JP2002174758A - Spacer for optical fiber cable, optical fiber cable using the spacer and method for manufacturing the spacer - Google Patents

Spacer for optical fiber cable, optical fiber cable using the spacer and method for manufacturing the spacer

Info

Publication number
JP2002174758A
JP2002174758A JP2000374477A JP2000374477A JP2002174758A JP 2002174758 A JP2002174758 A JP 2002174758A JP 2000374477 A JP2000374477 A JP 2000374477A JP 2000374477 A JP2000374477 A JP 2000374477A JP 2002174758 A JP2002174758 A JP 2002174758A
Authority
JP
Japan
Prior art keywords
spacer
optical fiber
fiber cable
groove
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000374477A
Other languages
Japanese (ja)
Other versions
JP3924426B2 (en
JP2002174758A5 (en
Inventor
Kazunori Watanabe
和憲 渡辺
Kenji Ito
憲治 伊藤
Toku Ishii
徳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2000374477A priority Critical patent/JP3924426B2/en
Priority to KR1020010071331A priority patent/KR20020045520A/en
Priority to CNB2005100652434A priority patent/CN100339734C/en
Priority to CNB011429348A priority patent/CN1232853C/en
Publication of JP2002174758A publication Critical patent/JP2002174758A/en
Publication of JP2002174758A5 publication Critical patent/JP2002174758A5/ja
Application granted granted Critical
Publication of JP3924426B2 publication Critical patent/JP3924426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4408Groove structures in support members to decrease or harmonise transmission losses in ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a spacer for an optical fiber cable by which a groove inclination of a spiral groove housing an optical fiber is controlled. SOLUTION: A coated high-tensile wire 4 in which a preliminary coating layer is provided in the outer periphery of a high-tensile body is pre-heated by passing through a heating tank 5, thereafter the wire is introduced into an extruder 7 having a rotating die 6 corresponding to the cross section shape of the spacer, the wire is guided to a cooling zone 9 to cool it after rotating, extruding and coating a spacer main body resin layer at prescribed speed, and whereby a PE spacer 10 is obtained. Three stages of ring shaped air nozzles are set up in the cooling zone 9 along the running direction of the spacer 10. Air is almost orthogonally brown out of the nozzles toward the spacer 10 and is brown against the groove bottom of the spacer 10, and the root part of a rib is cooled preferentially more than the middle part. The spacer 10 is specified by nearly 1.5 mm in the minimum rib thickness at the root of the rib demarcating the spiral groove, 11.9 degrees in the advancing angle and nearly 15 degrees in the groove inclination angle α.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバケーブル
用スペーサおよび同スペーサを用いた光ファイバケーブ
ル,同スペーサの製造方法に関し、特に、光ファイバを
収納するラセン溝の反転部における溝傾斜を抑制する技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spacer for an optical fiber cable, an optical fiber cable using the spacer, and a method of manufacturing the spacer. It is about technology.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】光ファイ
バケーブルの価格や布設コストを低減するため、ケーブ
ルの細径化、軽量化、光高密度化の検討が進められてお
り、光ファイバを収納担持するポリエチレン(PE)製
光ファイバケーブル用スペーサに関しても細径化・深溝
化の要求が厳しくなってきている。一方、最近の架空光
ファイバケーブルには、光高密度化に加えて光ファイバ
の中間後の分岐性能が必要とされはじめ、この要請に応
えるために、光ファイバ収納溝の螺旋方向が、周期的に
反転するPE製スペーサ(SZスペーサ)を使用し、か
つ各溝に複数のテープ状光ファイバ或いは単心光ファイ
バを収納したSZ型光ファイバケーブルが多く使用され
てきている。
2. Description of the Related Art In order to reduce the cost and installation cost of optical fiber cables, studies have been made on reducing the diameter, weight, and optical density of the cables. With regard to a polyethylene (PE) optical fiber cable spacer to be housed and carried, the demand for a smaller diameter and a deeper groove is becoming stricter. On the other hand, recent aerial optical fiber cables are beginning to require branching performance after the middle of the optical fiber in addition to increasing the optical density, and in order to respond to this demand, the spiral direction of the optical fiber housing groove is periodically changed. An SZ type optical fiber cable which uses a PE-made spacer (SZ spacer) which is inverted to the above and which accommodates a plurality of tape-shaped optical fibers or single-core optical fibers in each groove has been widely used.

【0003】ここで、SZスペーサに剛直な光テープを
収納する場合、収納溝の寸法としては必然的に光テープ
が稔れるだけのスペースを確保する必要がある。
Here, when a rigid optical tape is stored in the SZ spacer, it is necessary to secure a space for the optical tape to be fertile as the dimensions of the storage groove.

【0004】また、ラセン溝の側面を画成するリブのポ
リエチレン樹脂は、押出成形時に3次元的な成形収縮
(固化時の再結晶化による収縮と樹脂温度が下がること
による体積収縮の和)を生じる。
Further, the polyethylene resin of the ribs defining the side surfaces of the spiral groove has a three-dimensional molding shrinkage during extrusion molding (the sum of shrinkage due to recrystallization during solidification and volume shrinkage due to a decrease in resin temperature). Occurs.

【0005】このような成形収縮が発生したときに、長
手方向にリブの収縮する余裕がない一方向撚りスペーサ
と異なり、SZスペーサの場合には、反転部においての
み、反転カーブをショートカットする形でのリブの長手
収縮が可能であって、この結果、反転カーブの内側に対
するリブの倒れ込みが生じてしまう。
[0005] Unlike the one-way twist spacer, which has no room for the ribs to shrink in the longitudinal direction when such molding shrinkage occurs, in the case of the SZ spacer, only in the inversion portion, the inversion curve is short-cut. Of the rib can be longitudinally contracted, and as a result, the rib falls down inside the inversion curve.

【0006】この現象は、リブの高さが高い(溝深さが
深い)場合に助長されるため、先に述べた溝スペース確
保の問題と相俟って、SZスペーサを深溝化する場合の
阻害要因となっていた。
This phenomenon is promoted when the height of the ribs is high (groove depth is deep). Therefore, in combination with the above-mentioned problem of securing the groove space, it is difficult to make the SZ spacer deeper. It was an inhibiting factor.

【0007】ちなみに、このリブ倒れ込みについては、
樹脂の成形収縮以外として、口金から押出被覆する際、
樹脂の引き落とし条件等の違いによって、被覆樹脂同士
に引っ張り合いが生じる場合もあるものと思われる。
[0007] By the way, about this rib fall,
Other than resin molding shrinkage, when extrusion coating from a die,
It is considered that the coating resins may be pulled together by the difference in the conditions for pulling down the resins.

【0008】本発明は、このような従来の問題点に鑑み
てなされたものであって、光ファイバケーブル用SZ螺
旋溝付スペーサの反転部における溝傾斜を抑制し、伝送
損失を悪化させることなしにSZスペーサの深溝化を実
現することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and suppresses the inclination of a groove in an inversion portion of an SZ spiral grooved spacer for an optical fiber cable without deteriorating transmission loss. Another object of the present invention is to realize a deep groove of the SZ spacer.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、中心抗張力体の周囲にポリエチレンと相
溶性を有する熱可塑性樹脂で中間被覆層を施し、長手方
向に沿って周期的に方向が反転し、かつ、長手方向に連
続する光ファイバ収納用のラセン溝を有するスペーサ本
体被覆層が、前記中間被覆層の外周に設けられたポリエ
チレン製光ファイバケーブル用スペーサにおいて、前記
ラセン溝は、この側面を画成するリブの最小リブ厚みが
1.0mm以上、溝深さが2.0mm以上、最大ラセン
進行角が8度以上で、かつ、反転部のスペーサ断面にお
ける溝傾斜角度を18度以下とした。
In order to solve the above-mentioned problems, the present invention provides an intermediate coating layer made of a thermoplastic resin having compatibility with polyethylene around a central tensile strength member, and is provided with a periodic coating along a longitudinal direction. A spacer body coating layer having a spiral groove for housing an optical fiber which is reversed in the longitudinal direction, and a polyethylene optical fiber cable spacer provided on the outer periphery of the intermediate coating layer; The minimum rib thickness of the ribs defining the side surface is 1.0 mm or more, the groove depth is 2.0 mm or more, the maximum spiral advance angle is 8 degrees or more, and the groove inclination angle in the spacer section of the inversion portion is 18 degrees or less.

