造方法中,制造工序的主要部分的说明图Fig. 1 is an explanatory diagram of main parts of the manufacturing process in the manufacturing method of the optical fiber cable bushing according to the present invention
图2图1所示的制造方法所用的喷气嘴的详细说明图Fig. 2 Detailed diagram of the air nozzle used in the manufacturing method shown in Fig. 1
图3用图1所示的制造方法所制得到光纤电缆用衬套的断面图Fig. 3 is a sectional view of a bushing for an optical fiber cable manufactured by the manufacturing method shown in Fig. 1
图4光纤电缆用衬套的槽口倾角α的说明图Fig.4 Explanatory diagram of the inclination angle α of the notch of the bushing for optical fiber cables
图5衬套螺旋槽的螺旋角说明图Figure 5 Explanation of the helix angle of the helical groove of the bushing
本发明的具体实施方式Specific embodiments of the invention
下面举例说明本发明的最佳实施方式:The best embodiment of the present invention is illustrated below:
实施例1:Example 1:
将7根外径为φ1.4毫米的钢丝拧成一股钢绳作为中心抗拉体1导入十字头(クロスヘツド)中。在此中心抗拉体1的外周以200℃的温度一起挤压被覆备用内覆盖层2和备用外覆盖层3,得到被覆抗拉线4。该内覆盖层2为乙烯-丙烯酸乙酯(エチレン一エチルアクル一ト)共聚物树脂(GA-006,日本ユニカ一生产),该外覆盖层3为直链状低密度聚乙烯树脂(NUCG5350,日本ユニカ一生产),该被覆抗拉线4是,乙烯-丙烯酸乙酯共聚物树脂层的外径为φ4.8毫米、其外周的聚乙烯树脂的被覆外径为φ9.7毫米。7 steel wires with an outer diameter of φ1.4 mm are twisted into a steel rope as the
如图1所示,将上述被覆抗拉线4通过加热槽5进行预热,使其被覆抗拉线的外表温度达60℃。然后,将被覆抗拉线拉入挤压机7,挤压机7内装有与衬套断面形状相对应的旋转模具6。作为衬套本体树脂层8的形成用树脂,将MI=0.03(g/10min)的高密度聚乙烯树脂(Hizex6600M,三井化学生产),以6米/分钟的速度旋转挤压被覆后,经过冷却区9冷却,得到外径为15.7毫米的PE衬套10。As shown in FIG. 1 , the above-mentioned covered
如图2所示,在冷却区9,环形空气喷嘴11沿衬套10的移动方向、As shown in Figure 2, in the
每隔300毫米被设置三段。Three sections are set every 300 mm.
本例所用的空气喷嘴11具有:喷嘴支持部11a、设置在喷嘴支持部11a内部的环形空间11b、和冷却喷嘴11c。该冷却喷嘴11c环绕在环形空间11b的内周开口、尖端开口部向内部凸出,。作为冷却介质的干燥空气从环形空间11b的外缘侧送入。The
衬套10被插入冷却喷嘴11c的中间,按照给定的速度沿箭头所示的方向通过。被送到环形空间11b内的干燥空气通过冷却喷嘴11c,以20米3/秒的流量大致垂直地吹向衬套10,吹到衬套10的螺旋槽12的槽底,使得构成螺旋槽12侧面的凸缘13的根部较中间部分先行被冷却。The
另外,这种情况下,在上述实施例中,三段式设置的各喷嘴11的干燥空气吹出量设定成一样的条件,但是例如,也可能随着到了后一段使吹出的干燥空气量减少,或者使中间段的吹出的干燥空气量减少。而且,空气喷嘴11的设置段数,例如,可以根据冷却能力或者冷却介质的大小进行适当选择。In addition, in this case, in the above-mentioned embodiment, the amount of dry air blown out by each
再有,旋转模具6的树脂排出喷嘴,是使用其孔截面积被设计成:用要制成的PE衬套10横截面积Ss减去被覆抗拉线4的横截面积St后的截面积Sb(Sb=Ss-St)、除以喷嘴孔截面积Sn减去被覆抗拉线4的横截面积St后的截面积Snb(Snb=Sn-St)的值Sb/Snb为0.95。Furthermore, the resin discharge nozzle of the
所制得的PE衬套10,其横断面如图3所示,衬套本体覆盖层8的外围设有8个螺旋槽12,各螺旋槽12的槽深为2.8毫米、宽为2.8毫米,呈略U字形,在圆周方向成8个平均分布。The obtained
该螺旋槽12具有以反向节距为235毫米、反转角度为360°拧成呈SZ状的螺旋结构;这种螺旋槽具有目标尺寸形状,可满足各种规格。The
该聚乙烯衬套10,构成螺旋槽12的凸缘13的根本的最小凸缘厚度为1.5毫米,最大螺旋行进角为11.9°。In the
在测定槽口倾角a时,完全能够将槽口倾角控制在约15°。该槽口倾角a定义为如图4所示。When measuring the notch inclination a, it is quite possible to control the notch inclination at about 15°. The notch inclination angle a is defined as shown in FIG. 4 .
