JPH01147407A - Reflection mirror - Google Patents

Reflection mirror

Info

Publication number
JPH01147407A
JPH01147407A JP30808587A JP30808587A JPH01147407A JP H01147407 A JPH01147407 A JP H01147407A JP 30808587 A JP30808587 A JP 30808587A JP 30808587 A JP30808587 A JP 30808587A JP H01147407 A JPH01147407 A JP H01147407A
Authority
JP
Japan
Prior art keywords
mirror
segment
curvature
paraboloid
focal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30808587A
Other languages
Japanese (ja)
Inventor
Tatsuya Hamaguchi
浜口 龍也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30808587A priority Critical patent/JPH01147407A/en
Publication of JPH01147407A publication Critical patent/JPH01147407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently condense the solar light energy onto a focal plane by setting a curvature of a segment spherical mirror to a curvature having a value which becomes an intermediate value of two main curvatures of a rotary parabolic mirror in each spherical mirror assembly position. CONSTITUTION:As for each segment mirror 11 being a pseudo hexagonal spherical mirror, its curvature is set to a curvature having a value which becomes an intermediate value of two main curvature of a rotary parabolic mirror in each segment mirror assembly position. In this state, a solar light beam 8 which is made incident on the segment mirror 11 is condensed onto a focal plane 7 of a paraboloid. In such a way, the whole specular surface of a reflection mirror 1 can be approximate to the rotary paraboloid, and by overlapping such solar images as expanses in the meridional face and the sagittal face are roughly equal on the focal plane 7, the solar light energy can be condensed efficiently onto the focal plane 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽光エネルギを効率よく集光する反射鏡に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reflecting mirror that efficiently collects sunlight energy.

〔従来の技術〕[Conventional technology]

−J’fflに、反射鏡によって太陽光エネルギを最も
効率よく集光するに、その鏡面としては回転放物面に形
成することが理想とされているが、実際にはその製作の
面素化を図ることを考慮し、全体が球面状に形成され各
曲率が互いに異なる多数のセグメント鏡を組み付けるこ
とにより回転放物面を近似的に実現している。
- In order to most efficiently collect sunlight energy using a reflecting mirror, it is considered ideal that the mirror surface should be formed into a paraboloid of revolution, but in reality, it is difficult to make it into a paraboloid of revolution. Considering this, a paraboloid of revolution is approximately realized by assembling a large number of segment mirrors that are entirely spherical and have different curvatures.

ところが、この種の反射鏡においては、セグメント鏡の
数の増加によって反射鏡の組立、調整作業を煩雑にする
ため、従来より各セグメントaの曲率を組付位置におけ
る回転放物面のメリディオナル面内の主曲率に略一致す
るように設定されたものが採用されている。
However, in this type of reflector, the increase in the number of segment mirrors complicates the assembly and adjustment work of the reflector. A setting that approximately matches the principal curvature of is adopted.

この種の反射鏡は、例えば昭和61年10月開催の第4
回宇宙用太陽集光装置とその利用ワークシ’aツブのプ
ロシーディングに記載され、第5図(a)および(′b
)に示すように構成されている。これを同図に基づいて
概略説明すると、同図において、符号1で示すものは多
数(37枚)の擬似六角形のセグメント鏡2を組み立て
ることにより形成された反射鏡である。
This type of reflector was used, for example, at the 4th meeting held in October 1986.
It is described in the proceedings of the Solar Concentrator for Space and Its Utilization worksheet, and is shown in Figures 5(a) and ('b).
). This will be briefly explained based on the figure. In the figure, what is indicated by reference numeral 1 is a reflecting mirror formed by assembling a large number (37 pieces) of pseudo-hexagonal segment mirrors 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種の反射鏡においては、セグメントm、
2の曲率を第6図に示すメリディオナル面3内の主曲率
に適合する曲率に設定するものであるため、回転放物面
の黒子面上ではメリディオナル面内の太陽像4がサジタ
ル面の方向5に拡がり、太陽光エネルギを黒子面上に効
率よく集光するに不十分であった。ここで、図中符号6
は黒子面中心である。
However, in this type of reflector, segments m,
2 is set to a curvature that matches the principal curvature in the meridional plane 3 shown in FIG. This was insufficient to efficiently concentrate sunlight energy onto the mole surface. Here, code 6 in the figure
is centered on the black face.

