JPH01147357A - Enzyme analysis system and analysis by said system - Google Patents

Enzyme analysis system and analysis by said system

Info

Publication number
JPH01147357A
JPH01147357A JP62304523A JP30452387A JPH01147357A JP H01147357 A JPH01147357 A JP H01147357A JP 62304523 A JP62304523 A JP 62304523A JP 30452387 A JP30452387 A JP 30452387A JP H01147357 A JPH01147357 A JP H01147357A
Authority
JP
Japan
Prior art keywords
electrode
microelectrode
substance
biofunction
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304523A
Other languages
Japanese (ja)
Other versions
JP2615391B2 (en
Inventor
Yoshito Ikariyama
碇山 義人
Shigeru Yamauchi
繁 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKURITSU SHINTAI SHIYOUGAISHIYA RIHABIRITEESHIYON CENTER SOUCHIYOU
Original Assignee
KOKURITSU SHINTAI SHIYOUGAISHIYA RIHABIRITEESHIYON CENTER SOUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKURITSU SHINTAI SHIYOUGAISHIYA RIHABIRITEESHIYON CENTER SOUCHIYOU filed Critical KOKURITSU SHINTAI SHIYOUGAISHIYA RIHABIRITEESHIYON CENTER SOUCHIYOU
Priority to JP62304523A priority Critical patent/JP2615391B2/en
Priority to DE3888767T priority patent/DE3888767T2/en
Priority to EP19880902541 priority patent/EP0308514B1/en
Priority to PCT/JP1988/000255 priority patent/WO1988007192A1/en
Publication of JPH01147357A publication Critical patent/JPH01147357A/en
Priority to US07/779,194 priority patent/US5269903A/en
Application granted granted Critical
Publication of JP2615391B2 publication Critical patent/JP2615391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an analysis system which can make measurement with high-speed response and high sensitivity even with a slight quantity of sample by using a microelectrode of a biofunction material. CONSTITUTION:The microelectrode 1 having a biofunction is the electrode having a conductive fine particle material layer formed by impregnating the biofunction material such as enzyme on the surface of a very small electrode and is produced by electrodepositing the biofunction material directly on the section of a platinum wire or the like and electrolytically reducing a metal salt simultaneously to deposit the conductive fine particle material together with the biofunction material thereon. A micro device 6 is constituted by using this microelectrode as a working electrode 1, a platinum wire as a counter electrode 2 and silver chloride as a reference electrode 3. The microelectrode 1, the counter electrode 2 and the reference electrode 3 are solidified and fixed into a hole of a 'Teflon(R)' resin 5 by a resin 4. The measurement and detection are made with the rapid response and high sensitivity by using such microelectrode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、バイオセンサによる分析システム及びその分
析方法に関する。特に、牛体機能物質固定化微小電極(
ミクロ電極)を用い、高速応答性で高感度且つ高出力の
バイオセンサによる分析装置及びそれによる分析方法に
関rる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an analysis system using a biosensor and an analysis method thereof. In particular, microelectrodes immobilized with bovine functional substances (
The present invention relates to an analytical device using a high-speed response, high-sensitivity, and high-output biosensor using microelectrodes) and an analytical method using the same.

[従来の技術] 白金や炭素表面に酵素や抗体、微生物等を固定化したバ
イオセンサが種々の化学物質、生体物質を迅速41.つ
連続的に測定でさることは既に知られている。このよう
なバイオセンナにおいては、生体機能物質は生体機能物
質を含有した膜をを電極1−に貼り付けるJj法、或い
は表面を化学処理した電極に酵素等を塗布し、酵素等と
表面との間にノ(重結合を形成u°シめる方法などによ
って同定化されてきた。然し乍ら、バイオヒン11の性
能は、 tTj現性、耐久性、高感度、応答速度等によ
ってiif価されるが、 +’+ii者のJj法では応
答速度の点で難があり、後者の)j法では固定化密度を
大きくする、−とが困難であった。また、いずれの方法
においても、固定化には数段階の繁雑な工程を必要とし
[Prior art] Biosensors in which enzymes, antibodies, microorganisms, etc. are immobilized on the surface of platinum or carbon can rapidly detect various chemical substances and biological substances. It is already known that continuous measurement is possible. In such biosensers, biologically functional substances can be produced using the JJ method, in which a film containing a biologically functional substance is attached to the electrode 1-, or by applying an enzyme, etc. to an electrode whose surface has been chemically treated, and then bonding the enzyme, etc. with the surface. In the meantime, it has been identified by methods such as reducing the formation of heavy bonds. However, the performance of Biohin 11 is evaluated by its tTj reactivity, durability, high sensitivity, response speed, etc. +'+ii's Jj method has a problem in terms of response speed, and the latter's)j method has difficulty in increasing the immobilization density. Furthermore, in both methods, immobilization requires several complicated steps.

亦ひとつのセンナLに数種類の生体機能物質電極を取り
付けた多機能センナとするには困難があった。
It was difficult to create a multifunctional senna by attaching several types of biofunctional material electrodes to one senna L.

また従来の固定化酵素電極は、クラーク型酸素′、「極
、或いは下板状の白金表面に酵素固定化膜を装着した構
造を有している。そして、その作製法としては、別途調
製した固定化酵素膜を白金電極に貼り合わせる一H法9
表面を化学処理した平滑な′IE極に酵素を塗布し固定
化Vる方法などがある。
In addition, conventional immobilized enzyme electrodes have a structure in which an enzyme immobilization membrane is attached to a Clark-type oxygen electrode or a platinum surface in the form of a lower plate. 1-H method for attaching an immobilized enzyme membrane to a platinum electrode 9
There is a method of immobilizing enzymes by coating them on a smooth IE electrode whose surface has been chemically treated.

然し乍ら、このよろなツノ法では微小化が困難である。However, miniaturization is difficult with this various-horn method.