在PE衬套10的反转部截取一个横断面。作为连接衬套中心O和槽底中心部A的一直线L1、和连接槽底中心部A和槽顶中心部B的直线L2,该槽口倾角a是由这些直线L1和L2之间的夹角表示的。Take a cross-section at the inverted portion of the
另外,去除由衬套本体树脂层8所形成的SZ形衬套10的一根凸缘13,如图3所示。从凸缘的根部开始,到顶端将该凸缘分割成四段后,用密度梯度管来测量树脂的密度时,凸缘根部a为0.9497、凸缘中央b为0.9505、凸缘中央c为0.9505、凸缘顶端d为0.9503。In addition, one
也就是说,本实施例中,构成衬套10的螺旋槽12的凸缘13,从靠近根部开始到顶端部,其密度梯度被设成渐增的,该密度梯度为大致根部的树脂密度与顶部和中央部的树脂密度相比是最小的。That is to say, in the present embodiment, the density gradient of the
然后,在该SZ形衬套10的各螺旋槽12内,收容8根0.4毫米厚、0.6毫米宽的双芯带状光纤,灌上防止心线移动或者水浸入的胶状物(ジエリ一)后,通过卷压(押きえ巻き)进行外套被覆,制成128芯的SZ型光纤电缆。Then, in each
在测定该光纤电缆的光传输性能时,可以确定其具有0.21~0.22dB/km良好的性能。When the optical transmission performance of the optical fiber cable was measured, it was confirmed that it had a good performance of 0.21 to 0.22 dB/km.
实施例2:Example 2:
将7根外径为φ1.0毫米的钢丝拧成一股钢绳作为中心抗拉体1导入十字头(クロスヘツド)中。在此中心抗拉体1的外周以200℃的温度一起挤压被覆备用内覆盖层2和备用外覆盖层3,得到被覆抗拉线4。该内覆盖层2为乙烯-丙烯酸乙酯(エチレン一エチルアクル一ト)共聚物树脂(GA-006,日本尤尼卡生产的),该外覆盖层3为直链状低密度聚乙烯树脂(NUCG5350,日本尤尼卡生产),该被覆抗拉线4是,乙烯-丙烯酸乙酯共聚物树脂层的外径为φ3.6毫米、其外周的聚乙烯树脂的被覆外径为φ5.8毫米。
如同实施例1一样,将上述被覆抗拉线4通过加热槽5,预热到60℃,然后,拉入挤压机7,该挤压机7内装有与衬套断面形状相对应的旋转模具6。作为衬套本体树脂层8的形成用树脂,将MI=0.03(g/10min)的高密度聚乙烯树脂(Hizex6600M,三井化学生产),以7.5米/分钟的速度旋转挤压被覆后,经过冷却区9冷却,得到外径为11.2毫米的PE衬套10。As in Example 1, pass the above-mentioned coated
如同实施例1一样,在冷却区9,设置成三段式的空气喷嘴11。另外,旋转模具6的树脂喷嘴,使用在上述实施例1说明的那样,设计成Sb/Snb值为0.93。As in
所制得的PE衬套10a有6个沿圆周方向平均布置的螺旋槽12,各螺旋槽12深2.5毫米、宽2.5毫米,呈略U字形。该螺旋槽12具有以反转节距为240毫米,反转角360°卷拧成呈SZ状螺旋结构,具有目标的尺寸形状,且满足各种规格。The
该PE衬套10a的凸缘的根部最小厚度为1.85毫米,最大螺旋角为8.3°。The minimum thickness of the root of the flange of the
测定PE衬套10a的反转部横断面的槽口倾角a时,足以将槽口倾斜控制在约12°。When measuring the notch inclination angle a of the cross-section of the inverted portion of the
再者,去除本体树脂层所形成的SZ形衬套10a的一凸缘,从凸缘的根部开始,到顶端将该分割成四部分,用密度梯度管来测量各段树脂的密度时,凸缘根部a为0.9496、凸缘中央部b为0.9503、凸缘中央部c为0.9504、凸缘顶端d为0.9502。Furthermore, remove a flange of the SZ-shaped
然后,同实施例1一样,在各槽内收容4根0.4毫米厚、0.6毫米宽的双芯带状光导纤维,灌上胶状物,通过卷压进行外套被覆,制成48芯的SZ型光纤电缆。经测定,该光纤电缆具有0.20~0.22dB/kmd良好的光传输性能,。Then, as in Example 1, 4 double-core ribbon optical fibers with a thickness of 0.4 mm and a width of 0.6 mm are accommodated in each groove, filled with jelly, and coated by crimping to form a 48-core SZ type. optic fibre cable. After measurement, the optical fiber cable has a good optical transmission performance of 0.20-0.22dB/kmd.
