JPH0215231A - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JPH0215231A
JPH0215231A JP63166226A JP16622688A JPH0215231A JP H0215231 A JPH0215231 A JP H0215231A JP 63166226 A JP63166226 A JP 63166226A JP 16622688 A JP16622688 A JP 16622688A JP H0215231 A JPH0215231 A JP H0215231A
Authority
JP
Japan
Prior art keywords
scanning
light source
scanning direction
scan
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63166226A
Other languages
Japanese (ja)
Inventor
Yoji Kubota
洋治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP63166226A priority Critical patent/JPH0215231A/en
Publication of JPH0215231A publication Critical patent/JPH0215231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To eliminate the need to arrange a scanning lens and to reduce the influence of the accuracy error of a reflecting surface by arranging a concave reflecting mirror which has an elliptic surface increasing gradually in the distance between two specific focuses from a scan center part to a scan peripheral part. CONSTITUTION:Infinite anamorphic optical systems 12, 14, 15, and 17 have such refracting power that a light source 1 and a scan image formation plate P2 where scanning deflected light by a scan deflecting plane P1 forms its image are almost conjugate to each other as to a main scanning direction between the light source 1 and the scan deflecting plate P1 where illumination light from the light source 1 is scanned and deflected. Further, the optical systems 12, 14, 15, and 17 have such refracting power that the light source 1 and scan deflecting plane P1 are nearly conjugate about a subscanning direction. Then, the concave reflecting mirror is arranged which has the elliptic surface increasing gradually in the distance between two specific focuses from the scan center part to the scan peripheral part in the main scanning direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ビームを偏光して走査結像面」二を走査さ
せる光走査装置における走査光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a scanning optical system in an optical scanning device that polarizes a light beam to scan a scanning image plane.

(従来の技t#) 光走査装置における走査光学系の技術的な課題の一つは
、走査結像面における光ビームスボッ1−の偏移を如何
にして補正するかであり、偏移補正機能をもった反射曲
面ミラーを用いた光走査光学系が各種知られている。以
下、その各種光走査光学系の従来例について簡単に説明
する。
(Conventional Technique t#) One of the technical issues of the scanning optical system in an optical scanning device is how to correct the deviation of the optical beam spot 1- on the scanning imaging plane. Various optical scanning optical systems using reflective curved mirrors with . Hereinafter, conventional examples of various types of optical scanning optical systems will be briefly described.

(1)特公昭59−5882号公報 回転多面鏡の鏡面」二にその回転軸と垂直な線像を形成
する円筒状光学系と、上記鏡面によって偏向された光ビ
ームを上記回転軸に垂直な方向にのみ収束させる円筒レ
ンズと、上記鏡面によって偏光された光ビームを上記回
転軸に平行な方向にのみ収束させて走査結像面に収束さ
せる凹面反射鏡とを有してなる。
(1) A mirror surface of a rotating polygon mirror disclosed in Japanese Patent Publication No. 59-5882.Secondly, a cylindrical optical system that forms a line image perpendicular to the rotation axis, and a light beam deflected by the mirror surface is directed to the mirror surface perpendicular to the rotation axis. It has a cylindrical lens that focuses the light beam only in the direction, and a concave reflecting mirror that focuses the light beam polarized by the mirror surface only in the direction parallel to the rotation axis and converges it on the scanning imaging plane.

(2)特開昭61−86723号公報 特開昭61−84619号公報 走査レンズと走査結像面との間に設けられ、光ビームを
走査結像面上に副走査方向にのみ収束させるシリンドリ
カルミラーを備え、上記走査レンズとシリンドリカルミ
ラーにより、偏向器に線像として入射し偏向された光ビ
ームを走査結像面上に点像として収束せしめる。
(2) Japanese Unexamined Patent Publication No. 61-86723 (Japanese Unexamined Patent Publication No. 61-84619) A cylindrical lens that is provided between the scanning lens and the scanning imaging surface and converges the light beam onto the scanning imaging surface only in the sub-scanning direction. A mirror is provided, and the scanning lens and cylindrical mirror cause the light beam that is incident on the deflector as a line image and is deflected to be focused on the scanning imaging plane as a point image.

(3)特開昭62−275216号公報偏向器と走査結
像面との間の光学系を、偏向器側から順にひとつの球面
レンズとトーリック面形状の反射鏡より構成する。この
反射鏡は、走査方向の断面内では比較的大きい曲率半径
の円弧状であり、これと垂直な方向の断面内では比較的
小さい曲率半径の円弧であるような1・−リック形状で
ある。
(3) Japanese Unexamined Patent Publication No. 62-275216 The optical system between the deflector and the scanning imaging plane is composed of one spherical lens and a toric surface-shaped reflecting mirror in order from the deflector side. This reflecting mirror has a 1-rick shape in which the cross section in the scanning direction has a relatively large radius of curvature, and the cross section in the direction perpendicular thereto has a relatively small radius of curvature.