 −ノj、この微小化技術として最近性[1されている
ものが゛ヒ導体集積化技術がある。ニーのt導体技術を
用いるツノ法では、数■のサイズの酵素電極4 イ′l
製で、!るが、′IE位検出法であるので、感度及び応
答などの而で満足のゆく結果が得られていない14に、
現在イ1すられるサイズ以ドのミクロ化もかなり困難視
されている。
-No.J, the most recent miniaturization technology is conductor integration technology. In the horn method using the knee T conductor technology, an enzyme electrode 4 with a size of several square meters is used.
Made of! However, since it is an 'IE position detection method, satisfactory results have not been obtained in terms of sensitivity and response14.
Miniaturization beyond the current size is considered to be quite difficult.

[発明が解決しようとする問題点] 上記のような状況において1本発明者らは、従来のハイ
オヒンナシスデムと異なり、上記の従来のヒンljの有
′する難点を克服することをLI的に。
[Problems to be Solved by the Invention] Under the above-mentioned circumstances, the present inventors have developed an LI approach to overcome the drawbacks of the above-mentioned conventional hinlj, unlike the conventional hinna sysdem. To.

微小化生体機能物質電極(以下、ミクl−I′lV、極
と称する)を用いることにより、高速応答でかつ高感度
で、極めて微り先の試料であっても測定できる分析シス
テト及びそれによる分析方法を提供す−る。
By using miniaturized biofunctional material electrodes (hereinafter referred to as Miku-I'lV, poles), we have developed an analytical system that has high-speed response and high sensitivity and can measure even extremely small samples, and its use. Provide analytical methods.

また1本発明は上記のミクロ電極を作用電極として利用
したミク【1デバイスにより、極めて微11′cのル(
料を迅速にfl!1定できる高性能バイAセンシングン
スブムを提供?−ることを[1的とする。即ち。
In addition, the present invention provides an ultra-fine 11'c electrode using a microelectrode as a working electrode.
Get the fee quickly! Providing a high-performance bi-A sensing sensor that can maintain a constant temperature? - to be [1 point]. That is.

本発明は、微量の試料に対して、電位を印加した時に発
生ずる電流を検知4゛ることにより微’itル(料中の
物質(例λばグル:I−ス)を測定4“る、−とのでさ
るバイオセンリー分析システノ・と方法を提供すること
を目的とする。更に2本発明は、測定対象の液letに
依イfしない分析シスラ゛ノ、と方法を提供4−る、−
とを目的と[る。、Fた1本発明は、微小の酵素′lk
極(ミグ11電極)を微小表面に配置できるのでリンプ
ル11′cを極めて少なくすることイ)できる(例えば
、最少Y^では1μp以内でも測定可能である)バイオ
分析システムを提供することをFJ的とする。更に1本
発明は、ミクロ電極内部の酵素分子によって生産された
電極活性物質を直接検知するためにリアルタイムで計測
のできるバイオ分析システムを提供することを[1的と
釘る。また9本発明のバイオ分析システムは1種々のポ
ルタンメ1り検出法を適用できるので、試料が静IF状
態でt)か:lXわずに測定ができるものである0本発
明のバイ1分ツノ法法は、電極活性物質検出法なので。
The present invention measures minute amounts of substances (e.g., glucose) in a sample by detecting the current generated when a potential is applied to a minute amount of sample. , - It is an object of the present invention to provide a biosensory analysis system and method that does not depend on the liquid to be measured. ,−
The purpose is to , F
FJ's objective is to provide a bioanalysis system that can extremely reduce ripple 11'c (for example, measurement is possible within 1 μp at the minimum Y^) since the electrode (MIG11 electrode) can be placed on a microscopic surface. shall be. A further object of the present invention is to provide a bioanalysis system capable of real-time measurement to directly detect electrode active substances produced by enzyme molecules inside microelectrodes. In addition, since the bioanalysis system of the present invention can apply various detection methods, the bioanalysis system of the present invention can be used to measure the sample in a static IF state without using t). The method is an electrode active substance detection method.

酸化酵素や脱水素酵素などの重要な酵素にも適用できる
ものである。更に1本発明によるバイオ分析シス−1−
t、は、酵素免疫分析用電極としても活用でさるもので
ある。
It can also be applied to important enzymes such as oxidases and dehydrogenases. Furthermore, 1 bioanalytical system according to the present invention-1-
t can also be used as an electrode for enzyme immunoassay.

[発明の構成] [問題点を解決するための丁段] 本発明者は、1−記の問題を解決するために、生体機能
物質を、導電性物質の微粒子と一体化さける、二とによ
り製作された微粒子・導電性物質表面層を有4″る牛体
機能物τI固定化微小電極を作)fl ’ili極とし
、゛旧位印加手段及び1発生電流を測定する電流測定装
置を備え1発生電流の測定から、対象物質の濃度を決定
することを特徴と1−る分析システムを提供Vるもので
ある。更に、生体機能物質を、導電性物質の微粒子と一
体化させることにより製作された微粒子導電性物質表面
層を有する生体機能物質固定化微小電極を作用1[極と
し、定電位をかけたときに1発生する電流値を測定し、
その値から、対象物質の濃度を決定することを特徴とす
る分析方法を提供する。この生体機能物質を、導電性物
質の微粒子・と一体化さける処理方法は、−つば、微小
導′准性物質の表面に、導電性物質の微粒Y・を析出さ
けながら、生体機能物If1を吸着させるという一■=
程で成される。また、他のつけ、導’+11性微粒子−
物54(を、該生体機能物rIの溶液に浸清し、該生体
機能物質を微粒子−内部に取り込んだ後、或いは表面に
付着せしめた後、直接語生体機能物質同志を架橋す′る
か或いは微粒子表面に11jj分子薄膜を形成4−るこ
とにより被覆する。−とC該生体機能物質の溶出を防1
1−.4−るという2 、に2’+!処理で成される。
[Structure of the Invention] [Steps to Solve the Problems] In order to solve the problems described in 1-1, the present inventors have solved the problem by avoiding the integration of a biologically functional substance with fine particles of a conductive substance, and 2) A bovine functional substance τI-immobilized microelectrode having a surface layer of microparticles and a conductive material was fabricated as a fl 'ili electrode, and was equipped with a current applying means and a current measuring device for measuring the generated current. The present invention provides an analysis system characterized by determining the concentration of the target substance from the measurement of the generated current.Furthermore, the present invention provides an analysis system characterized by determining the concentration of the target substance from the measurement of the generated current. The biofunctional substance-immobilized microelectrode having the surface layer of the fine particle conductive material was used as the action 1 [pole], and the current value generated when a constant potential was applied was measured.
The present invention provides an analysis method characterized by determining the concentration of a target substance from the value. The processing method that avoids integrating this biologically functional substance with the fine particles of the conductive substance is as follows: - While depositing the fine particles of the conductive substance Y on the surface of the fine conductive substance, the biologically functional substance If1 is deposited on the surface of the fine conductive substance. The idea of adsorption =
It is accomplished in a process. In addition, other additives, conductive fine particles -
After immersing the substance 54 in a solution of the biologically functional substance rI and incorporating the biologically functional substance into the inside of the fine particles or adhering it to the surface, the biologically functional substance can be directly crosslinked with each other. Alternatively, the surface of the fine particles is coated by forming a thin film of 11jj molecules.
1-. 4-ru 2, ni 2'+! done through processing.