すなわち、焦点距離がFである回転放物面上で軸からR
の距離にある点のメリディオナル面内の主曲率は4F”
 /(R” +4F”)””であり、同サジタル面内の
主曲率1/(R” +4F”)’/2に比べて光軸上の
一点を除き小さいからである。
That is, on a paraboloid of rotation whose focal length is F, from the axis R
The principal curvature in the meridional plane of a point at a distance of is 4F"
/(R"+4F")"", which is smaller than the principal curvature 1/(R"+4F")'/2 in the same sagittal plane except for one point on the optical axis.

本発明はこのような事情に鑑みなされたもので、回転放
物面の黒子面上で一方の面内の光像が他方の面方向への
拡がりを抑制することができ、もって太陽光エネルギを
黒子面上に効率よく集光することができる反射鏡を提供
するものである。
The present invention was developed in view of the above circumstances, and it is possible to suppress the spread of an optical image in one plane toward the other plane on the mole surface of a paraboloid of revolution, thereby reducing the energy of sunlight. The object of the present invention is to provide a reflecting mirror that can efficiently focus light onto a mole surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る反射鏡は、セグメント球面鏡の曲率を各球
面鏡組付位置における回転放物面鏡の2つの主曲率の中
間値となる値をもつ曲率に設定したものである。
In the reflecting mirror according to the present invention, the curvature of the segment spherical mirror is set to a value that is an intermediate value between the two principal curvatures of the paraboloid of revolution mirror at each spherical mirror assembly position.

〔作 用〕[For production]

本発明においては、各セグメント球面鏡の曲率を選択す
ることにより全体の鏡面が回転放物面に近似する。
In the present invention, by selecting the curvature of each segment spherical mirror, the entire mirror surface approximates a paraboloid of revolution.

〔実施例〕〔Example〕

以下、本発明の構成等を図に示す実施例によって詳細に
説明する。第1図(alおよび(blは本発明に係る反
射鏡による太陽像の形成状態と従来の反射鏡による太陽
像の形成状態の比較を示す模式図、同図以下において第
4図および第5図と同一の部材については同一の符号を
付し、詳細な説明は省略する。同図において、符号11
で示す擬僚六角形状の球面鏡としての各セグメントaは
、その曲率が各セグメント鏡組付位置における回転放物
面鏡の2つの主曲率の中間値となる値をもつ曲率に設定
されている。
EMBODIMENT OF THE INVENTION Hereinafter, the structure etc. of this invention will be explained in detail by the Example shown in the figure. Figure 1 (al and (bl) are schematic diagrams showing a comparison between the formation of a solar image by a reflecting mirror according to the present invention and the formation of a solar image by a conventional reflecting mirror. Figures 4 and 5 are shown below. The same members are given the same reference numerals, and detailed explanations are omitted.In the figure, reference numeral 11
Each segment a as a pseudohexagonal spherical mirror is set to have a curvature that is an intermediate value between the two principal curvatures of the paraboloid of revolution mirror at each segment mirror assembly position.

したがって、セグメント鏡11に入射する太陽光8は放
物面の黒子面上に第1図に実線9で示すように集光され
る。すなわち、メリディオナル面内における反射光の最
小錯乱円の位置は同図破線10で示す従来の反射鏡によ
る場合に比べて放物面の黒子面7の位置から反射鏡より
に移動するため、黒子面上に生じる太陽像はメリディオ
ナル面内で拡大されることになる。
Therefore, sunlight 8 incident on the segment mirror 11 is focused on the mole surface of the paraboloid as shown by the solid line 9 in FIG. In other words, the position of the circle of least confusion of the reflected light within the meridional plane is moved from the position of the mole surface 7 of the paraboloid to the reflector, compared to the case using the conventional reflector shown by the broken line 10 in the figure. The solar image generated above will be magnified within the meridional plane.