【0010】ここで、本発明のラセン進行角について説
明すると、図5に示すように、スヘーサには、複数条の
ラセン溝が設けられている。このようなラセン溝に対し
て、スペーサの長手軸ないしはこれに平行な軸に対する
進入角度θを本発明では、ラセン進行角と定義し、この
角度がもっとも大きいものを最大ラセン進行角度として
いる。前記構成の光ファイバケーブル用スペーサにおい
ては、前記ラセン溝の側面を画成するリブは、その略根
本部分の樹脂密度が、先端部や中央部の樹脂密度と比較
して最も小さくすることができる。また、前記構成のス
ペーサは、少なくとも1以上の前記ラセン溝に、テープ
状などの光ファイバを収納して光ファイバケーブルとす
ることができる。さらに、本発明は、中心抗張力体の周
囲にポリエチレンと相溶性を有する熱可塑性樹脂で中間
被覆層を施し、長手方向に沿って周期的に方向が反転
し、かつ、長手方向に連続する光ファイバ収納用のラセ
ン溝を有するスペーサ本体被覆層が、前記中間被覆層の
外周に設けられた光ファイバケーブル用スペーサの製造
方法において、前記スペーサ本体被覆層を形成した後
に、所定速度で走行するスペーサに対し、前記スペーサ
の走行方向に沿って、所定間隔を隔てて複数の冷却用エ
アーノズルを多段状に設置し、前記スペーサの外周から
所定間隔離れた位置から前記エアーノズルを介して、乾
燥エアーを前記スペーサの外周にほぼ垂直に吹き付けて
冷却することを特徴としている。
Here, the spiral angle of the present invention will be described. As shown in FIG. 5, the spacer has a plurality of spiral grooves. In the present invention, the entry angle θ of such a spiral groove with respect to the longitudinal axis of the spacer or an axis parallel thereto is defined as a spiral advance angle, and the one with the largest angle is defined as the maximum spiral advance angle. In the optical fiber cable spacer having the above-described configuration, the ribs that define the side surfaces of the spiral groove can have the lowest resin density at a substantially root portion as compared with the resin density at the front end portion and the central portion. . Further, the spacer having the above-described configuration can be formed into an optical fiber cable by storing an optical fiber such as a tape in at least one of the spiral grooves. Further, the present invention provides an optical fiber in which an intermediate coating layer is provided around a central tensile strength member with a thermoplastic resin having compatibility with polyethylene, the direction is periodically reversed along the longitudinal direction, and the longitudinal direction is continuous. The method of manufacturing a spacer for a fiber optic cable in which a spacer body covering layer having a spiral groove for storage is provided on the outer periphery of the intermediate covering layer, after forming the spacer body covering layer, On the other hand, along the running direction of the spacer, a plurality of cooling air nozzles are provided in a multi-stage manner at predetermined intervals, and dry air is supplied from the position spaced apart from the outer periphery of the spacer by a predetermined distance through the air nozzle. It is characterized in that cooling is performed by spraying the outer periphery of the spacer substantially perpendicularly.

【0011】このように構成した光ファイバケーブル用
スペーサの製造方法によれば、スペーサ本体被覆層を形
成した後に、所定速度で走行するスペーサに対し、スペ
ーサの走行方向に沿って、所定間隔を隔てて複数の冷却
用エアーノズルを多段状に設置し、スペーサの外周から
所定間隔離れた位置からエアーノズルを介して、乾燥エ
アーをスペーサの外周にほぼ垂直に吹き付けて冷却す
る。
[0011] According to the method of manufacturing the optical fiber cable spacer configured as described above, after forming the spacer main body coating layer, the spacer running at a predetermined speed is separated from the spacer running at a predetermined interval along the running direction of the spacer. A plurality of cooling air nozzles are installed in a multi-stage manner, and cooling is performed by blowing dry air substantially perpendicularly to the outer periphery of the spacer from the position at a predetermined distance from the outer periphery of the spacer via the air nozzle.

【0012】このような冷却状態においては、乾燥エア
ーがスペーサのラセン溝の溝底に直接吹き付けられて、
ラセン溝の側面を画成するリブの根元部分が、中間部分
よりも早期にかつ優先的に冷却される。
In such a cooling state, dry air is directly blown onto the bottom of the spiral groove of the spacer,
The root portion of the rib that defines the side surface of the spiral groove is cooled earlier and preferentially than the intermediate portion.

【0013】このため、ラセン溝の側面を画成するリブ
が、反転カーブの内側に対する倒れ込みを効果的に防止
することができ、リブの最小リブ厚みが1.0mm以
上、溝深さが2.0mm以上、最大ラセン進行角が8度
以上で、かつ、反転部のスペーサ断面における溝傾斜角
度を18度以下とする細径化したスペーサが得られる。
For this reason, the ribs defining the side surfaces of the spiral groove can effectively prevent the inside of the reverse curve from falling down, and the minimum rib thickness of the rib is 1.0 mm or more and the groove depth is 2. It is possible to obtain a spacer whose diameter is reduced to 0 mm or more, the maximum spiral angle is 8 degrees or more, and the groove inclination angle in the cross section of the inversion portion is 18 degrees or less.

【0014】また、溝傾斜角度が18度以下になると、
ラセン溝内に光ファイバを収納して光ファイバケーブル
としたた際に、その伝送損失も低く抑えることができ
る。
When the groove inclination angle becomes 18 degrees or less,
When an optical fiber is housed in a spiral groove to form an optical fiber cable, the transmission loss can be suppressed to be low.

【0015】[0015]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について、実施例とともに説明する。 (実施例1)外径φ1.4mmの鋼線を7本撚り合わせ
た鋼撚線を抗張力体1としてクロスヘッドに導入し、こ
の抗張力体1の外周にエチレン−エチルアクルート共重
合体樹脂(GA−006:日本ユニカー製)を予備被覆
内層2、直鎖状低密度ポリエチレン樹脂(NUCG53
50:日本ユニカー製)を予備被覆外層3として200
℃で共押出被覆して、エチレン−エチルアクルート共重
合体樹脂層外径がφ4.8mm、その外周の直鎖状低密
度ポリエチレン樹脂被覆外径がφ9.7mmの被覆抗張
力線4を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below along with examples. (Example 1) A steel stranded wire obtained by twisting seven steel wires having an outer diameter of 1.4 mm was introduced into a crosshead as a tensile strength member 1, and an ethylene-ethyl aclute copolymer resin ( GA-006: manufactured by Nippon Unicar), pre-coated inner layer 2, linear low-density polyethylene resin (NUCG53)
50: manufactured by Nippon Unicar) as pre-coating outer layer 3 of 200
Co-extrusion coating at ℃ to obtain a coated tensile strength wire 4 having an outer diameter of an ethylene-ethyl aclute copolymer resin layer of φ4.8 mm and an outer diameter of a linear low-density polyethylene resin coating of φ9.7 mm on the outer periphery thereof. .