この該生体機能物質と導電性物質との一体化により作製
されたバイオ′准極は、非常に微411なナイノでてさ
、I]、つ、その機能は大きなバイオ゛(「極と同じ能
力を有することのできるもので、その構造は微粒子導電
性物質表面層を有し、生体機能物質の固定化された微小
電極である6 このバイオ′市極を1本発明ではミクロ
′市極と称する。即ち1本発明は、このような生体機能
物質固定化ミクlI電極を利用することにより、それに
 一定電位をかlJるときに2発生ずる電流値を測定し
、その(+/iから、微jλ対象物質の濃度を決定する
ことかで3)ることを見出したものである。
The bio-quasi-electrode created by integrating this biologically functional material and a conductive material has the same ability as a super-micropole. 6 This bio-electrode is referred to as a micro-electrode in this invention. In other words, 1) the present invention utilizes such a microelectrode immobilized with a biofunctional substance, measures the current value generated when a constant potential is applied to it, and calculates the microelectrode from (+/i). 3) was discovered by determining the concentration of the target substance.

本発明者らは、以1°111.白金黒化技術と酵素の電
気化学的吸着技術を利用することにより、微小で効率の
良い酵素電極(ミグ11電極)を作成する、−とに成功
し、特許出願した(昭和62年特許願第55387号及
び第56472号)。このミグ11電極は、高速応答性
を有し、高感度のものである。
The present inventors hereinafter 1°111. By using platinum blackening technology and enzyme electrochemical adsorption technology, we succeeded in creating a microscopic and highly efficient enzyme electrode (MIG-11 electrode) and filed a patent application (patent application filed in 1988). 55387 and 56472). This MIG-11 electrode has high-speed response and high sensitivity.

本発明者らは、更に、研究を進めて、このすぐれた特性
のミクロ電極を利用して、極微rfの試料中の微量物質
を分析できるバイオ分析シスデl、と分析方法を見出し
たものである。即ち、このミクIJ電極を作用電極とし
て、定電位印加法により極めて迅速に測定できるバイオ
センシングシスデノ、が得られたものである。
The present inventors further conducted research and discovered a bioanalytical system and analysis method that can analyze trace substances in samples using ultra-low RF using this microelectrode with excellent characteristics. . That is, a biosensing system that can be measured extremely quickly by a constant potential application method using this Miku IJ electrode as a working electrode was obtained.

本発明に利用する生体機能を有するミクl’l電極は、
白金などからなる微小な電極の表面に酵素などの生体機
能物質を含浸させた導電性物質微粒子層を有する構造の
’1Tt極である。この電極は1本発明に利用するよう
に、白金黒を生体機能物質の担体とする、ことは、従来
行なわれておら4゛(白金板を腐食により多孔質にして
それに酵素などを架橋剤でつなぐ固定化法があるが)、
更に白金黒微粒子・のサイズを一1ント■I−ルして、
生体機能物質を包11モし固定化するJj法は、従来な
かったものである。
The Miku l'l electrode with biological functions used in the present invention is
The '1Tt electrode has a structure in which the surface of a minute electrode made of platinum or the like is impregnated with a biofunctional substance such as an enzyme and a layer of conductive material fine particles is formed. As used in the present invention, this electrode uses platinum black as a carrier for biologically functional substances, which has not been done in the past. There is an immobilization method that connects the
In addition, the size of the platinum black particles was increased to 11 tones,
The Jj method, which encases and immobilizes biologically functional substances, is unprecedented.

即し0、−のミグ11電極作製にノー3いて、生体機能
物質の直接固定化方法は、従来化学試薬(架橋剤)を使
用しなければならなかった担体結合法ではなく、化学処
理なしでも生体機能物質の直接固定化が行なえるもので
ある。
Therefore, the direct immobilization method of biofunctional substances is not the carrier binding method that conventionally required the use of chemical reagents (crosslinking agents), but can be used without chemical treatment. This allows direct immobilization of biologically functional substances.

本発明に利用するミクロ電極の1つの作製方法は1例え
ば、白金線断面などの導電性物質上に直接に生体機ず戯
物質を電着し、同時に金属塩を電解還元(′I[析)さ
せて、導電性(例えば、金属)微粒子−物質を生体機能
物質とともに析出さけるものである0例えば、微小白金
電極−にに白金微粒子を形成させつつ、生体機能物質を
該微粒子内の細孔に取り込んでいくことにより作製でき
る。細孔の大きさ及び固定化される生体機能物質の駿は
、電流密度、電析時間などを調整することよってコン1
目−ルできる。このようにして得られた固定化生体機能
物r1電極の機能は、長期にわたり保持できるものT?
ある。
One method for manufacturing the microelectrode used in the present invention is 1. For example, a biomechanical material is directly electrodeposited on a conductive material such as a cross section of a platinum wire, and at the same time a metal salt is electrolytically reduced ('I [deposition]). For example, while forming platinum fine particles on a micro platinum electrode, a biologically functional substance is deposited into the pores within the fine particles. It can be created by incorporating. The size of the pores and the amount of biofunctional substances to be immobilized can be controlled by adjusting the current density, electrodeposition time, etc.
I can see it. The function of the immobilized biofunctional substance r1 electrode thus obtained can be maintained for a long period of time.
be.

