JPH01145885A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH01145885A
JPH01145885A JP62305067A JP30506787A JPH01145885A JP H01145885 A JPH01145885 A JP H01145885A JP 62305067 A JP62305067 A JP 62305067A JP 30506787 A JP30506787 A JP 30506787A JP H01145885 A JPH01145885 A JP H01145885A
Authority
JP
Japan
Prior art keywords
optical
light
semiconductor laser
input
optical output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305067A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mori
義弘 森
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62305067A priority Critical patent/JPH01145885A/en
Publication of JPH01145885A publication Critical patent/JPH01145885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To amplify a high-speed optical signal with good linearity and to facilitate construction of an optical system, by providing a structure in which an optical input travelling forward and backward only once in a resonator is emitted as an optical output, a means for passing only the optical input, and a means for passing the optical output selectively. CONSTITUTION:While a bias current higher in its value than a threshold current is supplied from a current source 104 to a semiconductor laser, an optical input is supplied from outside to a semiconductor laser 101. An optical isolator 108 allows light to pass only from left to right on this figure. Light inputted into an active layer 107 travels from left to right on the figure while being amplified, and it is reflected on a high reflection factor film 103. The reflected light travels again in the active layer 107 and is amplified and reaches a low refection factor film 102. However, the light goes out with almost no reflection. Accordingly, amplification is performed only in one forward and backward travelling. The travelling route of the optical output 112 emitted is bent at 90 degrees at a deflection beam splitter 109, and then the light is made to pass through a wavelength filter 113. Only light with a wavelength of the optical output 112 is made to selectively pass through the wavelength filter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光情報処理等の光を信号として用い
るシステムにおける、半導体より成る光利得媒質を用い
た光増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical amplifier using an optical gain medium made of a semiconductor in a system that uses light as a signal, such as optical communication or optical information processing.

従来の技術 光通信や光コンビューテング等の光を信号として用いる
通信及び情報処理は、光が高速であること、電磁誘導に
影響されにくいこと等から実用化が期待されている。し
かしながら、信号光は伝送路中の吸収や散乱等によって
減衰を受けるので、伝送の途中で増幅をする必要がある
。この光増幅の一つの手段として考えられているのが、
半導体レーザ増幅器を用いた光増幅である(例えば、エ
レクトロニクス・レターズ、第23巻、第2o号。
2. Description of the Related Art Communication and information processing that uses light as a signal, such as optical communication and optical computing, are expected to be put to practical use because light is fast and is not easily affected by electromagnetic induction. However, since the signal light is attenuated by absorption, scattering, etc. in the transmission path, it is necessary to amplify it during transmission. One possible means of optical amplification is
Optical amplification using a semiconductor laser amplifier (for example, Electronics Letters, Vol. 23, No. 2o).

1052A−1053頁)。1052A-1053).

ところが、通常の半導体レーザ増幅器は、レーザの共振
器内の光入力の光子密度の増減によって活性層内のキ増
していくと共振器内の光入力の光子密度も増加する。従
って、光入力によって誘起される誘導放出も増加する。
However, in a typical semiconductor laser amplifier, as the power in the active layer increases due to an increase or decrease in the photon density of the optical input into the laser cavity, the photon density of the optical input into the resonator also increases. Therefore, stimulated emission induced by optical input also increases.

ところが、レーザ発振が続いているかぎりはキャリア密
度はNthに固定されたままである。しかしながら、バ
イアス電流は一定であるから全利得は不変であるので、
共振器内の光入力の光子密度がPlに達すると増幅に費
される利得が大きくなりすぎ、レーザ発振が止まってし
まうのでキャリア濃度が変動し出す。
However, as long as laser oscillation continues, the carrier density remains fixed at Nth. However, since the bias current is constant, the total gain remains unchanged, so
When the photon density of the optical input into the resonator reaches Pl, the gain used for amplification becomes too large, laser oscillation stops, and the carrier concentration begins to fluctuate.

この様子を示したのが第4図である。Piに達するとき
光入力の値をElとすると、光出力対光入力特性は第6
図のようにEi以下の光入力の領域で線形応答が得られ
る。
FIG. 4 shows this situation. If the value of optical input when reaching Pi is El, the optical output vs. optical input characteristic is the sixth
As shown in the figure, a linear response is obtained in the region of optical input below Ei.