(4)特開昭62−253116号公報走査光を受けて
結像面に集光結像させるため介在させられる光走査用曲
面ミラーであって、反射面を光走査方向の面内でほぼ放
物線状の凹曲面形一 状に、かつ、光走査方向に直交する方向の面内で中央か
ら両サイドに向かって漸次走査光の入射角度が大きくな
る傾斜面形状に形成したミラーを有する。
(4) Japanese Unexamined Patent Publication No. 62-253116 A curved mirror for light scanning that is interposed to receive scanning light and condense and image it on an imaging surface, the reflecting surface being approximately parabolic within the plane in the light scanning direction. The mirror has a concave curved surface shape, and an inclined surface shape in which the incident angle of the scanning light gradually increases from the center toward both sides in a plane perpendicular to the optical scanning direction.

(発明が解決しようとする課題) 上記(1)の公報記載の光学系によれば、光学的にfθ
特性を得ることができず、偏向面を半径とする走査面上
でのビームウェストの変化を補正することができない。
(Problem to be Solved by the Invention) According to the optical system described in the publication (1) above, optically fθ
characteristics cannot be obtained, and changes in the beam waist on the scanning plane whose radius is the deflection plane cannot be corrected.

(2)の公報記載の光学系によれば、反射曲面の主走査
側にパワーがないためfOレンズを別に設ける必要があ
る。
According to the optical system described in the publication (2), since there is no power on the main scanning side of the reflective curved surface, it is necessary to separately provide an fO lens.

(3)の公報記載の光学系によれば、走査用結像レンズ
を通過した後のビームを結像面上で一点に収束させ、か
つ、走査結像面上で一直線状にビームを走査させるため
の走査用結像レンズを必要とする。また、トーリック面
形状の反射鏡による入反射光路上にハーフミラ−を配置
した場合には、光エネルギーが大幅に減少するという問
題点もある。
According to the optical system described in the publication (3), the beam after passing through the scanning imaging lens is converged to one point on the imaging plane, and the beam is scanned in a straight line on the scanning imaging plane. A scanning imaging lens is required for this purpose. Furthermore, when a half mirror is placed on the optical path of the toric surface-shaped reflecting mirror, there is a problem in that the light energy is significantly reduced.

(4)の公報記載の光学系によれば、副走査方向のビー
ム偏移に対する補正機能がないという問題点がある。
According to the optical system described in the publication (4), there is a problem that there is no correction function for beam deviation in the sub-scanning direction.

本発明は、かかる従来技術の問題点を解消するためにな
されたもので、走査用結像レンズを無くしてコス1−の
低廉化を図りながら、走査面上で一直線にビームを走査
すると共に、副走査方向での光ビームの偏移を補正する
ことができ、かつ、偏向面を半径とするビームウェスト
の変化を補正し、主走査面上での平坦性を保つことがで
きる走査光学系を提供することを目的とする。
The present invention has been made to solve the problems of the prior art, and aims to reduce the cost by eliminating the scanning imaging lens, while scanning the beam in a straight line on the scanning plane, and A scanning optical system that can correct the deviation of the light beam in the sub-scanning direction, correct the change in the beam waist with the deflection surface as the radius, and maintain flatness on the main scanning plane. The purpose is to provide.

(課題を解決するための手段) 本発明は、 光源とこの光源からの照射光を走査偏向する走査偏向面
との間に、主走査方向に関しては光源と走査偏向面によ
る走査偏向光が結像する走査結像面とがほぼ共役関係と
なる屈折力を有し、副走査方向に関しては光源と走査偏
向面とがほぼ共役関係となる屈折力を有する有限系のア
ナモフィック光学系を介在させ、 上記走査偏向面からの走査光路上に、副走査方向に関し
ては走査偏向面と上記走査結像面とがそれぞれ第1及び
第2の焦点に位置するような共役関係を有する楕円面を
有し、主走査方向に関しては上記走査結像面上の第2の
焦点が一直線に配列されるようにその走査中心部から走
査周辺部に向かって上記第1及び第2の焦点間の距離が
漸次大きくなる楕円面を有する凹面反射鏡を配設したこ
とを特徴とする。
(Means for Solving the Problems) The present invention provides an image forming system between a light source and a scanning deflection surface that scans and deflects the irradiated light from the light source, in the main scanning direction, the scanning deflected light by the light source and the scanning deflection surface forms an image. A finite anamorphic optical system is interposed, which has a refractive power that is almost conjugate with the scanning imaging plane, and has a refractive power that is almost conjugate with the light source and the scanning deflection surface in the sub-scanning direction. On the scanning optical path from the scanning deflection plane, there is an ellipsoidal surface having a conjugate relationship in the sub-scanning direction such that the scanning deflection plane and the scanning imaging plane are located at the first and second focal points, respectively. Regarding the scanning direction, the distance between the first and second focal points gradually increases from the scanning center to the scanning periphery so that the second focal points on the scanning imaging plane are arranged in a straight line. It is characterized by disposing a concave reflecting mirror having a surface.