また、他のミク11 ’ii極の作製法は、2段階処理
によ−)■、ミク1−!電極を作製するものであり、例
えば、細い白金線(−船釣には導′11i性物質)のヒ
に白金黒などの導電性微粒子−層をイ1製し、その中に
生体機能物質を固定化するものである。具体的には、導
電性物質微粒子層を形成された電極を、生体機能物質の
水溶液中に浸漬し、或いは、それを塗布することにより
含浸せしめ7次に生体機能物質のわずかな溶出を防止し
、かつ抗血栓性を付与するために、アルブミンやヘパリ
ンなどの高分子物質をその上に含浸せしめ、これを架橋
剤により不溶性化し、不溶性高分子−薄膜を形成したも
のである。このようにして作製したミクロ電極は、酵素
を包括固定化しており、所謂、包括法を金属電極系に適
用したものと考えることができるが、形成高分子膜は、
厚さ数百人程度以下の薄膜に仕りげることができ、高分
子・膜の存在が、生体機能物質の生体機能の発現の阻害
要因になることはないものである。
In addition, the other Miku 11 'ii poles are manufactured using a two-step process -)■, Miku 1-! For example, a thin platinum wire (a conductive material for boat fishing) is coated with a layer of conductive fine particles such as platinum black, and a biologically functional substance is placed inside it. It is something that becomes fixed. Specifically, the electrode on which the conductive substance fine particle layer has been formed is impregnated by immersing it in an aqueous solution of the biologically functional substance or by coating it, and then preventing the slight elution of the biologically functional substance. In addition, in order to impart antithrombotic properties, a polymeric substance such as albumin or heparin is impregnated thereon, and this is made insoluble with a crosslinking agent to form an insoluble polymer thin film. The microelectrode prepared in this way entrapping and immobilizing the enzyme can be considered to be an application of the so-called entrapment method to a metal electrode system, but the formed polymer film is
It is possible to create a thin film with a thickness of several hundred layers or less, and the presence of the polymer/film does not become a factor that inhibits the expression of the biological function of the biologically functional substance.

従って、」二記のように作製されるミクロ電極のナイノ
は、白金線の直径に依存し、細い白金線を用いると、従
来光えられない程度の極小リーイズのバイオ′屯極が得
られる。ミクl’lン1−ダーのす゛イズのハイA′屯
極の作製も容易であり1、−の場合ビ(療などへの応用
1飼犬ば身体内に埋め込んで使用する場合、都合が良く
、また極小サイズの電極では、Iナンヅル室の非常に手
許い分析装置を作製でき、微11tサンプルの分析が可
能になり、また迅速副定、高い応答性の分析装置が得ら
れる。更に。
Therefore, the diameter of the microelectrode prepared as described in Section 2 depends on the diameter of the platinum wire, and if a thin platinum wire is used, a bioelectrode with extremely small electrodes that cannot be achieved conventionally can be obtained. It is easy to make a high-A'-sized microorganism, and it is convenient for use by implanting it in the body of a dog. Furthermore, with the extremely small size of the electrode, it is possible to create a very handy analyzer with an I-nanzuru chamber, making it possible to analyze a minute 11 ton sample, and providing an analyzer with rapid subdetermination and high responsiveness.

比較的に大きなり゛イズの電極を作製すると、大きな検
出出力が(1トられる分析装置を作製できる。
By fabricating electrodes with relatively large sizes, it is possible to fabricate an analytical device with a large detection output.

以−にのミクI+TL極の作製において、最初の導電性
物質と、その上に析出すべき微粒子の(即ち多孔質の)
導電性物質、即ら、微粒子金属とは同じ材料である必要
はなく1例えばグラファイトの上に白金黒の析出を行な
わせた構造のものでもよい。、した、白金の代わりに、
金、ロジウl、などの1導電性物質」を多孔質導電性物
質として使用出来、′導電性物質、の微粒子層を導’i
[性物質表面に形成4−ることがでさるものは、他に障
害のない限り好適に本発明において使用できる。
In the production of the Miku I+TL electrode described below, the initial conductive material and the fine particles to be deposited on it (i.e., porous)
The conductive substance, ie, the fine particle metal, does not have to be the same material; for example, it may have a structure in which platinum black is deposited on graphite. , instead of platinum,
A conductive material such as gold, rhodium, etc. can be used as a porous conductive material, and a fine particle layer of the conductive material can be used as a conductive material.
[Any substance that can be formed on the surface of a chemical substance can be suitably used in the present invention as long as there are no other obstacles.

更に、ニーのミクtri(を極の白金黒による電極は。Furthermore, the electrodes are made of platinum black.

円板状1球状、チューブ状などの多様な形状に形成″c
、!るもので>>るから、バイオセンナとして。
Formed into various shapes such as disk shape, sphere shape, tube shape, etc.''c
,! Because it is a biosenna.

測定2その他の間詰条件に従う形状にでき、他の用途に
も用いられうるものである。
It can be shaped to comply with Measurement 2 and other filling conditions, and can be used for other purposes as well.

更に1本発明により利用するミクロTL極は、蛋白質、
多糖類などの高分子物質を塗布し架橋剤で架橋した薄膜
を形成し、生体適合性の付学、性能の維持、生体機能物
質の溶出を最少にすることもできる。
Furthermore, the micro TL pole utilized in accordance with the present invention includes proteins,
It is also possible to apply a polymeric substance such as a polysaccharide and form a thin film crosslinked with a crosslinking agent to improve biocompatibility, maintain performance, and minimize elution of biofunctional substances.