【0016】この被覆抗張力線4は、図1に示すよう
に、加熱槽5を通過させることで、その表面温度が60
℃になるように予熱し、その後に、スペーサの断面形状
に対応した回転ダイ6を備えた押出機7に導入し、スペ
ーサ本体樹脂層8の形成用樹脂として、MI=0.03
(g/10min)の高密度ポリエチレン樹脂(Hiz
ex6600M:三井化学製)を6m/minの速度で
回転押出被覆した後、冷却ゾーン9に導いて冷却し、外
径φ15.7mmのPEスペーサ10を得た。
As shown in FIG. 1, the coated tensile strength wire 4 is passed through a heating tank 5 so that the surface temperature thereof becomes 60 °.
° C, and then introduced into an extruder 7 provided with a rotary die 6 corresponding to the cross-sectional shape of the spacer, and as a resin for forming the spacer main body resin layer 8, MI = 0.03.
(G / 10 min) high-density polyethylene resin (Hiz
ex6600M: manufactured by Mitsui Chemicals, Inc.) was subjected to rotary extrusion coating at a speed of 6 m / min, and then led to a cooling zone 9 for cooling to obtain a PE spacer 10 having an outer diameter of 15.7 mm.

【0017】冷却ゾーン10には、図2にその詳細を示
したリング状エアーノズル11が、300mmずつ間隔
をあけ、スペーサ10の走行方向に沿って3段設置され
ている。
In the cooling zone 10, three ring-shaped air nozzles 11, the details of which are shown in FIG. 2, are provided in three stages along the running direction of the spacer 10 at intervals of 300 mm.

【0018】実施例で用いたエアーノズル11は、ノズ
ル支持部11aと、このノズル支持部11a内に設けら
れた環状空間部11bと、環状空間部11bの内周に、
周回するようにしてスリット状に開口し、先端開口部が
リング状に内方に突出する冷却ノズル部11cとを備
え、環状空間部11bの外周側から冷却媒体としての乾
燥エアーが供給される。
The air nozzle 11 used in the embodiment includes a nozzle support 11a, an annular space 11b provided in the nozzle support 11a, and an inner periphery of the annular space 11b.
A cooling nozzle portion 11c that opens in a slit shape so as to rotate and has a tip opening portion projecting inward in a ring shape, and dry air as a cooling medium is supplied from the outer peripheral side of the annular space portion 11b.

【0019】スペーサ10は、冷却ノズル11cの中央
に挿通され、矢印方向に所定の引き取り速度で走行す
る。環状空間部11b内に供給された乾燥エアーは、冷
却ノズル11cから、スペーサ10に対してほぼ垂直に
(直交して)20m3/secの風量で吹き出し、スペ
ーサ10のラセン溝12の溝底に吹き付けられて、ラセ
ン溝12の側面を画成するリブ13の根元部分が、中間
部分よりも早期にかつ優先的に冷却される。
The spacer 10 is inserted through the center of the cooling nozzle 11c, and runs at a predetermined take-up speed in the direction of the arrow. The dry air supplied into the annular space 11b blows out from the cooling nozzle 11c almost perpendicularly (at right angles) to the spacer 10 at a flow rate of 20 m 3 / sec, and flows to the bottom of the spiral groove 12 of the spacer 10. The root portion of the rib 13 that is sprayed and that defines the side surface of the spiral groove 12 is cooled earlier and preferentially than the intermediate portion.

【0020】なお、この場合、3段状に配置された各エ
アーノズル11の乾燥エアーの吹き出し量は、上記実施
例では、同一条件に設定したが、例えば、後段側になる
に従って、吹き出し量を減少させたり、あるいは、中間
段のみ吹き出し量を減少させることも可能である。
In this case, the amount of dry air blown out from each of the air nozzles 11 arranged in three stages is set to the same condition in the above-described embodiment. It is also possible to reduce or reduce the blowing amount only in the middle stage.

【0021】また、回転ダイ6の樹脂吐出ノズルは、穴
断面積が、目標とするPEスペーサ10の断面積Ssか
ら被覆抗張力線4の断面積Stを差し引いた断面積Sb
を、ノズル穴断面積Snから被覆抗張力線4の断面積S
tを差し引いた断面積Snbで除した値Sb/Snbが
0.95になるよう設計されたものを使用した。
The resin discharge nozzle of the rotary die 6 has a cross-sectional area Sb obtained by subtracting the cross-sectional area St of the coating tension line 4 from the target cross-sectional area Ss of the PE spacer 10.
From the nozzle hole sectional area Sn to the sectional area S of the coated tensile strength wire 4.
The one designed so that the value Sb / Snb divided by the cross-sectional area Snb after subtracting t was 0.95 was used.

【0022】得られたEPスペーサ10は、図3にその
断面形状を示すように、スペーサ本体被覆層8の外周に
8ヶのラセン溝12が設けられている。各ラセン溝12
の溝深さは、2.8mm、溝幅が2.8mmであって、
略U字状をなし、円周方向に8ケ均等に配置されてい
る。
The obtained EP spacer 10 has eight spiral grooves 12 on the outer periphery of the spacer main body coating layer 8 as shown in FIG. Each spiral groove 12
The groove depth is 2.8 mm, the groove width is 2.8 mm,
It has a substantially U-shape and is evenly arranged in eight circumferential directions.

【0023】これらのラセン溝12は、反転ピッチが2
35mm、反転角度が360°でSZ状に撚られたラセ
ン構造を有しており、目標の寸法形状を備えていて、各
種の仕様を満足するものであった。
These spiral grooves 12 have a reversal pitch of 2
It had a helical structure twisted in an SZ shape at 35 mm, an inversion angle of 360 °, and had a target size and shape, and satisfied various specifications.

【0024】このPEスペーサ10は、ラセン溝12を
画成するリブ13の根本における最小リブ厚みが約1.
5mmのものであり、最大ラセン進行角度は、11.9
度であった。
The PE spacer 10 has a minimum rib thickness at the root of the rib 13 defining the spiral groove 12 of about 1.
5 mm, and the maximum spiral advance angle is 11.9.
Degree.

【0025】また、溝傾斜角αを測定したところ、約1
5°と溝傾斜を十分に抑制することができていた。この
溝傾斜角αは、図4に示すように定義される。
When the groove inclination angle α was measured, about 1
The groove inclination of 5 ° was sufficiently suppressed. The groove inclination angle α is defined as shown in FIG.

【0026】いまここで、PEスペーサ10の反転部断
面における、スペーサ中心Oと溝底中心部Aを結んだ直
線L1と、溝底中心部Aと溝外幅中心部Bを結んだ直線
L2とすると、溝傾斜角αは、これらの直線L1,L2
の狭角で表される。
Here, a straight line L1 connecting the center O of the spacer and the center A of the groove bottom and a straight line L2 connecting the center A of the groove bottom and the center B of the outer width of the groove in the cross section of the inverted portion of the PE spacer 10. Then, the groove inclination angle α is determined by these straight lines L1 and L2.
Is represented by the narrow angle of

【0027】さらに、スペーサ本体樹脂層8で形成され
たSZスペーサ10の1つのリブ13を切り取り、図3
に示すように、根本から先端にかけて4分割した後、密
度勾配管により樹脂密度を測定したところ、リブ根本a
で、0.9497、リブ中央(根本側)bで、0.95
05、リブ中央cで、0.9505、リブ先端dで、
0.9503であった。
Further, one rib 13 of the SZ spacer 10 formed by the spacer main body resin layer 8 is cut off, and FIG.
As shown in the figure, after dividing into four from the root to the tip, the resin density was measured using a density gradient tube, and the rib root a
At 0.9497, at the rib center (root side) b, 0.95
05, at the rib center c, at 0.9505, at the rib tip d,
0.9503.

【0028】次に、このSZスペーサ10の各溝12内
に、厚さ0.4mm、幅0.6mmの2心テープ状光フ
ァイバを各8枚ずつ収納し、(心線移動防止及び水侵入
防止のため)ジェリーを充填した後、押さえ巻きを介し
てシース被覆を行い、128心のSZ型光ファイバケー
ブルを得た。
Next, eight optical fibers each having a thickness of 0.4 mm and a width of 0.6 mm are accommodated in each of the grooves 12 of the SZ spacer 10 by 8 pieces (to prevent the movement of the cords and to prevent water intrusion). After filling with jelly), sheath coating was performed via a hold-down winding to obtain a 128-core SZ type optical fiber cable.