(作用) 凹面反射鏡の楕円面は、主走査方向に関し、走査中心部
から走査周辺部に向かって第1及び第2の焦点間の距離
が漸次大きくなるようにしたため、走査全域でビームス
ポットが直線的に走査する。
(Function) The ellipsoidal surface of the concave reflecting mirror is designed such that the distance between the first and second focal points gradually increases from the scanning center to the scanning periphery in the main scanning direction, so that the beam spot is spread over the entire scanning area. Scan in a straight line.

上記凹面反射鏡は主走査方向と副走査方向でそれぞれパ
ワーの異なった凹曲面であり、副走査方向には楕円面の
組み合わせであって偏向面と走査面とがそれぞれの焦点
に対応するような共役関係であることから、副走査方向
でのビームの偏移を補正することができる。また、主走
査方向に関し光源と走査結像面とかほぼ共役関係となる
屈折力を有する有限系のアナモフィック光学系を光源と
走査偏向面との間に介在させ、上記凹面反射鏡は、偏向
面と走査面とが共役となるような楕円面を有することか
ら、走査用結像レンズを別に設ける必要はない。また、
凹面反射鏡を上記の如く構成することにより、偏向面を
中心とするビームウェストの偏移を補正することかでき
、主走査面上での平坦性が保たれる。
The above-mentioned concave reflecting mirror is a concave curved surface with different powers in the main scanning direction and the sub-scanning direction, and a combination of ellipsoidal surfaces in the sub-scanning direction, so that the deflection surface and the scanning surface correspond to the respective focal points. Because of the conjugate relationship, beam deviation in the sub-scanning direction can be corrected. In addition, a finite anamorphic optical system having a refractive power that is almost conjugate with the light source and the scanning imaging surface in the main scanning direction is interposed between the light source and the scanning deflection surface, and the concave reflecting mirror is connected to the deflection surface. Since it has an elliptical surface that is conjugate with the scanning surface, there is no need to separately provide a scanning imaging lens. Also,
By configuring the concave reflecting mirror as described above, the deviation of the beam waist around the deflection surface can be corrected, and flatness on the main scanning plane can be maintained.

(実施例) 以下、図面を参照しながら本発明にかかる走査光学系の
実施例について説明する。
(Embodiments) Hereinafter, embodiments of the scanning optical system according to the present invention will be described with reference to the drawings.

第」図、第2図において、半導体レーザ等の光源1から
出た照射光は、コリツー1−レンズ2により拡大された
平行光束とされ、シリンドリカルレンズ3を通ったあと
円筒ミラー4で反射され、回転多面鏡5の走査偏向面P
、に導かれる。回転多面鏡5は周知のとおり外周面が複
数の平面に鏡面仕」二げされて上記走査偏向面P、を形
成すると共に、回転軸を中心に回転して光源1側からの
照射光を一定の範囲で走査偏向する。この走査方向を主
走査方向といい、この方向に直交する方向を副走査方向
という。上記走査光路上には、主走査方向に長い凹面反
射鏡6が走査光軸に対して所定の傾きをもって配置され
、光走査平面を曲げるようになっている。凹面反射鏡6
による反射光路」二には、感光体ドラム7が配置されて
おり、同感光体ドラム7の表面が走査結像面P2となっ
ている。
In Figures 1 and 2, the irradiation light emitted from a light source 1 such as a semiconductor laser is expanded into a parallel beam by a colli-two lens 2, passes through a cylindrical lens 3, and is reflected by a cylindrical mirror 4. Scanning deflection surface P of rotating polygon mirror 5
, guided by. As is well known, the rotating polygon mirror 5 has an outer peripheral surface mirror-finished into a plurality of planes to form the scanning deflection surface P, and also rotates around the rotation axis to keep the irradiation light from the light source 1 constant. scan deflection within the range of . This scanning direction is called the main scanning direction, and the direction perpendicular to this direction is called the sub-scanning direction. On the scanning optical path, a concave reflecting mirror 6 which is long in the main scanning direction is arranged at a predetermined inclination with respect to the scanning optical axis, so as to bend the optical scanning plane. Concave reflector 6
A photoreceptor drum 7 is disposed on the reflected optical path 2, and the surface of the photoreceptor drum 7 serves as a scanning imaging plane P2.