ここにおいては、「生体機能物質」とは、酵素、抗体に
代表されるもので、各種の触媒、微生物菌体、増殖微生
物2才ルガネラ、抗原、抗体。
Here, "biofunctional substances" are typified by enzymes and antibodies, including various catalysts, microbial cells, proliferating microorganisms, Luganella, antigens, and antibodies.

ハブテンなどを含むものである。This includes habten, etc.

また9本発明に利用リーるバイオ電極を被′1fi1−
るためi、: ff加的に使用できる高分子物質には、
アルブミンなどの蛋白質;イオン交換樹脂;或いはヘパ
リンなどの多糖類などが挙げられる。架橋剤としては、
使用する高分−r物質に対して適する架橋剤があり1例
えば、アルブミンに対しては、グルタールアルデhド、
またカルボジイミド、マレイミド架橋剤などが用いられ
る。
In addition, nine bioelectrodes utilized in the present invention were applied.
For i,: ff, polymeric substances that can be used additionally include:
Examples include proteins such as albumin; ion exchange resins; and polysaccharides such as heparin. As a crosslinking agent,
There are crosslinking agents that are suitable for the polymeric material used; for example, for albumin, glutaraldehydride,
Further, carbodiimide, maleimide crosslinking agents, etc. are used.

以1−二において、ミクtJ電極における。多孔質(微
粒子)導1E性物質の析出法は、電解析出で。
In 1-2 below, in the MikutJ electrode. The method for depositing porous (fine particle) conductive materials is electrolytic deposition.

説明したが、無電解法で行なうこともできることは明ら
かである。
Although described, it is clear that electroless methods can also be used.

本発明による分析法は、高速応答で、高感度。The analytical method according to the present invention has a fast response and high sensitivity.

几つ、小型のバイオセンシングシステノ、が実用化され
たものであり、バイオセンサのミク[コ化、多機能化な
どの多項目計測が要求される臨床化学分析、携帯型の健
康監視システムの開発に、極めて重要な技術となろう。
A compact and compact biosensing system has been put into practical use, and is useful for clinical chemistry analysis, which requires multi-item measurement such as biosensor integration and multi-functionalization, and for portable health monitoring systems. This will become an extremely important technology for development.

第1図は、微)J−酵素(グル:1−ス・オキシダーゼ
)電極1で、直径が例えば、約1μm〜500ffmに
できるミクlコ電極を作用電極1とし、白金線の対極2
と銀・塩化銀を参照電極3に用いる構成のミク1「デバ
イス6を示シー、以Fの三電極、ミクl?電極l、対極
2と参照′北極3は、デフIJン樹!F 5の穴の中に
樹脂4で固められ、固定されたものC夛)る。このよう
なミグ11デバイス6は、細い金属線を3本封入固定し
ただけ構造であるから。
FIG. 1 shows a working electrode 1 of a microelectrode (glucose oxidase) having a diameter of about 1 μm to 500 ffm, and a platinum wire counter electrode 2.
Miku 1 with a configuration using silver and silver chloride as the reference electrode 3. Show device 6, the following three electrodes, Miku 1?electrode 1, counter electrode 2 and reference' north pole 3, def IJ tree!F 5 The MIG-11 device 6 has a structure in which three thin metal wires are sealed and fixed in the hole.

非常に微小なナイスのデバイスにできる。It can be made into a very small and nice device.

、−のミグ1ノ電極に対して2例えば、微1八1例λ。, 2 for example, a micro-181 example λ for a MIG 1 electrode of -.

ば1μPの試料でも測定可能である。即ち、微量試料を
滴下した後に電位を印加し、このときに発生ずるTri
流値を検知する方式によって、微量ル(料中の物質を検
知できるものである。
Even a 1 μP sample can be measured. That is, after dropping a small amount of sample, a potential is applied, and the Tri
By detecting the flow value, trace amounts of substances in the liquid can be detected.

従って9本発明ではミクr1電極内部で生体機能物質例
えば酵素分子によって生産された1[極内の活性物質を
直接に検知するためにリアルタイムで計測ができる。
Therefore, in the present invention, real-time measurement is possible in order to directly detect active substances within the 1 electrode produced by biofunctional substances, such as enzyme molecules, inside the 1 electrode.

更に、以にの構造の′;r!、極で種々のポルタンメト
リ検出法を適用できるので試料は、静止状態でもかまわ
ずに測定口■能である。
Furthermore, in the structure below, ′;r! Since various portammetric detection methods can be applied at the poles, the sample can be measured even if it is in a stationary state.

また、TL極内での活性物質検出法であるので。In addition, it is a method for detecting active substances within the TL pole.

酸化酵素や脱水素酵素などの重要な生体機能物質にも適
用できるバイオ分析システムである。
This bioanalysis system can also be applied to important biologically functional substances such as oxidases and dehydrogenases.

本発明を以ド実施例によって、詳細に説明するが1本発
明はそれによって限定されるものではない。
The present invention will be explained in detail below with reference to Examples, but the present invention is not limited thereto.

[実施例1コ 製造方法 1μm〜500μm径の範囲の種々の微小白金線、2Q
Ot1m径の対極用の白金線、そして500μm〜1■
径程度の銀線を樹j指4で封入した後に、微小白金線表
面をアルミナパウダーで研磨した。この研摩白金表面に
対し、酵素の固定化は次の2つの方法で行なった。
[Example 1 Production method Various fine platinum wires with diameters ranging from 1 μm to 500 μm, 2Q
A platinum wire for the counter electrode with a diameter of 1 m, and a platinum wire of 500 μm to 1
After enclosing a silver wire with a diameter of about 100 ml with a wooden finger 4, the surface of the fine platinum wire was polished with alumina powder. Enzymes were immobilized on this polished platinum surface using the following two methods.