【0029】この光ファイバケーブルについて光伝送性
能を測定したところ、0.21〜0.22dB/kmと
良好な性能を確認することができた。 (実施例2)外径φ1.0mmの鋼線を7本撚り合わせ
た鋼撚線を抗張力体1としてクロスヘッドに導入し、こ
の抗張力体の外周にエチレン−エチルアクルート共重合
体樹脂(GA−006:日本ユニカー製)を予備被覆内
層2、直鎖状低密度ポリエチレン樹脂(NUCG535
0:日本ユニカー製)を予備被覆外層3として200℃
で共押出被覆して、エチレン−エチルアクルート共重合
体樹脂層外径がφ3.6mm、その外周の直鎖状低密度
ポリエチレン樹脂被覆外径がφ5.8mmの被覆抗張力
線4を得た。
When the optical transmission performance of this optical fiber cable was measured, good performance of 0.21 to 0.22 dB / km was confirmed. (Example 2) A steel wire obtained by twisting seven steel wires having an outer diameter of 1.0 mm was introduced into a crosshead as a tensile strength member 1, and an ethylene-ethyl aclute copolymer resin (GA) was formed on the outer periphery of the tensile strength member. -006: Nippon Unicar), pre-coating inner layer 2, linear low density polyethylene resin (NUCG535)
0: manufactured by Nippon Unicar) at 200 ° C. as the pre-coating outer layer 3
To obtain a coated tensile strength wire 4 having an ethylene-ethyl aclute copolymer resin layer outer diameter of 3.6 mm and a linear low density polyethylene resin outer diameter of 5.8 mm on the outer periphery thereof.

【0030】この被覆抗張力線4は、実施例1と同様
に、加熱槽5を通過させることで、60℃に予熱し、そ
の後に、スペーサの断面形状に対応した回転ダイ6を備
えた押出機7に導入し、スペーサ本体樹脂層8に形成用
樹脂として、MI=0.03(g/10min)の高密
度ポリエチレン樹脂(Hizex6600M:三井化学
製)を7.5m/minの速度で回転押出被覆した後、
冷却ゾーン9に導いて冷却し、外径φ11.2mmのP
Eスペーサ10aを得た。
This coated tensile wire 4 is preheated to 60 ° C. by passing through a heating tank 5 in the same manner as in Example 1, and thereafter, an extruder equipped with a rotary die 6 corresponding to the cross-sectional shape of the spacer. And a high-density polyethylene resin (Hizex 6600M: Mitsui Chemicals) with MI = 0.03 (g / 10 min) as a resin for forming the spacer body resin layer 8 by rotary extrusion coating at a speed of 7.5 m / min. After doing
It is led to the cooling zone 9 and cooled.
An E spacer 10a was obtained.

【0031】冷却ゾーン9には、実施例1と同様に3段
状にエアーノズル11を配置した。なお、回転ダイ6の
樹脂吐出ノズルは、上記実施例1で説明した、Sb/S
nb値が0.93になるよう設計されたものを使用し
た。
In the cooling zone 9, the air nozzles 11 are arranged in three steps as in the first embodiment. In addition, the resin discharge nozzle of the rotary die 6 is the same as the Sb / S described in the first embodiment.
The one designed so that the nb value was 0.93 was used.

【0032】得られたPEスペーサ10aは、溝深さ
2.5mm、溝幅2.5mmの略U状のラセン溝12を
円周方向に6ケ均等配置し、さらにこれらのラセン溝1
2が反転ピッチ240mm、反転角度360°でSZ状
に撚られたラセン構造を有しており、目標の寸法形状を
有しこ各種の仕様を満足するものであった。
In the obtained PE spacer 10a, six substantially U-shaped spiral grooves 12 each having a groove depth of 2.5 mm and a groove width of 2.5 mm are equally arranged in the circumferential direction.
No. 2 had a helical structure twisted in an SZ shape at an inversion pitch of 240 mm and an inversion angle of 360 °, had a target size and shape, and satisfied various specifications.

【0033】このPEスペーサ10aのリブ根本におけ
る最小リブ厚みは約1.85mmのものであり、最大ラ
セン進行角度は8.3度であった。
The minimum rib thickness at the rib base of the PE spacer 10a was about 1.85 mm, and the maximum spiral advance angle was 8.3 degrees.

【0034】また、このPEスペーサ10aの反転部断
面における、溝傾斜角αを測定したところ、約12°と
溝傾斜を十分に抑制することができていた。
When the groove inclination angle α was measured at the cross section of the inverted portion of the PE spacer 10a, it was found that the groove inclination was sufficiently suppressed to about 12 °.

【0035】さらに、本体樹脂で形成されたSZスペー
サ10aの1つのリブを切り取り、根本から先端にかけ
て4分割した後、密度勾配管により樹脂密度を測定した
ところ、リブ根本aが0.9496、リブ中央(根)b
が0.9503、リブ中央cが0.9504、リブ先端
dが0.9502であった。
Further, one rib of the SZ spacer 10a formed of the main body resin was cut out and divided into four parts from the root to the tip, and the resin density was measured with a density gradient tube. Central (root) b
Was 0.9503, the rib center c was 0.9504, and the rib tip d was 0.9502.

【0036】次いで、実施例1と同様に、各溝に厚さ
0.4mm、幅0.6mmの2心テープ状光ファイバを
各4枚ずつ収納し、ジェリーを充填した後、押さえ巻き
を介してシース被覆を行い、48心のSZ型光ファイバ
ケーブルを得た。この光ファイバケーブルについて光伝
送性能を測定したところ、0.20〜0.22dB/k
mと良好な性能を示した。 (実施例3)外径φ2.6mmの単鋼線を抗張力体とし
てクロスヘッドに導入し、この抗張力体の外周にエチレ
ン−エチルアクルート共重合体樹脂(GA−006:日
本ユニカー製)を予備被覆内層、直鎖状低密度ポリエチ
レン樹脂(NUCG5350:日本ユニカー製)を予備
被覆外層として200℃で共押出被覆して、エチレン−
エチルアクルート共重合体樹脂層外径がφ3.2mm、
その外周の直鎖状低密度ポリエチレン樹脂被覆外径がφ
4.5mmの被覆抗張力線4aを得た。
Next, in the same manner as in the first embodiment, four grooves each of a two-core tape-shaped optical fiber having a thickness of 0.4 mm and a width of 0.6 mm are accommodated in each groove, filled with jelly, and then held down by a presser winding. Then, sheath coating was performed to obtain a 48-core SZ type optical fiber cable. When the optical transmission performance of this optical fiber cable was measured, it was found to be 0.20 to 0.22 dB / k.
m and good performance. (Example 3) A single steel wire having an outer diameter of 2.6 mm was introduced into a crosshead as a strength member, and an ethylene-ethyl aclute copolymer resin (GA-006: manufactured by Nippon Unicar) was reserved around the periphery of the strength member. Coating inner layer, linear low density polyethylene resin (NUCG5350: manufactured by Nippon Unicar) as a pre-coating outer layer by coextrusion coating at 200 ° C.
The outer diameter of the ethyl aclute copolymer resin layer is φ3.2 mm,
The outer diameter of the linear low density polyethylene resin coating on the outer circumference is φ
A 4.5 mm coated tensile strength wire 4a was obtained.