上記シリンドリカルレンズ3は主走査方向にのみパワー
を有し、主走査方向に関し、光源]と上記走査偏向面P
□による走査偏向光が結像する走査結像面P、とがほぼ
共役関係となる屈折力を有している。一方、前記円筒ミ
ラー4は副走査方向にのみパワーを有する。この副走査
方向のパワーは、副走査方向に関し、光源1と走査偏向
面P。
The cylindrical lens 3 has power only in the main scanning direction, and in the main scanning direction, the light source] and the scanning deflection surface P
It has a refractive power such that it has a substantially conjugate relationship with the scanning imaging plane P on which the scanning deflected light due to □ forms an image. On the other hand, the cylindrical mirror 4 has power only in the sub-scanning direction. The power in the sub-scanning direction is the power of the light source 1 and the scanning deflection surface P in the sub-scanning direction.

とがほぼ共役関係となるようなパワーとなっており、光
源1側からの光ビームを副走査方向に収束させて走査偏
向面P、近傍に線像を形成するようになっている。なお
、回転多面鏡5に代えてガルバノミラ−その他の同じ機
能を有するものを用い一 てもよい。以上、要するに、レンズ2、シリンIくリカ
ルレンス3、円筒ミラー4の組み合わせで構成される光
学系は、有限系のアナモフィック光学系、即ち、コリメ
ー1へなものでなく収束性を有し、主走査方向に関して
は光源と走査結像面とがほぼ共役関係となる屈折力を有
し、副走査方向に関しては光源と走査偏向面とがほぼ共
役関係となる屈折力を有する光学系を構成している。
The light beam from the light source 1 side is converged in the sub-scanning direction to form a line image on and near the scanning deflection surface P. Note that the rotating polygon mirror 5 may be replaced with a galvanometer mirror or other mirror having the same function. In short, the optical system composed of the lens 2, cylinder I linear lens 3, and cylindrical mirror 4 is a finite anamorphic optical system, that is, it has convergence, not to the collimator 1, and has main scanning The optical system has a refractive power such that the light source and the scanning imaging plane have a nearly conjugate relationship in terms of direction, and a refractive power that has a nearly conjugate relationship between the light source and the scanning deflection plane in the sub-scanning direction. .

前記凹面反射鏡6は、主走査方向のパワーと副走査方向
パワーとかそれぞれ異なっている。主走査側の曲面はほ
ぼ放物面であって、この放物面は近似的にはfO特性を
得ることのできる曲面でもある。一方、副走査方向の曲
面は楕円面であって、走査偏向面P1と走査結像面P2
とが楕円の第1及び第2の焦点に位置するような兵役関
係を有する楕円面の組み合わせである。第3図、第4図
、第5図は」−記凹面反射鏡6の曲面を詳細に示す。
The concave reflecting mirror 6 has different power in the main scanning direction and power in the sub-scanning direction. The curved surface on the main scanning side is almost a paraboloid, and this paraboloid is also a curved surface that can approximately obtain fO characteristics. On the other hand, the curved surface in the sub-scanning direction is an elliptical surface, and includes a scanning deflection surface P1 and a scanning imaging surface P2.
is a combination of ellipsoids having a military service relationship such that and are located at the first and second foci of the ellipse. 3, 4 and 5 show the curved surface of the concave reflecting mirror 6 in detail.

第3図に示すように、凹面反射鏡6の曲面は、走査光軸
と、副走査方向の結像作用を得るための楕円面の接線と
かなす傾き角度か走査範囲の中心部から周辺部に向かっ
て漸次小さくなるように形成されている。第3図におい
て符号9は中心部の楕円面、9″は周辺部の楕円面であ
る。また、OXは中心部における上記楕円面9の上記接
線と走査光軸とがなす傾き角度、Ox’ は周辺部の楕
円面9″の接線と走査光軸とがなす傾き角度を示す。1
9xよりもOx’ が小さくなっており、これによって
光ビームスボッ1−を走査結像面P2において直線的に
走査することができる。
As shown in FIG. 3, the curved surface of the concave reflecting mirror 6 is tilted from the center to the periphery of the scanning range by the inclination angle formed by the scanning optical axis and the tangent of the ellipsoid to obtain an imaging effect in the sub-scanning direction. It is formed so that it gradually becomes smaller. In FIG. 3, reference numeral 9 is an ellipsoidal surface at the center, and 9'' is an ellipsoidal surface at the periphery. OX is an inclination angle between the tangent to the ellipsoidal surface 9 at the center and the scanning optical axis, Ox' represents the inclination angle between the tangent to the peripheral elliptical surface 9'' and the scanning optical axis. 1
Ox' is smaller than 9x, so that the light beam spot 1- can be linearly scanned on the scanning imaging plane P2.