(A)塩化白金11(33+og)、酢酸鉛(0,6m
g)とグルコースオキシダーゼ(Long)を含む溶液
(pH3,5)1m12中で、定電位(−0,2V)或
いは定電流(−5μA)で10分間電解して、グルコー
スオキシダー(J含浸白金黒を析出させた。
(A) Platinum chloride 11 (33+og), lead acetate (0.6m
Glucose oxidase (Pt. was precipitated.

(B)300ppmの酢酸鉛含有の3%塩化白金酸溶液
中に浸し、1「流値−50μAで10分間白金黒の電気
析出を行い、厚さ約数μmの白金黒を得た0次に、得ら
れた白金黒析出電極を25℃で60秒間乾燥した後に、
0.5M硫酸水溶液中で−0,3Vに30分間保持し、
白金黒析出電極から水素を発生さけた0次に、20℃、
60秒間風乾した後に、5501れ位のグルコースオキ
シグーゼ含有燐酸11$i液(pH6,8)impに2
0分間浸漬し、再度風乾した。
(B) Immersed in a 3% chloroplatinic acid solution containing 300 ppm lead acetate, and electrodeposited platinum black for 10 minutes at a flow value of -50 μA to obtain platinum black with a thickness of several μm. After drying the obtained platinum black deposited electrode at 25°C for 60 seconds,
Maintained at -0.3V for 30 minutes in a 0.5M sulfuric acid aqueous solution,
At 20°C, at zero order to avoid hydrogen generation from the platinum black deposited electrode,
After air drying for 60 seconds, the phosphoric acid 11 solution (pH 6,8) at the 5501 position was added to the imp.
It was immersed for 0 minutes and air-dried again.

次に1以上のようにして得られたミクロ電極を有4−る
ミク【1デバイス6において、maを銀・塩化銀参IK
i電極とした後に、このようにして作製した=j7[i
極よりなるミクロデバイス6を、0.1M燐酸緩衝液中
で一昼夜攪拌し洗浄し1本発明に用いる三電極系ミクロ
デバイスを得た。
Next, in the device 6 with the microelectrode obtained as described above, ma is silver/silver chloride IK.
=j7[i
The microdevice 6 consisting of electrodes was stirred and washed in a 0.1M phosphate buffer solution overnight to obtain a three-electrode microdevice used in the present invention.

[実施例2] グルコース濃度の測定 この三電極系ミクロデバイスにグルコ−3v:、料20
μ2を滴下した後、0.6Vの電位を印加した。この時
発生するピーク電流値とグルコース濃度との関係を調べ
た0次に、10mMのグルコースを含む試料の液酸を変
えて、ピークN、流値と液1^との関係を調べた。即ら
、各種濃度のグル:1−スル(料を滴下し、0.6Vの
電位を印加した。その結果は、第2図に示すような応答
が見られた。
[Example 2] Measurement of glucose concentration This three-electrode microdevice was charged with Gluco-3V:
After dropping μ2, a potential of 0.6V was applied. The relationship between the peak current value generated at this time and the glucose concentration was investigated.Next, the relationship between the peak N, flow value, and liquid 1^ was investigated by changing the liquid acid of the sample containing 10mM glucose. That is, various concentrations of Glue:1-sul were added dropwise and a potential of 0.6 V was applied. As a result, responses as shown in FIG. 2 were observed.

即ら、0.6Vの電位をかけると、第2図のこと:!定
電流発生した。グルコースを含有しないときは、第2図
の左図に示すような電流が生じ、10mMグルコースを
含むリン酸緩衝液(50mM、pH7,0,50mMN
aCFりを標苧試料とした時は、第2図の右図に丞すよ
うな応答TrL流が生じた。
That is, when a potential of 0.6V is applied, the result shown in Figure 2 is:! A constant current was generated. When no glucose is contained, a current as shown in the left diagram of Figure 2 is generated, and when a phosphate buffer (50mM, pH 7, 0, 50mN
When aCF was used as a standard sample, a response TrL flow as shown in the right diagram of FIG. 2 was generated.

即も、第2図から明らかなように、電位印加にともない
直ちに応答1!流が発生し、急速に減衰することが分か
る。このことは、電極内部のグルコース酸化酵素によっ
て生成された過酸化水素が電位印加にともない直ちに酸
化されることを示している。電位印加を繰り返すと数回
l」からピーク電流が一定になることが分かった。
Immediately, as is clear from Fig. 2, there is an immediate response of 1! upon application of the potential. It can be seen that a flow occurs and quickly decays. This indicates that the hydrogen peroxide produced by glucose oxidase inside the electrode is immediately oxidized as the potential is applied. It was found that by repeating the potential application several times, the peak current becomes constant.

一力、リン酸緩衝液でも同様の挙動が観測されたものの
、ピーク電流値は小さかった。そこで各種グル:1−ス
ρ度に対するピーク電流値を測定し、グル7T−ス含有
なしのリン酸vt街液で得られたピーク’117. f
it 1ft(即ら、ブランク値)との差をとり、グル
′:?−ス濃度との関係を調べた。その結果は、第3図
に示すものである。即し、グルコース4度が1〜100
mMの範囲に変化するときに。
Although similar behavior was observed with phosphate buffer, the peak current value was small. Therefore, the peak current values for various glues: 1-su ρ degree were measured, and the peak '117. f
Take the difference from it 1ft (i.e., blank value) and set it to Guru':? -The relationship with the concentration of gas was investigated. The results are shown in FIG. Therefore, glucose 4 degrees is 1-100
When varying in the mM range.

ピーク電流(/iとの間に第3図に示すような測定曲線
が得られることが分かった。
It was found that a measurement curve as shown in FIG. 3 was obtained between the peak current (/i) and the peak current (/i).

また1本発明による酵素分析システムでは、微量の静止
ル(料に対しては、リアルタイムで濃度をだ1 計測できること寺示された(ミリ秒オーダーで微量試料
から特定物質を測定できる)。
Furthermore, the enzyme analysis system according to the present invention has been shown to be able to measure the concentration of minute amounts of static samples in real time (it is possible to measure specific substances from minute amounts of samples in millisecond order).