实施例3:Example 3:
将外径为2.6毫米的单钢丝作为中心抗拉体导入十字头中。在此中心抗拉体的外周,以200℃的温度一起挤压被覆备用内覆盖层2和备用外覆盖层,得到被覆抗拉线4a。该内覆盖层为乙烯-丙烯酸乙酯(エチレン一エチルアクル一ト)共聚物树脂(GA-006,日本尤尼卡生产的),该外覆盖层为直链状低密度聚乙烯树脂(NUCG5350,日本尤尼卡生产),该被覆抗拉线4a是,乙烯-丙烯酸乙酯共聚物树脂层的外径为φ3.2毫米、其外周的聚乙烯树脂的被覆外径为φ4.5毫米。A single steel wire with an outer diameter of 2.6 mm is introduced into the crosshead as a central tensile body. On the periphery of the central tensile body, the spare inner covering layer 2 and the spare outer covering layer are co-extruded at a temperature of 200° C. to obtain a coated
如同实施例1一样,将上述被覆抗拉线4a通过加热槽5,预热到60℃,然后,拉入挤压机7,该挤压机7内装有与衬套断面形状相对应的旋转模具6。作为衬套本体树脂层8形成用树脂,将MI=0.03(g/10min)的高密度聚乙烯树脂(Hizex6600M,三井化学生产),以7m/min的速度旋转挤压被覆后,经过冷却区9冷却,得到外径为10.2mm的PE衬套10b。As in Example 1, the above-mentioned coated
如同实施例1一样,在冷却区9,设置成三段式的空气喷嘴11。另外,旋转模具6的树脂喷嘴,使用在上述实施例1说明的那样,设计成Sb/Snb值为0.94。As in
所获得的PE衬套10b有5个沿圆周方向平均布置的螺旋槽12,各螺旋槽12是槽深2.5毫米、槽宽3.0毫米,呈略U字形。该螺旋槽12具有以反转节距为150毫米,反转角为270°,呈SZ状的结构,且有制成目标的尺寸形状,可满足各种规格。The obtained
该PE衬套10b的凸缘的根部最小厚度为1.85毫米,最大螺旋角为8.3°。The root of the flange of the
测定PE衬套10a的反转部横断面的槽口倾角a时,以将槽口倾斜充分控制在约13°。When measuring the notch inclination angle a of the cross-section of the inverted portion of the
再者,去除本体树脂层所形成的SZ形衬套10ab的一凸缘,从凸缘的根部开始,到顶端将该分割成四部分,用密度梯度管来测量各段树脂的密度时,凸缘根部a为0.9498、凸缘中央部b为0.9505、凸缘中央部c为0.9504、凸缘顶端d为0.9503。Furthermore, a flange of the SZ-shaped bush 10ab formed by removing the body resin layer is divided into four parts from the root of the flange to the top. When measuring the density of each section of resin with a density gradient tube, the convex The flange base a is 0.9498, the flange center b is 0.9505, the flange center c is 0.9504, and the flange top d is 0.9503.