一方、サジタル面内の反射光は従来の反射鏡による場合
と比べて強く集束され、最小錯乱円の位置が反射鏡より
見て焦千面7の位置より後方にあるが、黒子面上に生じ
る太陽像は縮小されることになる。
On the other hand, the reflected light in the sagittal plane is focused more strongly than in the case of a conventional reflector, and although the position of the circle of least confusion is behind the position of the focal plane 7 when viewed from the reflector, it occurs on the lentigo plane. The image of the sun will be reduced.

この結果、各セグメント鏡」1の曲率を適宜に選択する
ことにより全体の鏡面が回転放物面に一層近似させるこ
とができ、黒子面上でメリディオナル面内とサジタル面
内の拡がりが略等しいような太陽像を重ね合わせて黒子
面上に太陽光エネルギを集光することができる。
As a result, by appropriately selecting the curvature of each segment mirror 1, the entire mirror surface can be made to more closely resemble a paraboloid of revolution, and the extents in the meridional plane and in the sagittal plane on the lentiginous plane are approximately equal. It is possible to focus solar energy on the mole surface by superimposing solar images.

ここで例えば、焦点距離が8mの放物面鏡の半径9mの
位置を中心とし、放物面鏡の光軸方向への投影した一辺
の長さが0.87mの擬似六角形のセグメント鏡によっ
て反射鏡を形成し、各セグメント鏡の曲率をメリディオ
ナル面内の主曲率の約110%(サジタル面内の主曲率
の約80%に相当する)に選択すると、黒子面上に生じ
るセグメント鏡による太陽像4は第2図に実線で示すよ
うになる。これは、同図に鎖線で示す従来の反射鏡によ
る太陽像4aに比べて著しく改善されていることが分か
る。
Here, for example, a pseudo-hexagonal segment mirror with a radius of 9m of a parabolic mirror with a focal length of 8m as its center, and a side length of 0.87m projected in the optical axis direction of the parabolic mirror. When a reflecting mirror is formed and the curvature of each segment mirror is selected to be about 110% of the principal curvature in the meridional plane (corresponding to about 80% of the principal curvature in the sagittal plane), the solar light generated by the segment mirror on the lentigo plane is The image 4 becomes as shown by the solid line in FIG. It can be seen that this is significantly improved compared to the solar image 4a obtained by the conventional reflecting mirror shown by the chain line in the figure.

なお、本実施例においては、セグメント鏡11の原点と
鏡軸が近似回転放物面上にある組付点とこの組付点での
法線に一致させて太陽光エネルギを黒子面上に効率よく
集光することができるものを示したが、この他セグソフ
ト鏡11の組付位置を回転放物面上の組付点から移動さ
せるが、あるいは鏡軸の方向を法線の方向からずらすこ
とにより黒子面での太陽像を変形、移動させるかして、
黒子面上で太陽光エネルギの強度分布を変化させること
ができる。このため、セグメント鏡11の曲率が黒子面
での太陽像を最良の状態に修正するに必要な曲率に比べ
て過小あるいは過大な曲率である場合に、黒子面での太
陽光エネルギの強度分布を調節すればよい。
In this embodiment, the origin and mirror axis of the segment mirror 11 are made to coincide with the attachment point on the approximate paraboloid of rotation and the normal line at this attachment point, so that solar energy can be efficiently transferred onto the mole surface. Although we have shown a model that can focus light well, it is also possible to move the assembly position of the SEGSOFT mirror 11 from the assembly point on the paraboloid of revolution, or to shift the direction of the mirror axis from the direction of the normal line. By deforming and moving the sun image on the mole surface,
The intensity distribution of sunlight energy can be changed on the mole surface. For this reason, when the curvature of the segment mirror 11 is too small or too large compared to the curvature necessary to correct the solar image on the lentigo plane to the best condition, the intensity distribution of sunlight energy on the lentigo plane is Just adjust it.