[実施例3] 液’4依存性試験 10mMのグルコース標準ル(料を各々2,5゜10.
15.20μ!を取りミクロバイオセンナ−システムに
滴下した後、電位0.6vの定電位を印加したときの9
発生M、流を測定した。その結果、第4図に示4゛もの
が得られた。即し、得られるピーク’+’rj、 BE
は、試料の成端に依存しないことが分かった。
[Example 3] Solution '4 Dependency Test 10mM glucose standard solution (2.5°10.
15.20μ! 9 when a constant potential of 0.6 V was applied after dropping it into the microbiosenner system.
The generation M, flow was measured. As a result, 4゜ as shown in Fig. 4 was obtained. Therefore, the obtained peak '+'rj, BE
was found to be independent of the sample termination.

以トの結果により9本発明のよる分析シスデl、及び方
法では、その計測においで測定試料の一部だけの検知に
よって、7!!I+定でき、静11−状態の試料全体の
情報を取り出しえる、−とが示された。
Based on the following results, the analysis system and method according to the present invention detects only a part of the sample to be measured in the measurement. ! It was shown that I+ can be determined and information on the entire sample in the static 11- state can be extracted.

以、!ユのように本発明による分析シス’7−1b及び
方法では2、試料を攪け1−る必要がなく、そのために
2体内パイセンシングシステム、或いは携帯型バイオセ
ンナ−としての利用できる可能性を示している。
Here we go! As described above, the analysis system and method according to the present invention does not require stirring the sample, and therefore has the potential to be used as a two-in-body sensing system or a portable biosensor. It shows.

本発明のよるバイオ分析システムでは、対流容器でも、
バッチ式でも、静置式と同様に高速応答で迅速に高感度
で測定できることは言うまでもない。
In the bioanalysis system according to the present invention, even in the convection container,
It goes without saying that even with a batch method, measurements can be made quickly and with high sensitivity with the same high-speed response as with a stationary method.

[発明の効果] 本発明の分析システム及び方法は1次のような顕著な技
術的な効果を奏したものである。
[Effects of the Invention] The analysis system and method of the present invention have the following remarkable technical effects.

第1に、応答が非常に迅速で、感度よく、静+h試料で
も測定検出できる高性能バイオセンシングが提供できる
First, it is possible to provide high-performance biosensing that has a very quick response, high sensitivity, and can measure and detect even static samples.

第2に、微小な酵素′電極(即ち、ミクロ電極)。Second, tiny enzyme electrodes (i.e., microelectrodes).

対極及び基準電極を微小表面に配置できるのでナン/ル
IItを極めて少なくすることができ、従って、非常に
微暖な試料でも迅速に、応答性よく測定できる分析シス
テl、とツノ法が提供される。
Since the counter electrode and the reference electrode can be arranged on a microscopic surface, the number of nanometers and loops can be extremely reduced.Therefore, an analytical system and a horn method are provided that can quickly and responsively measure even extremely warm samples. Ru.

第3に、内部の酵素分子のよって生産された電極活性物
質を直接に検知橿−るためにリアルタイムで計泗できる
システムを提供できる。
Third, it is possible to provide a system that can be used in real time to directly detect electrode active substances produced by internal enzyme molecules.

第4に2種々のポルタンメトリ検出法を適用できのでサ
ンプルは静止状態でも感度よく、検出できる分析シスデ
l、を提供できる。
Fourthly, since two different portammetric detection methods can be applied, it is possible to provide an analytical system that can detect samples with high sensitivity even in a stationary state.

第5に、電極活性物質検出法なので、酸化酵素や脱水素
酵素などの重要な酵素、生体機能物質にも適用できる。
Fifth, since it is an electrode active substance detection method, it can also be applied to important enzymes such as oxidases and dehydrogenases, and biologically functional substances.

第6に1体内パイセンシングシステム、或いは携帯型バ
イオセンナ−としても利用できるバイオ分析システムを
提供できる。
Sixthly, it is possible to provide a bioanalysis system that can be used as an in-vivo sensing system or a portable biosensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2本発明による分析シスデ12に用いる三電極
系のミク「Jデバイスの構造と製法を説明する説明図で
ある。 第2図は9本発明により定電位をかけた時の発生?ti
′流を示すグラフである。 第3図は9本発明のミクロ分析シスデl、によるグル;
1−ス濃度と発生電流値の関係を示すグラフである。 第4図は1本発明による分析シスブトによるグル:1−
ス試料の容量とピークTL流値の関係を示すグラフであ
る。 [r便な部分の符号の説明] 1111作用極(ミクロ電極) 211.対極 309.参照電極 40.、樹脂 505.テフ【7ン 698.ミクロデバイス 特rF’f出願人 国立身体障害者リハビリテーション
ヒンター 代理人  jF理士 倉 持  裕(外1名)第1図 一−→時1h 第2図 第3図 第4図 手続補正書(方式) %式% 2、発明の名称 酵素分析システム及びそれによる分析法3、補IFを−
る者 °11件との関係 出願人 住所 埼に県151沢市並木4丁目1番地名称 1すを
身体障害者リハビリテーショントンター総長 tド 山
 直 − 4、代Flj人 住所〒101  東京都千代III区神III須III
町I丁目2番地5、補W命令の11付  昭和63年2
7131](昭和63年2 Jl 23 [(送付)6
補正の対象 (1)顯11の出願人の欄 (り図面のうち第2図
Figure 1 is an explanatory diagram illustrating the structure and manufacturing method of the three-electrode MikuJ device used in the analytical system according to the present invention. Ti
This is a graph showing the flow. FIG. 3 shows 9 microanalysis systems according to the present invention;
1 is a graph showing the relationship between the 1-phase concentration and the generated current value. Figure 4 shows 1-
3 is a graph showing the relationship between the capacity of a sample and the peak TL flow value. [Explanation of symbols for convenient parts] 1111 Working electrode (micro electrode) 211. Counterpoint 309. Reference electrode 40. , resin 505. Teff [7n698. Microdevice special rF'f Applicant National Rehabilitation for the Disabled Hinter Agent jF Physician Hiroshi Kuramochi (1 other person) Figure 1 1-→1h Figure 2 Figure 3 Figure 4 Procedure amendment (method) % formula % 2. Name of the invention Enzyme analysis system and analysis method using the same 3. Supplementary IF -
Relationship with the 11 cases Applicant address: 4-1 Namiki, Sawa City, Saitani Prefecture 151 Name: President of Tonter, Rehabilitation for the Physically Disabled Nao Yama - 4, Flj Address: 101 Chiyo III, Tokyo Ward God III Su III
Town I-chome 2-5, Supplementary W Order No. 11, 1986 2
7131] (Showa 63 2 Jl 23 [(Sent) 6
Subject of amendment (1) Applicant's column in face 11 (Fig. 2 of the drawings)