然后,同实施例1一样,在各槽内收容5根0.40毫米厚、1.1毫米宽的4芯带状光导纤维,灌上胶状物,通过卷压进行外套被覆,制成100芯的SZ型光纤电缆。经测定,该光纤电缆具有0.22dB/km良好的光传输性能。Then, as in Example 1, five 4-core ribbon optical fibers with a thickness of 0.40 mm and a width of 1.1 mm are accommodated in each groove, filled with jelly, and coated by crimping to form a 100-core SZ type. optic fibre cable. It has been determined that the optical fiber cable has a good optical transmission performance of 0.22dB/km.
实施例4:Example 4:
将芳香族聚酰胺纤维(ケブラ一3120dtex:东レデユポン公司生产)作为加强纤维,对其浸渍乙烯脂树脂(エスタ一H-6400,三井化学生产),收缩成型为外径4.5毫米,将其导入十字头模中,挤压被覆LLDPE树脂(NUCG5350,日本尤尼卡制);表面的覆盖树脂冷却后,在145℃的蒸气硬化槽中,使内部的乙烯脂树脂硬化,而得到外径为5.8毫米的被覆抗拉线4b。Aramid fiber (Kebra-3120dtex: manufactured by Toray Dupon Co., Ltd.) was used as a reinforcing fiber, which was impregnated with vinyl resin (Esta-H-6400, manufactured by Mitsui Chemicals), shrink-molded to an outer diameter of 4.5 mm, and introduced into the cross In the head mold, extrusion-coated LLDPE resin (NUCG5350, manufactured by Unika Japan); after cooling the surface-coated resin, harden the inner vinyl resin in a steam curing tank at 145°C to obtain an outer diameter of 5.8 mm The coated
如同实施例1一样,将上述被覆抗拉线4ab通过加热槽5,预热到60℃,然后,拉入挤压机7,该挤压机7装有与衬套断面形状相对应的旋转模具6。作为衬套本体树脂层8形成用树脂,将MI=0.03(g/10min)的高密度聚乙烯树脂(Hizex6600M,三井化学生产),以7.5m/min的速度旋转挤压被覆后,经过冷却区9冷却,得到外径为11.2mm的PE衬套10c。As in Example 1, the above-mentioned coated tensile wire 4ab is passed through the
如同实施例1一样,在冷却区9,设置成三段式的空气喷嘴11。另外,旋转模具6的树脂喷嘴,使用在上述实施例1说明的那样,设计成Sb/Snb值为0.93。As in
所获得的PE衬套10c有6个沿圆周方向平均布置的螺旋槽12,各螺旋槽12是槽深2.5毫米、槽宽2.5毫米,呈略U字形。该螺旋槽12具有以反转节距为240毫米,反转角为360°,呈SZ状的结构,且有制成目标的尺寸形状,可满足各种规格。The obtained
该PE衬套10c的凸缘的根部最小厚度为1.85毫米,最大螺旋角为8.3°。The root of the flange of the
测定PE衬套10c的反转部横断面的槽口倾角a时,以将槽口倾斜充分控制在约12°。When measuring the notch inclination angle a of the cross-section of the inverted portion of the
再者,去除本体树脂层所形成的SZ形衬套10c的一凸缘,从凸缘的根部开始,到顶端将该分割成四部分,用密度梯度管来测量各段树脂的密度时,凸缘根部a为0.9497、凸缘中央部b为0.9504、凸缘中央部c为0.9505、凸缘顶端d为0.9503。Furthermore, remove a flange of the SZ-shaped
然后,同实施例1一样,在各槽内收容4根0.40毫米厚、0.6毫米宽的双芯带状光导纤维,灌上胶状物,通过卷压进行外套被覆,制成48芯的SZ型光纤电缆。经测定,该光纤电缆具有0.22dB/km良好的光传输性能。Then, as in Example 1, 4 double-core ribbon optical fibers with a thickness of 0.40 mm and a width of 0.6 mm are accommodated in each groove, filled with jelly, and coated by crimping to form a 48-core SZ type. optic fibre cable. It has been determined that the optical fiber cable has a good optical transmission performance of 0.22dB/km.