例えば、メリディオナル面内でセグメント鏡の鏡軸の傾
きと組付位置を変更した時の黒子面上での太陽像の変化
を第3図(a)、 (b)および第4図に模式的に示す
。同図(a)において、セグメント鏡11の鏡軸12は
セグメント鏡組付位置での反射鏡1の法線13と一致し
ている。また、同図(b)においてはセグメント鏡11
の鏡軸12を法線13に対し傾斜させており、セグメン
ト鏡11の組付状態を変更した場合に焦千面7上にセグ
メント鏡が形成する太陽像4の変化の様子を示している
。ここで、4はセグメント鏡の組付状態を変更する以前
の太陽像であり、4aはセグメント鏡11の鏡軸12を
反射鏡1の法&?113に対して傾斜させた状態での太
陽像、4bはセグメント鏡11の組付位置を反射鏡1の
鏡軸12と平行に移動させた状態での太陽像を示してい
る。
For example, changes in the solar image on the mole surface when the inclination and assembly position of the mirror axis of the segment mirror are changed within the meridional plane are schematically shown in Figures 3(a), (b), and 4. show. In the same figure (a), the mirror axis 12 of the segment mirror 11 coincides with the normal line 13 of the reflecting mirror 1 at the segment mirror assembly position. In addition, in the same figure (b), the segment mirror 11
The mirror axis 12 of the figure is tilted with respect to the normal line 13, and the figure shows how the solar image 4 formed by the segment mirror on the thousand-dimensional plane 7 changes when the assembled state of the segment mirror 11 is changed. Here, 4 is the solar image before changing the assembly state of the segment mirror, and 4a is the solar image of the mirror axis 12 of the segment mirror 11 by the modulus of the reflecting mirror 1 &? 4b shows a solar image with the segment mirror 11 tilted relative to 113, and 4b shows a solar image with the assembly position of the segment mirror 11 moved parallel to the mirror axis 12 of the reflecting mirror 1.

また、本発明におけるセグメント鏡11の形状は前述し
た実施例に限定されず、例えば擬似正方形状あるいは擬
似三角形状としてもよく、その形状は適宜変更すること
が自由である。
Further, the shape of the segment mirror 11 in the present invention is not limited to the above-mentioned embodiments, and may be, for example, a pseudo-square shape or a pseudo-triangular shape, and the shape can be changed as appropriate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、セグメント球面鏡
の曲率を各球面鏡組付位置における回転放物面鏡の2つ
の主曲率の中間値となる値をもつ曲率に設定したので、
各セグメント球面鏡の曲率を選択することにより全体の
鏡面を回転放物面に近領させることができる。したがっ
て、回転放物面の黒子面上で一方の面内の光像が他方の
面方向への拡がりを抑制することができるから、太陽光
エネルギを黒子面上に効率よく集光することができる。
As explained above, according to the present invention, the curvature of the segment spherical mirror is set to a value that is the intermediate value of the two principal curvatures of the paraboloid of revolution mirror at each spherical mirror assembly position.
By selecting the curvature of each segment spherical mirror, the entire mirror surface can be made to approximate a paraboloid of revolution. Therefore, since it is possible to suppress the spread of the light image in one plane toward the other surface on the mole surface of the paraboloid of rotation, it is possible to efficiently concentrate sunlight energy on the mole surface. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明に係る反射鏡による
太陽像の形成状態と従来の反射鏡による太陽像の形成状
態の比較を示す模式図、第2図は同じく本発明の反射鏡
による太陽像を示す模式図、第3図(a)および山)は
セグメント鏡の鏡軸の傾きを変更しない場合と変更した
場合の太陽像の形成状態を示す模式図、第4図はその場
合の太陽像を示す模式図、第5図(alおよび(blは
従来のセグメント方式の反射鏡を示す概念図、第6図は
その場合の太陽像を示す模式図である。 ■・・・・反射鏡、11・・・・セグメンHJI。 代 理 人 大岩増雄 第4図
FIGS. 1(a) and (b) are schematic diagrams showing a comparison between the formation of a solar image by a reflecting mirror according to the present invention and the formation of a solar image by a conventional reflecting mirror. FIG. A schematic diagram showing a sun image by a mirror. Figure 3 (a) and crest) are schematic diagrams showing how a solar image is formed when the inclination of the mirror axis of a segment mirror is not changed and when it is changed. Figure 5 (al and (bl) is a conceptual diagram showing a conventional segment type reflector, and Figure 6 is a schematic diagram showing a solar image in that case.・Reflector, 11...Segment HJI. Agent Masuo Oiwa Figure 4