Claims (2)

【特許請求の範囲】[Claims] (1)生体機能物質を、導電性物質の微粒子と一体化さ
せることにより製作された微粒子導電性物質表面層を有
する生体機能物質固定化微小電極を作用電極とし、電位
印加手段及び、発生電流を測定する電流測定装置を備え
、発生電流の測定から対象物質の測定することを特徴と
する分析システム。
(1) The working electrode is a biofunctional substance-immobilized microelectrode that has a surface layer of a particulate conductive material produced by integrating a biofunctional substance with fine particles of a conductive substance, and a potential applying means and a generated current. An analysis system comprising a current measuring device for measuring, and measuring a target substance by measuring the generated current.
(2)生体機能物質を、導電性物質の微粒子と一体化さ
せることにより製作された微粒子導電性物質表面層を有
する生体機能物質固定化微小電極を作用電極とし、定電
位をかけたときに、発生する電流値を測定し、対象物質
の濃度を決定することを特徴とする分析方法。
(2) When a constant potential is applied using a biofunctional substance immobilized microelectrode having a surface layer of a microparticle conductive material produced by integrating a biofunctional substance with fine particles of a conductive substance as a working electrode, An analysis method characterized by measuring the generated current value and determining the concentration of the target substance.
JP62304523A 1987-03-13 1987-12-03 Enzyme analysis system and analysis method using the same Expired - Lifetime JP2615391B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62304523A JP2615391B2 (en) 1987-12-03 1987-12-03 Enzyme analysis system and analysis method using the same
DE3888767T DE3888767T2 (en) 1987-03-13 1988-03-11 Method for producing a bio-microelectrode.
EP19880902541 EP0308514B1 (en) 1987-03-13 1988-03-11 Method of fabrication of a biomicroelectrode
PCT/JP1988/000255 WO1988007192A1 (en) 1987-03-13 1988-03-11 Immobilization of biofunctional material, element prepared therefrom and measurement using the same
US07/779,194 US5269903A (en) 1987-03-13 1991-10-22 Microbioelectrode and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304523A JP2615391B2 (en) 1987-12-03 1987-12-03 Enzyme analysis system and analysis method using the same

Publications (2)

Publication Number Publication Date
JPH01147357A true JPH01147357A (en) 1989-06-09
JP2615391B2 JP2615391B2 (en) 1997-05-28

Family

ID=17934044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304523A Expired - Lifetime JP2615391B2 (en) 1987-03-13 1987-12-03 Enzyme analysis system and analysis method using the same

Country Status (1)

Country Link
JP (1) JP2615391B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451595A (en) * 1977-09-29 1979-04-23 Matsushita Electric Ind Co Ltd Enzyme electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451595A (en) * 1977-09-29 1979-04-23 Matsushita Electric Ind Co Ltd Enzyme electrode

Also Published As

Publication number Publication date
JP2615391B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
Raveendran et al. Fabrication of a disposable non-enzymatic electrochemical creatinine sensor
US9846137B2 (en) Sensors for the detection of analytes
US5534132A (en) Electrode and method for the detection of an affinity reaction
US10330677B2 (en) Electrochemical aptasensors with a gelatin B matrix
Wang et al. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum
Ikariyama et al. Electrochemical fabrication of amperometric microenzyme sensor
Li et al. Electrochemical sensor based on dual-template molecularly imprinted polymer and nanoporous gold leaf modified electrode for simultaneous determination of dopamine and uric acid
Salazar et al. Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization
Qiu et al. Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly (allylamine)-branched ferrocene and gold nanoparticles
CN108051491B (en) It is a kind of for detecting the electrochemical immunosensor of LAG-3 albumen
Ikariyama et al. Micro-enzyme electrode prepared on platinized platinum
Su et al. Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements
Barman et al. Gold nanoparticles assembled chemically functionalized reduced graphene oxide supported electrochemical immunosensor for ultra-sensitive prostate cancer detection
US20090270266A1 (en) Method for Electrocatalytic Protein Detection
WO1988007193A1 (en) Immobilization of biofunctional material, element prepared therefrom and measurement using the same
US5269903A (en) Microbioelectrode and method of fabricating the same
Feng et al. Direct electrochemical detection of guanosine-5′-monophosphate at choline monolayer supported and gold nanocages functionalized carbon nanotubes sensing interface
Narang et al. A third generation bilirubin sensor development by using gold nanomaterial as an immobilization matrix for signal amplification
Li et al. Development and modeling of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polythionine-modified three-dimensional gold nanoelectrode ensembles
JP2569404B2 (en) Method for immobilizing biofunctional substance and electrode using the same
Chikae et al. Highly sensitive method for electrochemical detection of silver nanoparticle labels in metalloimmunoassay with preoxidation/reduction signal enhancement
Guo et al. Determination of cardiac troponin I for the auxiliary diagnosis of acute myocardial infarction by anodic stripping voltammetry at a carbon paste electrode
JPH01147357A (en) Enzyme analysis system and analysis by said system
EP0308514B1 (en) Method of fabrication of a biomicroelectrode
CN112858435A (en) Preparation method of long-term anti-pollution electrochemical biosensor based on human serum albumin molecularly imprinted polymer gel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term