实施例5:Example 5:
将7根外径为1.4毫米的钢线卷拧的钢捻线作为中心抗拉体1导入十字头中。在此中心抗拉体1的外周,以200℃的温度一起挤压被覆备用内覆盖层2和备用外覆盖层3,得到被覆抗拉线4。该内覆盖层2为乙烯-丙烯酸乙酯(エチレン一エチルアクル一ト)共聚物树脂(GA-006,日本尤尼卡生产的),该外覆盖层3为直链状低密度聚乙烯树脂(NUCG5350,日本尤尼卡生产),该被覆抗拉线4是,乙烯-丙烯酸乙酯共聚物树脂层的外径为φ4.8毫米、其外周的聚乙烯树脂的被覆外径为φ9.7毫米。7 steel twisted steel wires with an outer diameter of 1.4 mm are introduced into the crosshead as the central
如同实施例1一样,将上述被覆抗拉线4通过加热槽5,预热到60℃,然后,拉入挤压机7,该挤压机7内装有与衬套断面形状相对应的旋转模具6。作为衬套本体树脂层8形成用树脂,将MI=0.03(g/10min)的高密度聚乙烯树脂(Hizex6600M,三井化学生产),以6m/min的速度旋转挤压被覆后,经过冷却区9a冷却,得到外径为15.7mm的PE衬套10d。As in Example 1, pass the above-mentioned coated
在冷却区9,与实施例1同样构成的空气喷嘴11,沿衬套10d的移动方向、每隔300毫米被设置4段。In the
在本实施例的情况下,被送到环形空间11b内的干燥空气,通过各冷却喷嘴11c,相对衬套10d大致垂直地以20米3/HR的风速吹出并冷却。In the case of this embodiment, the dry air sent into the
另外,旋转模具6的树脂喷嘴,使用在上述实施例1说明的那样,设计成Sb/Snb值为0.95。In addition, the resin nozzle of the
所获得的PE衬套10d有8个沿圆周方向平均布置的螺旋槽12,各螺旋槽12是槽深2.8毫米、槽宽2.8毫米,呈略U字形。该螺旋槽12具有以反转节距为235毫米,反转角为360°呈SZ状的结构,且有制成目标的尺寸形状,可满足各种规格。The obtained
该PE衬套10d的凸缘的根部最小厚度为1.5毫米,最大螺旋角为11.9°。The root of the flange of the
测定PE衬套10d的反转部横断面的槽口倾角a时,以将槽口倾斜充分控制在约14°。When measuring the notch inclination angle a of the cross-section of the inverted portion of the
再者,去除本体树脂层所形成的SZ形衬套10c的一凸缘,从凸缘的根部开始,到顶端将该分割成四部分,用密度梯度管来测量各段树脂的密度时,凸缘根部a为0.9498、凸缘中央部b为0.9505、凸缘中央部c为0.9506、凸缘顶端d为0.9504。Furthermore, remove a flange of the SZ-shaped
然后,同实施例1一样,在各槽内收容8根0.4毫米厚、0.6毫米宽的双芯带状光导纤维,灌上胶状物,通过卷压进行外套被覆,制成128芯的SZ型光纤电缆。经测定,该光纤电缆具有0.21dB/km良好的光传输性能。对比实施例1Then, as in Example 1, 8 double-core ribbon optical fibers with a thickness of 0.4 mm and a width of 0.6 mm are accommodated in each groove, filled with jelly, and coated with a jacket by crimping to form a 128-core SZ type. optic fibre cable. It has been determined that the optical fiber cable has a good optical transmission performance of 0.21dB/km. Comparative Example 1
作为衬套本体树脂的冷却方法,一边穿过在出口处有孔径16.5毫米的密封圈的、长1米、内径75毫米的SUS导管,边在管内从管的下方注入40℃的温水,使添加界面催化剂(マ一ポンFL-30,松本油脂公司生产)的浓度成为0.1%,使水从管的上方溢出,由此进行冷却固化。除此方法之外,用与实施例1同样的方法制造外径为15.7毫米的PE衬套。As a method of cooling the resin of the bushing body, while passing through a SUS pipe with a length of 1 meter and an inner diameter of 75 mm and a seal ring with a hole diameter of 16.5 mm at the outlet, warm water at 40 ° C is injected into the pipe from the bottom of the pipe to make the added The concentration of the interface catalyst (Maipon FL-30, manufactured by Matsumoto Yushi Co., Ltd.) was set to 0.1%, and water was allowed to overflow from the upper side of the tube to cool and solidify. Except for this method, a PE bush with an outer diameter of 15.7 mm was produced in the same manner as in Example 1.