また、前にも述べたとおり、凹面反射鏡6の副走査方向
の曲面を構成する楕円面の第1−及び第2の焦点は、走
査偏向面P、及び走査結像面P、に一致するように設定
されるが、第4図、第5図に示すように、上記楕円面の
二つの焦点間の離心距離が走査範囲の中心部から周辺部
に向かって漸次大きくなっている。第4図、第5図にお
いて符号9は走査範囲の中心部における楕円面、9′は
周辺部における楕円面であり、中心部における楕円面9
の離心距離りに対して周辺部における楕円面9′の離心
距離L″が大きくなっている。この結果、凹面反射鏡6
の主走査方向の曲面8はほぼ放物面となる。また、凹面
反射鏡6の副走査方向の曲面を4i1¥成する楕円面の
第2の焦点は、感光体ドラム7の表面」二において一直
線に配列されることになり、走査偏向面P□による走査
偏向光の走査結像面P2における移動軌跡は一直線にな
る。ここで、仮りに凹面反射鏡6が主走査方向の放物線
上の曲面8を持たないものとすると、走査結像面は第1
図に鎖線10で示すように、走査偏向面P□を中心とす
る円弧を描くことになり、感光体ドラム7の表面から外
れてしまう。なお、第3図に示すΔXは、凹面反射鏡6
の反射面の走査軸方向の位置ずれ量を示す。
In addition, as described above, the first and second focal points of the ellipsoidal surface constituting the curved surface in the sub-scanning direction of the concave reflecting mirror 6 coincide with the scanning deflection plane P and the scanning imaging plane P. However, as shown in FIGS. 4 and 5, the eccentric distance between the two focal points of the ellipsoidal surface gradually increases from the center to the periphery of the scanning range. In FIGS. 4 and 5, 9 is an ellipsoid at the center of the scanning range, 9' is an ellipsoid at the periphery, and 9' is an ellipsoid at the center.
The eccentric distance L'' of the elliptical surface 9' in the peripheral part is larger than the eccentric distance of the concave reflecting mirror 6.
The curved surface 8 in the main scanning direction is approximately a paraboloid. Further, the second focal point of the elliptical surface forming the curved surface 4i1 of the concave reflecting mirror 6 in the sub-scanning direction is arranged in a straight line on the surface ``2'' of the photoreceptor drum 7, and is The movement locus of the scanning deflected light on the scanning imaging plane P2 becomes a straight line. Here, if the concave reflecting mirror 6 does not have a curved surface 8 on a parabola in the main scanning direction, the scanning imaging plane will be the first
As shown by the chain line 10 in the figure, it draws an arc centered on the scanning deflection plane P□, and it comes off the surface of the photoreceptor drum 7. Note that ΔX shown in FIG.
shows the amount of positional deviation of the reflecting surface in the scanning axis direction.

第2図は、回転多面鏡5の走査偏向面P1の傾き(所謂
「面振れ」)による副走査方向の光ビムの変化の様子を
示すものであるが、凹面反射鏡6の副走査方向の楕円面
の二つの焦点が走査偏向面と走査結像面とにそれぞれ位
置するような共役の関係にあることから、走査偏向面P
1の面振れによる走査結像点の偏移が補正されることが
わかる。
FIG. 2 shows how the light beam changes in the sub-scanning direction due to the inclination of the scanning deflection surface P1 of the rotating polygon mirror 5 (so-called "plane deflection"). Since the two foci of the elliptical surface are in a conjugate relationship such that they are located on the scanning deflection plane and the scanning imaging plane, respectively, the scanning deflection plane P
It can be seen that the deviation of the scanning imaging point due to the surface wobbling of No. 1 is corrected.

次に、本発明の各種変形実施例について説明する。Next, various modified embodiments of the present invention will be described.