【0037】この被覆抗張力線4aは、実施例1と同様
に、加熱槽5を通過させることで、60℃に予熱し、そ
の後に、スペーサの断面形状に対応した回転ダイ6を備
えた押出機7に導入し、スペーサ本体樹脂層8に形成用
樹脂として、MI=0.03(g/10min)の高密
度ポリエチレン樹脂(Hizex6600M:三井化学
製)を7m/minの速度で回転押出被覆した後、冷却
ゾーン9に導いて冷却し、外径φ10.2mmのPEス
ペーサ10bを得た。
The coated tensile wire 4a is preheated to 60 ° C. by passing through the heating tank 5 as in the first embodiment, and thereafter, an extruder provided with a rotary die 6 corresponding to the cross-sectional shape of the spacer. 7 and a high-density polyethylene resin (Hizex 6600M: manufactured by Mitsui Chemicals) with MI = 0.03 (g / 10 min) as a resin for forming the spacer main body resin layer 8, after being rotationally extruded at a speed of 7 m / min. Then, the mixture was guided to the cooling zone 9 and cooled to obtain a PE spacer 10b having an outer diameter of 10.2 mm.

【0038】冷却ゾーン9には、実施例1と同様に3段
状にエアーノズル11を配置した。なお、回転ダイ6の
樹脂吐出ノズルは、上記実施例1で説明した、Sb/S
nb値が0.94になるよう設計されたものを使用し
た。
In the cooling zone 9, the air nozzles 11 were arranged in three stages as in the first embodiment. In addition, the resin discharge nozzle of the rotary die 6 is the same as the Sb / S described in the first embodiment.
The one designed so that the nb value becomes 0.94 was used.

【0039】得られたPEスペーサ10bは、溝深さ
2.5mm、溝幅3.0mmの略U状のラセン溝12を
円周方向に5ケ均等配置し、さらにこれらのラセン溝1
2が反転ピッチ150mm、反転角度270°でSZ状
に撚られたラセン構造を有しており、目標の寸法形状を
有しこ各種の仕様を満足するものであった。
In the obtained PE spacer 10b, five substantially U-shaped spiral grooves 12 each having a groove depth of 2.5 mm and a groove width of 3.0 mm are equally arranged in the circumferential direction.
No. 2 had a helical structure twisted in an SZ shape at a reversal pitch of 150 mm and a reversal angle of 270 °, had a target size and shape, and satisfied various specifications.

【0040】このPEスペーサ10bのリブ根本におけ
る最小リブ厚みは約1.85mmのものであり、最大ラ
セン進行角度は8.3度であった。
The minimum rib thickness at the rib base of the PE spacer 10b was about 1.85 mm, and the maximum spiral advance angle was 8.3 degrees.

【0041】また、このPEスペーサ10bの反転部断
面における、溝傾斜角αを測定したところ、約13°と
溝傾斜を十分に抑制することができていた。
When the groove inclination angle α was measured at the cross section of the inverted portion of the PE spacer 10b, it was found that the groove inclination was about 13 °, which was sufficiently suppressed.

【0042】さらに、本体樹脂で形成されたSZスペー
サ10bの1つのリブを切り取り、根本から先端にかけ
て4分割した後、密度勾配管により樹脂密度を測定した
ところ、リブ根本aが0.9498、リブ中央(根)b
が0.9505、リブ中央cが0.9504、リブ先端
dが0.9503であった。
Further, one rib of the SZ spacer 10b formed of the main body resin was cut out and divided into four parts from the root to the tip. The resin density was measured with a density gradient tube. Central (root) b
Was 0.9505, the center c of the rib was 0.9504, and the tip d of the rib was 0.9503.

【0043】次いで、実施例1と同様に、各溝に厚さ
0.40mm、幅1.1mmの4心テープ状光ファイバ
を各5枚ずつ収納し、ジェリーを充填した後、押さえ巻
きを介してシース被覆を行い、100心のSZ型光ファ
イバケーブルを得た。この光ファイバケーブルについて
光伝送性能を測定したところ、0.22dB/kmと良
好な性能を示した。 (実施例4)アラミド繊維(ケブラー3120dte
x:東レデュポン社製)を補強繊維とし、これにビニル
エステル樹脂(エスタ一H−6400:三井化学製)を
含浸して外径φ4.5mmに絞り成形し、これをクロス
ヘッドダイに導入し、LLDPE樹脂(NUCG535
0:日本ユニカー製)を押出被覆し、表面の被覆樹脂を
冷却した後、145℃の蒸気硬化槽中で、内部のビニル
エステル樹脂を硬化させて、外径がφ5.8mmの被覆
抗張力線4bを得た。
Next, in the same manner as in Example 1, five four-core tape-shaped optical fibers each having a thickness of 0.40 mm and a width of 1.1 mm were accommodated in each groove, filled with jelly, and then held down by a presser winding. Then, sheath coating was performed to obtain 100 SZ type optical fiber cables. When the optical transmission performance of this optical fiber cable was measured, it showed a good performance of 0.22 dB / km. Example 4 Aramid fiber (Kevlar 3120 dte)
x: manufactured by Toray Dupont Co., Ltd.) as a reinforcing fiber, impregnated with a vinyl ester resin (ESTA-1H-6400: manufactured by Mitsui Chemicals), drawn and formed into an outer diameter of 4.5 mm, and introduced into a crosshead die. , LLDPE resin (NUCG535
0: manufactured by Nippon Unicar Co., Ltd.), and after cooling the coating resin on the surface, the internal vinyl ester resin was cured in a steam curing tank at 145 ° C., and the coated tensile strength wire 4b having an outer diameter of φ5.8 mm was used. Got.

【0044】この被覆抗張力線4bは、実施例1と同様
に、加熱槽5を通過させることで、60℃に予熱し、そ
の後に、スペーサの断面形状に対応した回転ダイ6を備
えた押出機7に導入し、スペーサ本体樹脂層8に形成用
樹脂として、MI=0.03(g/10min)の高密
度ポリエチレン樹脂(Hizex6600M:三井化学
製)を7.5m/minの速度で回転押出被覆した後、
冷却ゾーン9に導いて冷却し、外径φ11.2mmのP
Eスペーサ10cを得た。
The coated tensile strength wire 4b is preheated to 60 ° C. by passing through the heating tank 5 in the same manner as in the first embodiment, and thereafter, an extruder provided with a rotary die 6 corresponding to the cross-sectional shape of the spacer. And a high-density polyethylene resin (Hizex 6600M: Mitsui Chemicals) with MI = 0.03 (g / 10 min) as a resin for forming the spacer body resin layer 8 by rotary extrusion coating at a speed of 7.5 m / min. After doing
It is led to the cooling zone 9 and cooled.
An E spacer 10c was obtained.

【0045】冷却ゾーン9には、実施例1と同様に3段
状にエアーノズル11を配置した。なお、回転ダイ6の
樹脂吐出ノズルは、上記実施例1で説明した、Sb/S
nb値が0.93になるよう設計されたものを使用し
た。
In the cooling zone 9, the air nozzles 11 were arranged in a three-stage manner as in the first embodiment. In addition, the resin discharge nozzle of the rotary die 6 is the same as the Sb / S described in the first embodiment.
The one designed so that the nb value was 0.93 was used.

【0046】得られたPEスペーサ10cは、溝深さ
2.5mm、溝幅2.5mmの略U状のラセン溝12を
円周方向に6ケ均等配置し、さらにこれらのラセン溝1
2が反転ピッチ240mm、反転角度360°でSZ状
に撚られたラセン構造を有しており、目標の寸法形状を
有しこ各種の仕様を満足するものであった。
In the obtained PE spacer 10c, six substantially U-shaped spiral grooves 12 each having a groove depth of 2.5 mm and a groove width of 2.5 mm are equally arranged in the circumferential direction.
No. 2 had a helical structure twisted in an SZ shape at an inversion pitch of 240 mm and an inversion angle of 360 °, had a target size and shape, and satisfied various specifications.

【0047】このPEスペーサ10cのリブ根本におけ
る最小リブ厚みは約1.85mmのものであり、最大ラ
セン進行角度は8.3度であった。
The minimum rib thickness at the rib base of the PE spacer 10c was about 1.85 mm, and the maximum spiral advance angle was 8.3 degrees.