用这种方法冷却固化的SZ型衬套虽然其断面尺寸、反转节距和反转角度与实施例1的完全一样,但测定反转部横截面的槽口倾角a时,约为25°,即槽口倾斜严重。Although the cross-sectional size, reverse pitch and reverse angle of the SZ bushing cooled and solidified by this method are exactly the same as those in Example 1, when the notch inclination a of the cross section of the reverse part is measured, it is about 25° , that is, the notch is heavily inclined.
再者,去除本体树脂层所形成的SZ形衬套1的一凸缘,从凸缘的根部开始,到顶端将该分割成四部分,用密度梯度管来测量各段树脂的密度时,凸缘根部a为0.9512、凸缘中央部b为0.9511、凸缘中央部c为0.9508、凸缘顶端d为0.9503。Furthermore, a flange of the SZ-shaped
然后,同实施例1一样,在各槽内分别收容8根双芯带状光导纤维,灌上胶状物,通过卷压进行外套被覆,制成128芯的SZ型光纤电缆。经测定,该光纤电缆具有0.25~0.55dB/km良好的光传输性能。Then, as in Example 1, 8 double-core ribbon-shaped optical fibers were respectively accommodated in each groove, filled with jelly, and coated with a jacket by crimping to make a 128-core SZ optical fiber cable. After measurement, the optical fiber cable has a good optical transmission performance of 0.25-0.55dB/km.
本发明的效果:Effect of the present invention:
上述实施例说明的那样,用本发明的制造方法制造的光纤电缆用衬套以及使用该衬套的光纤电缆,能够在有效控制反转部的槽口倾斜,能够在不会使传输损耗恶化,可实现加深SZ形衬套的槽的深度。As described in the above-mentioned embodiments, the bushing for an optical fiber cable manufactured by the manufacturing method of the present invention and the optical fiber cable using the bushing can effectively control the inclination of the notch of the inversion portion, without deteriorating the transmission loss, It is possible to deepen the groove depth of the SZ-shaped bush.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP374477/2000 | 2000-12-08 | ||
JP2000374477A JP3924426B2 (en) | 2000-12-08 | 2000-12-08 | Manufacturing method of spacer for optical fiber cable |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011429348A Division CN1232853C (en) | 2000-12-08 | 2001-11-30 | Liner for optical cable and its making process and optical cable with the liner |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1690751A CN1690751A (en) | 2005-11-02 |
CN100339734C true CN100339734C (en) | 2007-09-26 |
Family
ID=18843661
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011429348A Expired - Lifetime CN1232853C (en) | 2000-12-08 | 2001-11-30 | Liner for optical cable and its making process and optical cable with the liner |
CNB2005100652434A Expired - Lifetime CN100339734C (en) | 2000-12-08 | 2001-11-30 | Method for manufacturing the spacer for optical fiber cable |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011429348A Expired - Lifetime CN1232853C (en) | 2000-12-08 | 2001-11-30 | Liner for optical cable and its making process and optical cable with the liner |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3924426B2 (en) |
KR (1) | KR20020045520A (en) |
CN (2) | CN1232853C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5505594B2 (en) * | 2009-03-11 | 2014-05-28 | 株式会社リコー | Optical scanning apparatus and image forming apparatus |
JP5593952B2 (en) * | 2010-08-20 | 2014-09-24 | 住友電気工業株式会社 | Manufacturing method and manufacturing apparatus for optical cable slot |
CN105365185A (en) * | 2015-11-26 | 2016-03-02 | 南京华信藤仓光通信有限公司 | Production method and production device for SZ framework core for cable |
KR102488172B1 (en) * | 2021-12-24 | 2023-01-19 | 주식회사 그린피앤피 | Forming apparatus double wall sewer pipe and Double wall sewer pipe manufacturing equipment included the same |
CN115371388B (en) * | 2022-06-05 | 2024-04-02 | 山东基舜新材料科技有限公司 | Heating device for be used for new material processing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5160359A (en) * | 1990-07-11 | 1992-11-03 | Alcatel N.V. | Apparatus and method for drawing an optical fiber from a solid blank |
JPH10226531A (en) * | 1997-02-10 | 1998-08-25 | Furukawa Electric Co Ltd:The | Optical fiber drawing device |
JPH10232334A (en) * | 1997-02-21 | 1998-09-02 | Fujikura Ltd | Method for falling coated optical fibers into filamentary body with sz groove |