第6図は、光源1と走査偏向面P□との間に介在させる
有限系のアナモフィック光学系を、第1の凹面反射鏡1
2と第2の反射鏡である円筒反射鏡4で構成したもので
ある。反射鏡12の反射面は主走査方向にのみパワーを
有する球面又は非球面であり、光源1と走査結像面P2
とがほぼ共役関係となるパワーを有している。円筒反射
鏡4から結像面P2までの構成は前述の実施例と同様で
ある。この実施例の場合も前述の実施例と同様の作用効
果を奏する。
FIG. 6 shows a finite anamorphic optical system interposed between the light source 1 and the scanning deflection plane P
2 and a cylindrical reflecting mirror 4 which is a second reflecting mirror. The reflecting surface of the reflecting mirror 12 is a spherical or aspherical surface that has power only in the main scanning direction, and is connected to the light source 1 and the scanning imaging surface P2.
It has the power to have an almost conjugate relationship. The configuration from the cylindrical reflecting mirror 4 to the imaging plane P2 is the same as that of the previous embodiment. This embodiment also provides the same effects as the previous embodiment.

第6図の実施例における第1の反射鏡12と第2の反射
鏡4の機能は、一つの反射鏡に集約させてもよい。第7
図はそのような実施例を示すもので、光源1と走査偏向
面P1との間に介在させられる一つの凹面反射鏡14の
反射面を、第6図の実施例における反射鏡12の球面又
は非球面でなる反射面と反射鏡4の円筒状の反射面とを
合わせた形の有限系トロイダル反射面としたものである
The functions of the first reflecting mirror 12 and the second reflecting mirror 4 in the embodiment of FIG. 6 may be combined into one reflecting mirror. 7th
The figure shows such an embodiment, in which the reflecting surface of one concave reflecting mirror 14 interposed between the light source 1 and the scanning deflection plane P1 is replaced with the spherical surface of the reflecting mirror 12 in the embodiment of FIG. This is a finite toroidal reflecting surface that is a combination of an aspherical reflecting surface and a cylindrical reflecting surface of the reflecting mirror 4.

凹面反射鏡14の反射面は、主走査方向に関しては光源
1と走査結像面とがば・ぼ共役関係となるパワーを有し
、副走査方向に関しては光源1と走査偏向面P□とがほ
ぼ共役関係となるパワーを有している。走査偏向面P1
以下の構成は前述の実施例と同じでよい。
The reflective surface of the concave reflecting mirror 14 has a power such that the light source 1 and the scanning imaging plane are in a conjugate relationship in the main scanning direction, and the light source 1 and the scanning deflection plane P□ are in a conjugate relationship in the sub-scanning direction. It has powers that are almost conjugate. Scanning deflection surface P1
The following configuration may be the same as the previous embodiment.

光源と走査偏向面との間に介在させるアナモフィック光
学系は、反射光学系に限られるものではなく、屈折光学
系で構成してもよい。例えば、第8図に示すように、光
源1と走査偏向面P□との間にアナモフィックな凸レン
ズ15を配置してもよい。凸レンズ15はその光源側の
面が凸のト−リック面となっており、主走査方向の曲面
の半径をRx、副走査方向の半径をRyとすると、Rx
 ) Ry の関係になっている。凸レンズ15の走査偏向面P1側
の面は平面でもよいし球面でもよい。凸レンズ15は、
主走査方向に関しては光源1と走査結像面P2とがほぼ
共役関係となる屈折力を有し、i− 副走査方向に関しては光源1と走査偏向面P□とがほぼ
共役関係となる屈折力を有する。その他の構成は前述の
実施例と同じであり、また、同じ作用効果を奏する。
The anamorphic optical system interposed between the light source and the scanning deflection surface is not limited to a reflective optical system, but may be a refractive optical system. For example, as shown in FIG. 8, an anamorphic convex lens 15 may be arranged between the light source 1 and the scanning deflection plane P□. The convex lens 15 has a convex toric surface on its light source side, and if the radius of the curved surface in the main scanning direction is Rx and the radius in the sub-scanning direction is Ry, then Rx
) Ry relationship. The surface of the convex lens 15 on the scanning deflection surface P1 side may be a flat surface or a spherical surface. The convex lens 15 is
In the main scanning direction, the light source 1 and the scanning imaging plane P2 have a refractive power that is in a nearly conjugate relationship, and in the i- sub-scanning direction, the light source 1 and the scanning deflection surface P□ have a refractive power that is in a nearly conjugate relationship. has. The other configurations are the same as those of the previous embodiment, and the same effects are achieved.