【0048】また、このPEスペーサ10cの反転部断
面における、溝傾斜角αを測定したところ、約12°と
溝傾斜を十分に抑制することができていた。
When the groove inclination angle α was measured in the cross section of the inverted portion of the PE spacer 10c, it was found that the groove inclination was about 12 °, which was sufficiently suppressed.

【0049】さらに、本体樹脂で形成されたSZスペー
サ10cの1つのリブを切り取り、根本から先端にかけ
て4分割した後、密度勾配管により樹脂密度を測定した
ところ、リブ根本aが0.9497、リブ中央(根)b
が0.9504、リブ中央cが0.9505、リブ先端
dが0.9503であった。
Further, one rib of the SZ spacer 10c formed of the main body resin was cut out and divided into four parts from the root to the tip. The resin density was measured with a density gradient tube. Central (root) b
Was 0.9504, the center c of the rib was 0.9505, and the tip d of the rib was 0.9503.

【0050】次いで、実施例1と同様に、各溝に厚さ
0.4mm、幅0.6mmの2心テープ状光ファイバを
各4枚ずつ収納し、ジェリーを充填した後、押さえ巻き
を介してシース被覆を行い、48心のSZ型光ファイバ
ケーブルを得た。この光ファイバケーブルについて光伝
送性能を測定したところ、0.22dB/kmと良好な
性能を示した。 (実施例5)外径φ1.4mmの鋼線を7本撚り合わせ
た鋼撚線を抗張力体1としてクロスヘッドに導入し、こ
の抗張力体1の外周にエチレン−エチルアクルート共重
合体樹脂(GA−006:日本ユニカー製)を予備被覆
内層2、直鎖状低密度ポリエチレン樹脂(NUCG53
50:日本ユニカー製)を予備被覆外層3として200
℃で共押出被覆して、エチレン−エチルアクルート共重
合体樹脂層外径がφ4.8mm、その外周の直鎖状低密
度ポリエチレン樹脂被覆外径がφ9.7mmの被覆抗張
力線4を得た。
Next, in the same manner as in the first embodiment, four grooves each of a two-core optical fiber having a thickness of 0.4 mm and a width of 0.6 mm were accommodated in each groove, filled with jelly, and then held down by a presser winding. Then, sheath coating was performed to obtain a 48-core SZ type optical fiber cable. When the optical transmission performance of this optical fiber cable was measured, it showed a good performance of 0.22 dB / km. (Example 5) A steel stranded wire obtained by twisting seven steel wires having an outer diameter of 1.4 mm was introduced into a crosshead as a tensile strength member 1, and an ethylene-ethyl aclute copolymer resin ( GA-006: manufactured by Nippon Unicar), pre-coated inner layer 2, linear low-density polyethylene resin (NUCG53)
50: manufactured by Nippon Unicar) as pre-coating outer layer 3 of 200
Co-extrusion coating at ℃ to obtain a coated tensile strength wire 4 having an outer diameter of an ethylene-ethyl aclute copolymer resin layer of φ4.8 mm and an outer diameter of a linear low-density polyethylene resin coating of φ9.7 mm on the outer periphery thereof. .

【0051】この被覆抗張力線4は、実施例1と同様
に、加熱槽5を通過させることで、60℃に予熱し、そ
の後に、スペーサの断面形状に対応した回転ダイ6を備
えた押出機7に導入し、スペーサ本体樹脂層8に形成用
樹脂として、MI=0.03(g/10min)の高密
度ポリエチレン樹脂(Hizex6600M:三井化学
製)を6m/minの速度で回転押出被覆した後、冷却
ゾーン9aに導いて冷却し、外径φ15.7mmのPE
スペーサ10dを得た。
The coated tensile wire 4 is preheated to 60 ° C. by passing through the heating tank 5 in the same manner as in Example 1, and thereafter, an extruder equipped with a rotary die 6 corresponding to the cross-sectional shape of the spacer. 7 and a high-density polyethylene resin (Hizex 6600M: Mitsui Chemicals) having an MI of 0.03 (g / 10 min) as a resin for forming the spacer main body resin layer 8 by rotary extrusion coating at a speed of 6 m / min. , Cooling to the cooling zone 9a, the PE having an outer diameter of 15.7 mm.
The spacer 10d was obtained.

【0052】冷却ゾーン9aには、実施例1と同様な構
成のエアーノズル11が、300mmずつ間隔をあけ、
スペーサ10dの走行方向に沿って4段設置されてい
る。
In the cooling zone 9a, air nozzles 11 having the same structure as in the first embodiment are spaced by 300 mm,
Four stages are installed along the running direction of the spacer 10d.

【0053】本実施例の場合には、環状空間部11b内
に供給された乾燥エアーは、各冷却ノズル11cから、
スペーサ10dに対してほぼ垂直に(直交して)20m
3/HRの風速で吹き出して冷却した。
In the case of this embodiment, the dry air supplied into the annular space 11b is supplied from each cooling nozzle 11c.
20m almost perpendicularly (perpendicularly) to the spacer 10d
The air was blown at a wind speed of 3 / HR to cool.

【0054】なお、回転ダイ6の樹脂吐出ノズルは、上
記実施例1で説明した、Sb/Snb値が0.95にな
るよう設計されたものを使用した。
The resin discharge nozzle of the rotary die 6 used was designed so that the Sb / Snb value described above in the first embodiment was 0.95.

【0055】得られたPEスペーサ10dは、溝深さ
2.8mm、溝幅2.8mmの略U状のラセン溝12を
円周方向に8ケ均等配置し、さらにこれらのラセン溝1
2が反転ピッチ235mm、反転角度360°でSZ状
に撚られたラセン構造を有しており、目標の寸法形状を
有しこ各種の仕様を満足するものであった。
In the obtained PE spacer 10d, eight substantially U-shaped spiral grooves 12 having a groove depth of 2.8 mm and a groove width of 2.8 mm are uniformly arranged in the circumferential direction.
Sample No. 2 had a helical structure twisted in an SZ shape at a reversal pitch of 235 mm and a reversal angle of 360 °, had a target size and shape, and satisfied various specifications.

【0056】このPEスペーサ10dのリブ根本におけ
る最小リブ厚みは約1.5mmのものであり、最大ラセ
ン進行角度は11.9度であった。
The minimum rib thickness at the rib base of the PE spacer 10d was about 1.5 mm, and the maximum spiral advance angle was 11.9 degrees.

【0057】また、このPEスペーサ10dの反転部断
面における、溝傾斜角αを測定したところ、約14°と
溝傾斜を十分に抑制することができていた。
When the groove inclination angle α was measured at the cross section of the inverted portion of the PE spacer 10d, the groove inclination was about 14 °, and the groove inclination was sufficiently suppressed.

【0058】さらに、本体樹脂で形成されたSZスペー
サ10cの1つのリブを切り取り、根本から先端にかけ
て4分割した後、密度勾配管により樹脂密度を測定した
ところ、リブ根本aが0.9498、リブ中央(根)b
が0.9505、リブ中央cが0.9506、リブ先端
dが0.9504であった。
Further, one rib of the SZ spacer 10c formed of the main body resin was cut out and divided into four parts from the root to the tip, and the resin density was measured with a density gradient tube. Central (root) b
Was 0.9505, the center c of the rib was 0.9506, and the tip d of the rib was 0.9504.