JPH11190813A (en) * | 1997-12-25 | 1999-07-13 | Ube Nitto Kasei Co Ltd | Spacer for optical fiber cable and spacer manufacturing method |
CN1259210A (en) * | 1997-06-06 | 2000-07-05 | Mtg-梅尔特朗有限公司 | Method and light generating apparatus for optical fiber use |
-
2000
- 2000-12-08 JP JP2000374477A patent/JP3924426B2/en not_active Expired - Lifetime
-
2001
- 2001-11-16 KR KR1020010071331A patent/KR20020045520A/en not_active Application Discontinuation
- 2001-11-30 CN CNB011429348A patent/CN1232853C/en not_active Expired - Lifetime
- 2001-11-30 CN CNB2005100652434A patent/CN100339734C/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5160359A (en) * | 1990-07-11 | 1992-11-03 | Alcatel N.V. | Apparatus and method for drawing an optical fiber from a solid blank |
JPH10226531A (en) * | 1997-02-10 | 1998-08-25 | Furukawa Electric Co Ltd:The | Optical fiber drawing device |
JPH10232334A (en) * | 1997-02-21 | 1998-09-02 | Fujikura Ltd | Method for falling coated optical fibers into filamentary body with sz groove |
CN1259210A (en) * | 1997-06-06 | 2000-07-05 | Mtg-梅尔特朗有限公司 | Method and light generating apparatus for optical fiber use |
JPH11190813A (en) * | 1997-12-25 | 1999-07-13 | Ube Nitto Kasei Co Ltd | Spacer for optical fiber cable and spacer manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN1232853C (en) | 2005-12-21 |
CN1690751A (en) | 2005-11-02 |
JP3924426B2 (en) | 2007-06-06 |
CN1357773A (en) | 2002-07-10 |
JP2002174758A (en) | 2002-06-21 |
KR20020045520A (en) | 2002-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1032230C (en) | Underwater cables incorporating optical fibers | |
JP3402472B2 (en) | Optical fiber cable spacer, method of manufacturing the same, and optical fiber cable using the spacer | |
EP1411378A2 (en) | Non-round filler rods and tubes with superabsorbent water swellable material for large optical cables | |
CN1234512A (en) | Optical cable and manufacturing method thereof | |
CN1279773A (en) | Optical cable | |
CN100339734C (en) | Method for manufacturing the spacer for optical fiber cable | |
JP5507369B2 (en) | Die for extrusion molding of spacer for optical fiber cable, and manufacturing method of spacer for optical fiber cable | |
CN1130582C (en) | Method of manufacturing self-support optical cable | |
CN107340577A (en) | A kind of self-supporting layer-twisted type anti-rat-bite optical cable and its manufacture method | |
CN100347793C (en) | Loose tube optical cable having straight aggregation structure | |
CN1133887C (en) | Centralized coating mould device for producing separable optical fiber belt and its producing method | |
CN1344200A (en) | Method for producing synthetic resin wire | |
CN1011087B (en) | Optical fiber unit | |
CN1433526A (en) | Optical fiber cable | |
CN1205443A (en) | Optical cables and bushings for optical cables | |
JPH06507127A (en) | manufacturing cable | |
CN1729544A (en) | Protective tubes for communication cables and communication lines | |
CN110239059B (en) | Special screw rod for extruding high-flame-retardant low-smoke halogen-free cable material | |
CN1207600C (en) | Optical cable isolator and its making process | |
JP3919897B2 (en) | Manufacturing method of spacer for optical cable | |
CN1655918A (en) | Plastic optical product, plastic optical fiber, apparatus for manufacturing plastic optical part, and method for manufacturing plastic optical part and plastic optical product | |
CN1246718C (en) | Apparatus for assembling optical cable and method thereof | |
JPS648803B2 (en) | ||
CN1332858A (en) | Method and apparatus for manufacturing optical fibre cable and cable so manufactured | |
JPH0886944A (en) | Production of optical fiber cable with hanging wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20070926 |