有限系のアナモフィック光学系は、第9図に示すように
、主走査方向及び副走査方向の両方向にパワーを有する
レンズ16と副走査方向にのみパワーを有するシリンド
リカルレンズ17とで構成してもよい。これらレンズ1
6.17で構成されるアナモフィック光学系も、主走査
方向と副走査方向に関する屈折率の条件がこれまでの実
施例と同様に設定されており、同様の作用効果を奏する
The finite anamorphic optical system may be configured with a lens 16 having power in both the main scanning direction and the sub-scanning direction and a cylindrical lens 17 having power only in the sub-scanning direction, as shown in FIG. . These lenses 1
The anamorphic optical system constituted by 6.17 also has the refractive index conditions in the main scanning direction and the sub-scanning direction set in the same manner as in the previous embodiments, and produces the same effects.

(発明の効果) 本発明によれば、走査光路上に、副走査方向に関しては
走査偏向面と上記走査結像面とがそれぞれ第1及び第2
の焦点に位置するような共役関係を有する楕円面を有し
、主走査方向に関しては上記走査結像面上の第2の焦点
が一直線に配列されるようにその走査中心部から走査周
辺部に向かって上記第1及び第2の焦点間の距離が漸次
大きくなる楕円[nlを有する凹面反射鏡を配設したた
め、走査用のIノンスを配置する必要がなく、大幅なコ
スI〜ダウンが可能であり、また、上記凹面反射鏡は走
査結像面の近傍に配置することができるため、反射面の
精度誤差の影響を受けにくいという利点がある。さらに
、主走査側の有限結像系以外はすべて反射系で構成する
ことができるため、これら反射系の構成部材をプラスデ
ック等の安価な有機材料で作ることが可能になり、この
面からも大幅なコス1へダウンが可能である。
(Effects of the Invention) According to the present invention, on the scanning optical path, in the sub-scanning direction, the scanning deflection plane and the scanning imaging plane are arranged in the first and second positions, respectively.
It has an ellipsoidal surface having a conjugate relationship such that it is located at the focal point of the scanning image plane, and in the main scanning direction, the second focal point on the scanning imaging plane is arranged in a straight line from the scanning center to the scanning periphery. Since a concave reflecting mirror having an ellipse [nl] in which the distance between the first and second focal points gradually increases toward the center, there is no need to arrange an I-nonce for scanning, and it is possible to significantly reduce the cost I~. Moreover, since the concave reflecting mirror can be placed near the scanning imaging plane, it has the advantage of being less susceptible to accuracy errors of the reflecting surface. Furthermore, since everything except the finite imaging system on the main scanning side can be configured with reflective systems, it is possible to make the components of these reflective systems from inexpensive organic materials such as Plus Deck, and from this point of view, It is possible to significantly reduce the cost to 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる走査光学系の−・実施例を示す
斜視図、第2図は同」二側面図、第3図は−h記実路側
中の凹面反射面の変化の様子を示す側面図、第4図は」
−記実路側中の上記凹面反射面の主走査方向の変化の様
子を示ず斜視図、第5図は同上平面図、第6図は本発明
にかかる走査光学系の別の実施例を示す斜視図、第7図
は本発明にかかる走査光学系のさらに別の実施例を示す
斜視図、第8図は本発明にかかる走査光学系のさらに別
の実施例を示す斜視図、第9図は本発明にががる走査光
学系のさらに別の実施例を示す斜視図である。 1・・・・光源 2.3.4・・・・アナモフィック光
学系 6・・・・凹面反射鏡 9.9′・・・・楕円面
12.14.15.17・・・・アナモフィック光学系
 Pl・・・・走査偏向面 P2・・・・走査結像面ゝ
q Cnつ
FIG. 1 is a perspective view showing an embodiment of the scanning optical system according to the present invention, FIG. 2 is a side view of the same, and FIG. The side view shown in Figure 4 is
- A perspective view showing the change in the main scanning direction of the concave reflective surface on the road side, FIG. 5 is a plan view of the same, and FIG. 6 is another embodiment of the scanning optical system according to the present invention. 7 is a perspective view showing still another embodiment of the scanning optical system according to the present invention; FIG. 8 is a perspective view showing still another embodiment of the scanning optical system according to the present invention; FIG. 9 FIG. 2 is a perspective view showing still another embodiment of the scanning optical system according to the present invention. 1... Light source 2.3.4... Anamorphic optical system 6... Concave reflecting mirror 9.9'... Elliptical surface 12.14.15.17... Anamorphic optical system Pl...Scanning deflection plane P2...Scanning imaging plane ゝq Cn

Claims (1)