発明が解決しようとする問題点 ところが上記した構成によると、入射した光入力は共振
器内を数回往復して出力される。共振器長を300ミク
ロンとすると、−往復で約6〜7ピコ秒費されるため、
全体として数10ピコ秒から約1ooピコ秒程度の時間
遅れが生じてしまうよって数ギカビット毎秒あるいはそ
れ以上の高速の光信号の増幅が困難であった。
Problems to be Solved by the Invention However, according to the above configuration, the incident light input goes back and forth within the resonator several times before being output. If the resonator length is 300 microns, it will take about 6 to 7 picoseconds for round trip.
Overall, a time delay of several tens of picoseconds to about 10 picoseconds occurs, making it difficult to amplify high-speed optical signals of several gigabits per second or higher.

問題点を解決するための手段 本発明は上記のような問題点を解決するために、一方の
端面に低反射率コーティング且つ他方の端面に高反射率
コーティングがほどこされた半導体レーザに、電流源か
らしきい値電流よシ高いバイアス電流を供給してレーザ
光を発生させた状態において前記低反射率コーティング
を施した端面から注入された光入力が共振器を一往復し
ただけで光出力として出射されることを主眼としている
Means for Solving the Problems In order to solve the above problems, the present invention provides a current source for a semiconductor laser having a low reflectance coating on one end face and a high reflectance coating on the other end face. When a bias current higher than the threshold current is supplied to generate laser light, the optical input injected from the end face with the low reflectance coating travels back and forth through the resonator only once and is emitted as optical output. The main focus is to be

尚、本手段には上記した構成の他に光入力のみを通過さ
せ且つ光出力は通過させないための手段と、レーザ光と
光出力のうち光出力のみを選択的に透過させる手段とが
具備される。
In addition to the above-mentioned configuration, the present means includes means for passing only the optical input but not the optical output, and means for selectively transmitting only the optical output out of the laser beam and the optical output. Ru.

作  用 上記した構成によれば、光入力は共振器を一往復しただ
けで光出力として出射されるので、数ギガビット毎秒以
上の高速の光信号の増幅にも十分対応できる。また光の
入出力が一つの端面のみで為されるので、光学系の構成
が容易になる。さらに、低反射率コーティングにょシし
きい値キャリア密度”thが上昇してキャリア寿命が短
くなることも良好な高速応答に役立つ。
Effects According to the above-described configuration, the optical input is emitted as an optical output after just one round trip through the resonator, so it can sufficiently cope with amplification of high-speed optical signals of several gigabits per second or more. Furthermore, since light input and output is performed only through one end face, the configuration of the optical system is facilitated. Furthermore, the low reflectance coating also increases the threshold carrier density (th) and shortens the carrier lifetime, which also contributes to good high-speed response.

実施例 第1図は本発明に基づ〈実施例の構成図を示している。Example FIG. 1 shows a block diagram of an embodiment based on the present invention.

101は半導体レーザであシ低反射率膜102と高反射
率膜1o3が2つの端面にそれぞれコーティングされて
いる。反射率は例えば、それぞれ0.1%と99%であ
る。この半導体レーザに電流源104からしきい値電流
よシ高い値のバイアス電流を供給する。さて、端面コー
ティングによシミラー損失が増加しているために、しき
い値電流はコーティング前よりも約2倍程度大きくなる
。また、しきい値キャリア密度も2倍近くに上昇してお
りキャリアの寿命は短くなっている。
101 is a semiconductor laser, and its two end faces are coated with a low reflectance film 102 and a high reflectance film 1o3, respectively. For example, the reflectance is 0.1% and 99%, respectively. A bias current higher than the threshold current is supplied to this semiconductor laser from a current source 104. Now, since the similar loss is increased by the end face coating, the threshold current becomes about twice as large as before the coating. Furthermore, the threshold carrier density has increased nearly twice, and the lifetime of carriers has become shorter.

この状態で外部から光入力106を半導体レーザ1o1
に注入する。108は光アイソレータであり図面上で左
から右にのみ光を通すように設定されている。尚、光入
力105は偏光ビームスプリッタ109を通過する偏波
成分から成る。110はファラデー回転素子であり、光
入力106の偏波面はこれを通過する際に46度回転す
る。その後光入力105はレンズ111で半導体レーザ
1o1の端面に集光される。活性層107に注入された
光は増幅を受けながら図面土庄から右に進み高反射率膜
103により反射される。反射された光は再び活性層1
07中を進みながら増幅を受は低反射率膜1o2に達す
るが、はとんど反射されることなく出射される。よって
、本構成による増幅は一往復のみで行なわれ、従来例の
ように往復をくシかえさない。さて、出射された光出力
112は\ファラデー回転素子11oで再び46度の回
転を受は光入力105と偏波面が直交するようになる。
In this state, the optical input 106 is input from the outside to the semiconductor laser 1o1.
Inject into. Reference numeral 108 denotes an optical isolator, which is set to pass light only from left to right in the drawing. Note that the optical input 105 consists of polarized components that pass through a polarizing beam splitter 109. 110 is a Faraday rotation element, and the polarization plane of the optical input 106 is rotated by 46 degrees when passing through this element. Thereafter, the optical input 105 is focused by a lens 111 onto the end face of the semiconductor laser 1o1. The light injected into the active layer 107 travels to the right from the top of the drawing while being amplified and is reflected by the high reflectance film 103. The reflected light returns to the active layer 1
07, the light is amplified and reaches the low reflectance film 1o2, but it is emitted without being reflected at all. Therefore, amplification with this configuration is performed in only one round trip, and does not repeat round trip as in the conventional example. Now, the emitted light output 112 is rotated by 46 degrees again by the Faraday rotator 11o so that the plane of polarization becomes orthogonal to the light input 105.