Claims (1)

【特許請求の範囲】[Claims]  多数のセグメント球面鏡を組み付けることにより回転
放物面鏡を近似的に形成してなり、前記セグメント球面
鏡の曲率を各球面鏡組付位置における前記回転放物面鏡
の2つの主曲率の中間値となる値をもつ曲率に設定した
ことを特徴とする反射鏡。
A paraboloidal mirror of revolution is approximately formed by assembling a large number of segmented spherical mirrors, and the curvature of the segmented spherical mirror is set to an intermediate value of the two principal curvatures of the parabolic mirror of revolution at each spherical mirror assembly position. A reflecting mirror characterized by having a curvature that has a value.
JP30808587A 1987-12-03 1987-12-03 Reflection mirror Pending JPH01147407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30808587A JPH01147407A (en) 1987-12-03 1987-12-03 Reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30808587A JPH01147407A (en) 1987-12-03 1987-12-03 Reflection mirror

Publications (1)

Publication Number Publication Date
JPH01147407A true JPH01147407A (en) 1989-06-09

Family

ID=17976687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30808587A Pending JPH01147407A (en) 1987-12-03 1987-12-03 Reflection mirror

Country Status (1)

Country Link
JP (1) JPH01147407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242306A (en) * 1993-02-18 1994-09-02 Tohoku Electric Power Co Inc Parabolic segment mirror
JP2012522265A (en) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar reflector having protective coating and method of manufacturing the same
WO2013129177A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Optical condenser, and heat collection apparatus and solar thermal power generation apparatus equipped therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242306A (en) * 1993-02-18 1994-09-02 Tohoku Electric Power Co Inc Parabolic segment mirror
JP2012522265A (en) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar reflector having protective coating and method of manufacturing the same
TWI469376B (en) * 2009-03-27 2015-01-11 片片堅俄亥俄州工業公司 Solar reflecting mirror having a protective coating and method of making same
WO2013129177A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Optical condenser, and heat collection apparatus and solar thermal power generation apparatus equipped therewith

Similar Documents

Publication Publication Date Title
JP3682300B2 (en) Non-imaging optical concentrator and illumination system
US3902794A (en) Fresnell lens
US4422135A (en) Annular illuminator
JP2006080524A (en) Photovoltaic module of solar concentrating device
PL80252B1 (en)
JPH10513579A (en) Light collection system for projectors
CN101368764A (en) Solar furnace adopting spin-elevation tracking mode
JPH0810561B2 (en) Headlight optics
US20240102621A1 (en) Motor vehicle headlamp with multiple lighting modules on an inclined common plate
JPH0562651A (en) Light source with mirror
JPH01147407A (en) Reflection mirror
JPS63502854A (en) solar ray concentrator
Parkyn et al. Compact nonimaging lens with totally internally reflecting facets
US4029389A (en) Radiation scanning system
US4870273A (en) Jitter reduction in rotating polygon scanning systems
JPH04335514A (en) X-ray aligner
US3934137A (en) Optical scanning device
JPH0215231A (en) Scanning optical system
JPH1031213A (en) Light source device
JP2004214470A (en) Light condensing solar energy generation system
CN107942500B (en) Laser miniaturization energy superposition system
JPH0216502A (en) Fresnel lens type composite reflecting device
SU1527607A1 (en) Mirror-type telescope system
RU2210038C2 (en) Solar-electric power unit
Hsu Reflective wide-angle pinhole camera