【0059】次いで、実施例1と同様に、各溝に厚さ
0.4mm、幅0.6mmの2心テープ状光ファイバを
各8枚ずつ収納し、ジェリーを充填した後、押さえ巻き
を介してシース被覆を行い、128心のSZ型光ファイ
バケーブルを得た。この光ファイバケーブルについて光
伝送性能を測定したところ、0.21dB/kmと良好
な性能を示した。 (比較例1)スペーサ本体樹脂の冷却方法として、出口
側に穴径φ16.5mmのパッキンを有する内径φ75
mm、長さ1mのSUSパイプに挿通させながら、パイ
プ内に界面活性剤(マーポンFL−30:松本油脂製)
を0.1%濃度になるように添加した40℃の温水を下
方から導入し、上方よりオーバーフローさせることによ
り冷却固化したこと以外は、実施例1と同様な方法で外
径φ15.7mmのPEスペーサを得た。
Next, in the same manner as in Example 1, eight optical fibers each having a thickness of 0.4 mm and a width of 0.6 mm were accommodated in each groove and filled with jelly. Then, sheath coating was performed to obtain a 128-core SZ type optical fiber cable. When the optical transmission performance of this optical fiber cable was measured, it showed a good performance of 0.21 dB / km. (Comparative Example 1) As a method of cooling the spacer main body resin, an inner diameter φ75 having a packing with a hole diameter φ16.5 mm on the outlet side.
A surfactant (MARPON FL-30: manufactured by Matsumoto Yushi) is inserted into a SUS pipe having a length of 1 mm and a length of 1 mm while passing through the pipe.
Was added in such a manner as to give a concentration of 0.1%, and warmed at 40 ° C. was introduced from below, and cooled and solidified by overflowing from above, and PE having an outer diameter of 15.7 mm was produced in the same manner as in Example 1. Spacers were obtained.

【0060】このSZスペーサの断面寸法、反転ピッ
チ、反転角度などは実施例1と同等であったが、反転部
断面における溝傾斜角度αを測定したところ約25°と
大きく傾斜していた。
Although the cross-sectional dimensions, inversion pitch, and inversion angle of the SZ spacer were the same as those in Example 1, the groove inclination angle α in the inversion section was measured to be as large as about 25 °.

【0061】さらに、本体樹脂で形成されたSZスペー
サの1つのリブを切り取り、根本から先端にかけて4分
割した後、密度勾配管により樹脂密度を測定したとこ
ろ、リブ根本aが0.9512、リブ中央(根本側)b
が0.9511、リブ中央cが0.9508、リブ先端
dが0.9503であった。
Further, one rib of the SZ spacer formed of the main body resin was cut out and divided into four parts from the root to the tip, and then the resin density was measured by a density gradient tube. (Root side) b
Was 0.9511, the center c of the rib was 0.9508, and the tip d of the rib was 0.9503.

【0062】次いで、実施例1と同様に、各溝に2心テ
ープ状光ファイバを各8枚ずつ収納し、ジェリーを充填
した後、押さえ巻きを介してシース被覆を行い、128
心のSZ型光ファイバケーブルを得た。この光ファイバ
ケーブルについて光伝送性能を測定したところ、0.2
5〜0.55dB/kmと性能にバラツキが生じてい
た。
Next, in the same manner as in Example 1, each of the grooves accommodates eight two-core tape-shaped optical fibers, and is filled with jelly.
A core SZ type optical fiber cable was obtained. When the optical transmission performance of this optical fiber cable was measured,
The performance varied from 5 to 0.55 dB / km.

【0063】[0063]

【発明の効果】以上、実施例で説明したように、本発明
にかかる光ファイバケーブル用スペーサおよび同スペー
サを用いる光ファイバケーブル,同スペーサの製造方法
によれば、反転部における溝傾斜を抑制し、伝送損失を
悪化させることなしにSZスペーサの深溝化を実現する
ことができる。
As described above, according to the spacer for an optical fiber cable, the optical fiber cable using the spacer, and the method of manufacturing the spacer according to the present invention, the inclination of the groove in the inversion portion is suppressed. Further, it is possible to realize the deep groove of the SZ spacer without deteriorating the transmission loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる光ファイバケーブル用スペーサ
の製造方法の製造工程の要部説明図である。
FIG. 1 is an explanatory view of a main part of a manufacturing process of a method for manufacturing an optical fiber cable spacer according to the present invention.

【図2】図1の製造方法で用いるエアーノズルの詳細説
明図である。
FIG. 2 is a detailed explanatory view of an air nozzle used in the manufacturing method of FIG.

【図3】図1の製造方法で得られる光ファイバケーブル
用スペーサの断面図である。
FIG. 3 is a sectional view of an optical fiber cable spacer obtained by the manufacturing method of FIG. 1;

【図4】光ファイバケーブル用スペーサの溝傾斜角度α
の説明図である。
FIG. 4 shows a groove inclination angle α of an optical fiber cable spacer.
FIG.

【図5】スペーサのラセン溝の進行角の説明図である。FIG. 5 is an explanatory diagram of a traveling angle of a spiral groove of a spacer.

【符号の説明】[Explanation of symbols]

1 抗張力体 2 予備被覆内層 3 予備被覆外層 4 被覆抗張力線 5 加熱槽 6 回転ダイ 7 押出機 9 冷却ゾーン 10 光ファイバケーブル用スペーサ 11 エアーノズル 12 ラセン溝 13 リブ REFERENCE SIGNS LIST 1 strength member 2 pre-coating inner layer 3 pre-coating outer layer 4 coating tensile strength line 5 heating tank 6 rotating die 7 extruder 9 cooling zone 10 spacer for optical fiber cable 11 air nozzle 12 spiral groove 13 rib

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01B 11/00 H01B 11/00 L B29K 23:00 B29K 23:00 B29L 11:00 B29L 11:00 (72)発明者 石井 徳 岐阜県岐阜市薮田西2丁目1番1号 宇部 日東化成株式会社内 Fターム(参考) 2H001 BB10 BB14 DD04 DD11 KK12 MM01 PP01 4F207 AA04 AA05 AA08 AD15 AD18 AG06 AG09 AG28 AH77 AK02 KA01 KA17 KB18 KK56 KL58 KL80 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01B 11/00 H01B 11/00 L B29K 23:00 B29K 23:00 B29L 11:00 B29L 11:00 (72) Inventor Nori Ishii 2-1-1, Yabuta-nishi, Gifu City, Gifu Prefecture Ube Nitto Kasei Co., Ltd.F-term (reference) KA17 KB18 KK56 KL58 KL80