従って偏光ビームスプリッタ109で進路が90度曲げ
られ、その後波長フィルタ113を通過する。波長フィ
ルタは光出力112の波長のみを選択的に通過させる。
Therefore, the path of the light is bent by 90 degrees by the polarizing beam splitter 109, and then passes through the wavelength filter 113. The wavelength filter selectively passes only the wavelengths of the optical output 112.

よって、半導体レーザ101の発振光106は波長フィ
ルり113又は光アイソレータ108で阻止される。
Therefore, the oscillation light 106 of the semiconductor laser 101 is blocked by the wavelength filter 113 or the optical isolator 108.

前述した通り、上記した構成によれば、光入力が増幅さ
れる時間は、共振器を一往復する時間に等しく大むね6
〜7ピコ秒程度と大変短い。しかもキャリア寿命が短い
ので、高速の光信号の増幅に適する。また、レーザ発振
をしているのでキャリア濃度の変動が無く線形応答がで
きる。よって第2図のような、例えば1ギガビット毎秒
の信号から成る光入力を、波形の変形等の無いまま増幅
光としてとシ出せる。
As mentioned above, according to the above configuration, the time during which the optical input is amplified is approximately 6 hours, which is equal to the time for one round trip through the resonator.
It is very short, about 7 picoseconds. Furthermore, since the carrier lifetime is short, it is suitable for amplifying high-speed optical signals. Furthermore, since laser oscillation is used, there is no fluctuation in carrier concentration and a linear response can be achieved. Therefore, an optical input consisting of a signal of, for example, 1 gigabit per second as shown in FIG. 2 can be output as amplified light without waveform deformation or the like.

発明の効果 本発明によると、高速の光信号を線形性良く増幅できる
光増幅器が構成できる。また、光の出し入れが半導体レ
ーザの一方の側のみで出来るので光学系の構成が容易に
なる。
Effects of the Invention According to the present invention, an optical amplifier that can amplify high-speed optical signals with good linearity can be constructed. Furthermore, since light can be input and output from only one side of the semiconductor laser, the configuration of the optical system is facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光増幅器の一実施例の構成図、第2図
は本発明に基づ〈実施例の光入力と光出力の波形図、第
3図は従来の光増幅器の構成図、第4図は従来例のキャ
リア密度対共振器内の光入力光子密度の関係を示す図、
第6図は従来例の光出力対光入力の関係を示す図である
。 1o1・・・・・・半導体レーザ、102・・・・・・
低反射率膜、103・・・・・・高反射率膜、106・
・・・・・光入力、106・・・・・・発振光、109
・・・・・・偏光ビームスプリッタ、110・・・・・
・ファラデー回転素子、113・・・・・・波長フィル
ター。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名lθ
に一手導体レーデ m−一低xi卑膜 103−一高反鼾半狭 lθ4−  電5気源 tOS−−一光入力 lθ6− 発語光 107−−−活椛贋 10δ−光アイソレータ ut−−−レンズ 112−一一光エカ ttS −一弓皮蚤フィルダー 第 2 図 3ρ/−−一千4阜伯Nレープ 3θ4− 光アイソレーグ 305−一光入力 Jc/1 第4図 光工か Ei      光入方
Fig. 1 is a block diagram of an embodiment of the optical amplifier of the present invention, Fig. 2 is a waveform diagram of optical input and optical output of the embodiment based on the present invention, and Fig. 3 is a block diagram of a conventional optical amplifier. , FIG. 4 is a diagram showing the relationship between the carrier density and the optical input photon density in the resonator in the conventional example,
FIG. 6 is a diagram showing the relationship between optical output and optical input in a conventional example. 1o1... Semiconductor laser, 102...
Low reflectance film, 103... High reflectance film, 106.
...Light input, 106...Oscillation light, 109
...Polarizing beam splitter, 110...
- Faraday rotation element, 113...wavelength filter. Name of agent: Patent attorney Toshio Nakao and one other person lθ
One-handed conductor lede m-one low xi base film 103-one high anti-snoring half-narrow lθ4- electric 5 air source tOS--one optical input lθ6- speech light 107--activated counterfeit 10δ-optical isolator ut-- - Lens 112 - 11-light EkattS - 1-Yumi Hikari Flea Filter No. 2 Fig. 3 ρ/-- 1,400 Fubaku N Lep 3 θ 4 - Optical isolage 305 - 1-Optical Input Jc/1 Fig. 4 Optical Work or Ei Light Input direction