【特許請求の範囲】 光源とこの光源からの照射光を走査偏向する走査偏向面
との間に、主走査方向に関しては光源と走査偏向面によ
る走査偏向光が結像する走査結像面とがほぼ共役関係と
なる屈折力を有し、副走査方向に関しては光源と走査偏
向面とがほぼ共役関係となる屈折力を有する有限系のア
ナモフィック光学系を介在させ、 上記走査偏向面からの走査光路上に、副走査方向に関し
ては走査偏向面と上記走査結像面とがそれぞれ第1及び
第2の焦点に位置するような共役関係を有する楕円面を
有し、主走査方向に関しては上記走査結像面上の第2の
焦点が一直線に配列されるようにその走査中心部から走
査周辺部に向かって上記第1及び第2の焦点間の距離が
漸次大きくなる楕円面を有する凹面反射鏡を配設したこ
とを特徴とする走査光学系。
[Claims] Between the light source and the scanning deflection surface that scans and deflects the irradiated light from the light source, there is a scanning imaging surface on which the scanning deflected light by the light source and the scanning deflection surface forms an image in the main scanning direction. A finite anamorphic optical system is interposed, which has a refractive power that is almost conjugate with the light source and the scanning deflection surface in the sub-scanning direction, and the scanning light from the scanning deflection surface is interposed. On the road, there is an elliptical surface having a conjugate relationship such that the scanning deflection plane and the scanning imaging plane are located at the first and second focal points, respectively, in the sub-scanning direction, and the scanning imaging plane in the main scanning direction. a concave reflecting mirror having an elliptical surface in which the distance between the first and second focal points gradually increases from the scanning center to the scanning periphery so that the second focal points on the image plane are arranged in a straight line; A scanning optical system characterized by:
JP63166226A 1988-07-04 1988-07-04 Scanning optical system Pending JPH0215231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166226A JPH0215231A (en) 1988-07-04 1988-07-04 Scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166226A JPH0215231A (en) 1988-07-04 1988-07-04 Scanning optical system

Publications (1)

Publication Number Publication Date
JPH0215231A true JPH0215231A (en) 1990-01-18

Family

ID=15827450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166226A Pending JPH0215231A (en) 1988-07-04 1988-07-04 Scanning optical system

Country Status (1)

Country Link
JP (1) JPH0215231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475522A (en) * 1992-07-24 1995-12-12 Ricoh Company, Ltd. Optical scanner
US5504613A (en) * 1992-10-09 1996-04-02 Ricoh Company, Ltd. Optical scanner
US5666220A (en) * 1994-01-26 1997-09-09 Ricoh Company, Ltd. Optical scanner and polygon mirror
EP0694802A3 (en) * 1994-07-28 1998-01-14 Matsushita Electric Industrial Co., Ltd. Optical scanner
US5812298A (en) * 1994-11-24 1998-09-22 Fuji Xerox Co., Ltd. Aspherical reflector and light beam scanning optical system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475522A (en) * 1992-07-24 1995-12-12 Ricoh Company, Ltd. Optical scanner
US5504613A (en) * 1992-10-09 1996-04-02 Ricoh Company, Ltd. Optical scanner
US5666220A (en) * 1994-01-26 1997-09-09 Ricoh Company, Ltd. Optical scanner and polygon mirror
EP0694802A3 (en) * 1994-07-28 1998-01-14 Matsushita Electric Industrial Co., Ltd. Optical scanner
US5812298A (en) * 1994-11-24 1998-09-22 Fuji Xerox Co., Ltd. Aspherical reflector and light beam scanning optical system using the same

Similar Documents

Publication Publication Date Title
US6104522A (en) Optical scanning apparatus with controlled sag and ghost
US4247160A (en) Scanner with reflective pyramid error compensation
US4756585A (en) Optical beam scanning system
JPH0364727A (en) Light beam scanning optical system
JPH0215231A (en) Scanning optical system
JP3104618B2 (en) Optical scanning device and optical lens
JPH11218699A (en) Multibeam optical scanner
JP3528101B2 (en) Scanning system
JPH07111509B2 (en) Optical scanning device
JPH0588100A (en) Scanner
JPS6411926B2 (en)
JPS63142317A (en) Light beam scanner
JP2583716B2 (en) Optical system laser beam scanner
CN220436328U (en) Refractive and reflective optical system, car lamp and vehicle
JP3483834B2 (en) Optical scanning device
JPH01200221A (en) Light beam scanning optical system
JPH07174996A (en) Raster-output-scanner image system
JP2626708B2 (en) Scanning optical system
JPH112769A (en) Optical scanner
JPH01200220A (en) Light beam scanning optical system
JPH01137223A (en) Light beam scanner
JPH1020235A (en) Optical scanner
JPH1152277A (en) Optical scanner
JPS61126528A (en) Photoscanning device
JP2002116398A (en) Scanning optical system and scanning optical device