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中心抗張力体の周囲にポリエチレンと相
溶性を有する熱可塑性樹脂で中間被覆層を施し、 長手方向に沿って周期的に方向が反転し、かつ、長手方
向に連続する光ファイバ収納用のラセン溝を有するスペ
ーサ本体被覆層が、前記中間被覆層の外周に設けられた
ポリエチレン製光ファイバケーブル用スペーサにおい
て、 前記ラセン溝は、この側面を画成するリブの最小リブ厚
みが1.0mm以上、溝深さが2.0mm以上、最大ラ
セン進行角が8度以上で、かつ、反転部のスペーサ断面
における溝傾斜角度を18度以下としたことを特徴とす
る光ファイバケーブル用スペーサ。
1. An optical fiber housing in which an intermediate coating layer is formed of a thermoplastic resin compatible with polyethylene around a central tensile strength member, the direction of which is periodically inverted along the longitudinal direction, and which is continuous in the longitudinal direction. In a polyethylene optical fiber cable spacer in which a spacer main body coating layer having a spiral groove is provided on the outer periphery of the intermediate coating layer, the spiral groove has a minimum rib thickness of 1. 1 An optical fiber cable spacer characterized by having a groove depth of at least 0 mm, a groove depth of at least 2.0 mm, a maximum helical advancing angle of at least 8 degrees, and a groove inclination angle of at least 18 degrees at the cross section of the spacer at the inversion portion.
【請求項2】 請求項1記載の光ファイバケーブル用ス
ペーサにおいて、 前記ラセン溝の側面を画成するリブは、その略根本部分
の樹脂密度が、先端部や中央部の樹脂密度と比較して最
も小さいことを特徴とする光ファイバケーブル用スペー
サ。
2. The optical fiber cable spacer according to claim 1, wherein the rib defining the side surface of the spiral groove has a resin density at a substantially root portion compared to a resin density at a tip portion or a central portion. The smallest fiber optic cable spacer.
【請求項3】 請求項1ないし2記載のスペーサを使用
し、少なくとも1以上の前記ラセン溝に、テープ状など
の光ファイバを収納したことを特徴とする光ファイバケ
ーブル。
3. An optical fiber cable using the spacer according to claim 1, wherein at least one or more of the spiral grooves contains an optical fiber such as a tape.
【請求項4】 中心抗張力体の周囲にポリエチレンと相
溶性を有する熱可塑性樹脂で中間被覆層を施し、 長手方向に沿って周期的に方向が反転し、かつ、長手方
向に連続する光ファイバ収納用のラセン溝を有するスペ
ーサ本体被覆層が、前記中間被覆層の外周に設けられた
光ファイバケーブル用スペーサの製造方法において、 前記スペーサ本体被覆層を形成した後に、所定速度で走
行するスペーサに対し、前記スペーサの走行方向に沿っ
て、所定間隔を隔てて複数の冷却用エアーノズルを多段
状に設置し、 前記スペーサの外周から所定間隔離れた位置から前記エ
アーノズルを介して、乾燥エアーを前記スペーサの外周
にほぼ垂直に吹き付けて冷却することを特徴とする光フ
ァイバケーブル用スペーサの製造方法。
4. An optical fiber housing in which an intermediate coating layer is provided around a central tensile strength member with a thermoplastic resin compatible with polyethylene, and the direction of which is periodically inverted along the longitudinal direction and continuous in the longitudinal direction. The method for manufacturing an optical fiber cable spacer, wherein the spacer main body coating layer having a spiral groove for the optical fiber cable is provided on the outer periphery of the intermediate coating layer. Along the running direction of the spacer, a plurality of cooling air nozzles are installed in multiple stages at predetermined intervals, and the dry air is passed through the air nozzle from a position separated from the outer periphery of the spacer by a predetermined interval. A method of manufacturing a spacer for an optical fiber cable, wherein the spacer is cooled by spraying substantially perpendicularly to an outer periphery of the spacer.
JP2000374477A 2000-12-08 2000-12-08 Manufacturing method of spacer for optical fiber cable Expired - Lifetime JP3924426B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000374477A JP3924426B2 (en) 2000-12-08 2000-12-08 Manufacturing method of spacer for optical fiber cable
KR1020010071331A KR20020045520A (en) 2000-12-08 2001-11-16 Spacer for optical fiber cable and optical fiber cable using the spacer, manufacturing method of the same spacer
CNB2005100652434A CN100339734C (en) 2000-12-08 2001-11-30 Method for manufacturing the spacer for optical fiber cable
CNB011429348A CN1232853C (en) 2000-12-08 2001-11-30 Liner for optical cable and its making process and optical cable with the liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374477A JP3924426B2 (en) 2000-12-08 2000-12-08 Manufacturing method of spacer for optical fiber cable

Publications (3)

Publication Number Publication Date
JP2002174758A true JP2002174758A (en) 2002-06-21
JP2002174758A5 JP2002174758A5 (en) 2005-07-07
JP3924426B2 JP3924426B2 (en) 2007-06-06

Family

ID=18843661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374477A Expired - Lifetime JP3924426B2 (en) 2000-12-08 2000-12-08 Manufacturing method of spacer for optical fiber cable

Country Status (3)

Country Link
JP (1) JP3924426B2 (en)
KR (1) KR20020045520A (en)
CN (2) CN100339734C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210965A (en) * 2009-03-11 2010-09-24 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2012042768A (en) * 2010-08-20 2012-03-01 Sumitomo Electric Ind Ltd Method and device for manufacturing optical cable slot
CN115371388A (en) * 2022-06-05 2022-11-22 山东水馨新材料科技有限公司 Heating device for be used for new material processing
KR102488172B1 (en) * 2021-12-24 2023-01-19 주식회사 그린피앤피 Forming apparatus double wall sewer pipe and Double wall sewer pipe manufacturing equipment included the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105365185A (en) * 2015-11-26 2016-03-02 南京华信藤仓光通信有限公司 Production method and production device for SZ framework core for cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022131A1 (en) * 1990-07-11 1992-01-16 Kabelmetal Electro Gmbh METHOD AND DEVICE FOR DRAWING AN OPTICAL FIBER FROM A SOLID PREFORM
JPH10226531A (en) * 1997-02-10 1998-08-25 Furukawa Electric Co Ltd:The Optical fiber drawing device
JPH10232334A (en) * 1997-02-21 1998-09-02 Fujikura Ltd Method for falling coated optical fibers into filamentary body with sz groove
FI114046B (en) * 1997-06-06 2004-07-30 Mtg Meltron Ltd Oy Method and light generation device in the use of optical fiber
JPH11190813A (en) * 1997-12-25 1999-07-13 Ube Nitto Kasei Co Ltd Spacer for optical fiber cable and spacer manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210965A (en) * 2009-03-11 2010-09-24 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2012042768A (en) * 2010-08-20 2012-03-01 Sumitomo Electric Ind Ltd Method and device for manufacturing optical cable slot
KR102488172B1 (en) * 2021-12-24 2023-01-19 주식회사 그린피앤피 Forming apparatus double wall sewer pipe and Double wall sewer pipe manufacturing equipment included the same
CN115371388A (en) * 2022-06-05 2022-11-22 山东水馨新材料科技有限公司 Heating device for be used for new material processing
CN115371388B (en) * 2022-06-05 2024-04-02 山东基舜新材料科技有限公司 Heating device for be used for new material processing

Also Published As

Publication number Publication date
CN1232853C (en) 2005-12-21
CN1357773A (en) 2002-07-10
JP3924426B2 (en) 2007-06-06
CN1690751A (en) 2005-11-02
KR20020045520A (en) 2002-06-19
CN100339734C (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US6160940A (en) Fiber optic cable for installation in a cable passageway and methods and an apparatus for producing the same
KR100387154B1 (en) Spacer for optical fiber cable, manufacturing method of the same and optical fiber cable using the spacer
US7221831B2 (en) Multi-tube fiber optic cable and system and method for making the same
US5699467A (en) Optical fiber complex overhead line
US20230213716A1 (en) Ribbed and grooved sheath for optical fiber cable
US20030102043A1 (en) High density fiber optic cable inner ducts
US4984869A (en) Optical fibre cable and method of making same
JP2002174758A (en) Spacer for optical fiber cable, optical fiber cable using the spacer and method for manufacturing the spacer
CN115616723B (en) Air-blowing optical cable and manufacturing method thereof
CN220271628U (en) High-core-number air-blown micro cable and extrusion molding outer sheath die
JPH11337781A (en) Coated plastic optical fiber and its manufacture
JP2002174761A (en) Method for manufacturing spacer for optical fiber cable
CN208721853U (en) A kind of ultra-fine ant proof air-blowing optical cable and cable assembly
JP3109406B2 (en) Fiber optic cable
JP2996134B2 (en) Manufacturing method of optical fiber cable with suspension wire
WO2023149467A1 (en) Method for manufacturing optical fiber cable, and optical fiber cable
US11846822B2 (en) Optical fiber cable with compressed core and manufacturing method thereof
JP3502240B2 (en) Method of manufacturing synthetic resin unit for optical fiber cable and method of manufacturing optical fiber cable
JP3266345B2 (en) Manufacturing method of self-supporting cable with slack
JP3976404B2 (en) Optical fiber cable spacer and manufacturing method thereof
JPH11190813A (en) Spacer for optical fiber cable and spacer manufacturing method
JP2023056842A (en) Slot rod for optical fiber cable, optical fiber cable, and manufacturing method of slot rod for optical fiber cable
JPH11305083A (en) Manufacture of unit type spacer for optical fiber cable
CA2281449A1 (en) Fiber optic cable for installation in a cable passageway and methods and an apparatus for producing the same
EP1016888A1 (en) Folding groove and multi-core optical cable composed of the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3924426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term