Claims (1)

【特許請求の範囲】[Claims]  一方の端面が低反射率を有し且つ他方の端面が高反射
率を有する半導体レーザと、前記半導体レーザにしきい
値電流以上のバイアス電流を供給する電流源と、前記低
反射率を有する端面に外部からの光を一方的に入射させ
る手段と、前記低反射率を有する端面から出射する光の
うち前記半導体レーザが発生するレーザ光を選択的に遮
断し且つ前記半導体レーザの内部で増幅されてきた前記
外部からの光を選択的に通過させる手段とを有すること
を特徴とする光増幅器。
a semiconductor laser in which one end face has a low reflectance and the other end face has a high reflectance; a current source that supplies a bias current equal to or higher than a threshold current to the semiconductor laser; a means for unilaterally allowing light from the outside to enter; a means for selectively blocking laser light generated by the semiconductor laser among the light emitted from the end face having a low reflectance; and a means for selectively passing the light from the outside.
JP62305067A 1987-12-01 1987-12-01 Optical amplifier Pending JPH01145885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305067A JPH01145885A (en) 1987-12-01 1987-12-01 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305067A JPH01145885A (en) 1987-12-01 1987-12-01 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH01145885A true JPH01145885A (en) 1989-06-07

Family

ID=17940721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305067A Pending JPH01145885A (en) 1987-12-01 1987-12-01 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH01145885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02933A (en) * 1988-03-25 1990-01-05 Fujitsu Ltd Optical amplifier
US5082343A (en) * 1990-12-20 1992-01-21 At&T Bell Laboratories Isolated optical coupler
JP2010161263A (en) * 2009-01-09 2010-07-22 Fujitsu Ltd Optical amplifier, control circuit, and control method of optical amplifier
JP2017021324A (en) * 2015-07-08 2017-01-26 日本電信電話株式会社 Varifocal lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02933A (en) * 1988-03-25 1990-01-05 Fujitsu Ltd Optical amplifier
US5082343A (en) * 1990-12-20 1992-01-21 At&T Bell Laboratories Isolated optical coupler
JP2010161263A (en) * 2009-01-09 2010-07-22 Fujitsu Ltd Optical amplifier, control circuit, and control method of optical amplifier
JP2017021324A (en) * 2015-07-08 2017-01-26 日本電信電話株式会社 Varifocal lens

Similar Documents

Publication Publication Date Title
US7002733B2 (en) Methods and devices for amplifying optical signals using a depolarizer
JP3054707B1 (en) Optical isolator
US20010055149A1 (en) Monitoring of optical radiation in semiconductor devices
US6356693B1 (en) Semiconductor optical pulse compression waveguide
JP2005050898A (en) Semiconductor optical amplifier and optical module using same
US3641459A (en) Apparatus and method for narrowing the pulse width and stabilizing the repetition rate in semiconductor lasers exhibiting self-induced pulsing
US5101461A (en) Optical fiber amplifier apparatus
US6836334B2 (en) Angle random walk (ARW) noise reduction in fiber optic sensors using an optical amplifier
JPH01145885A (en) Optical amplifier
JP2677726B2 (en) Optical transmitter
JP2659554B2 (en) Light intensity correlator
JPS6257280B2 (en)
JPH05175611A (en) Semiconductor light amplifier
JPH01143382A (en) Optical amplifier
JPH05136511A (en) Optical fiber amplifier
JP2862145B2 (en) Bidirectional optical amplifier
US6353498B1 (en) All optical inverter/amplifier
JPH04340933A (en) Optical amplifier
JP3175246B2 (en) Optical amplifier
JP2787898B2 (en) Optical clock pulse generation circuit
JPS63205983A (en) Semiconductor light-emitting device equipped with light isolator
JPH0541624A (en) Fiber type optical amplifier
JP3238734B2 (en) Optical semiconductor device
JPH04150088A (en) Light amplification system
Ducellier et al. Record low noise factor (5.2 dB) in 1.55/spl mu/m bulk SOA for high bit rate low-noise preamplification