JPH01145882A - Short-wave semiconductor laser - Google Patents

Short-wave semiconductor laser

Info

Publication number
JPH01145882A
JPH01145882A JP30313887A JP30313887A JPH01145882A JP H01145882 A JPH01145882 A JP H01145882A JP 30313887 A JP30313887 A JP 30313887A JP 30313887 A JP30313887 A JP 30313887A JP H01145882 A JPH01145882 A JP H01145882A
Authority
JP
Japan
Prior art keywords
layer
type
gaas
doped
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30313887A
Other languages
Japanese (ja)
Inventor
Makoto Sato
信 佐藤
Kenji Uchida
内田 憲治
Masahiko Kondo
正彦 近藤
Shigekazu Minagawa
皆川 重量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30313887A priority Critical patent/JPH01145882A/en
Publication of JPH01145882A publication Critical patent/JPH01145882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form an AlGaInPP type clad with a high carrier concentration without crystrallinity deteriorated, by disposing a Zn containing p-type GaAs layer with a concentration not less than a specific value of a carrier concentration adjacent to a p-type clad layer. CONSTITUTION:An Se doped GaAs layer 12, an Se doped (Al0.7Ga0.3)0.5In0.5P clad layer 13, a Ga0.5In0.5P active layer 14, a Zn doped (Al0.7Ga0.3)0.5In0.5P clad layer 15, a Zn doped GaAs 16, and an Se doped GaAs 17 are made to grow to thickness of 0.1-1mum on an n-type GaAs substrate 11 by the use of an organic metal vapor growth method. The growth temperature is 600-700 deg.C. When the p-type GaAs layer 16 and the p-type clad layer 15 are epitaxial growth layers having carrier concentrations 5X10<19>cm<-2> and 1X10<17>cm<-2> respectively, a series resistance of the element is as small as 3-6OMEGA, spite of the existence of a high resistance layer (p-type clad layer/several OMEGAs) in so that every element obtained continuously oscillates at room temperatures and does not deteriorate.

Description

【発明の詳細な説明】 本発明の目的はかかる結晶性の低下を招かずに高いキャ
リア濃度のADG a I n P P型クラッドを形
成する方法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a method for forming an ADG a I n PP P-type cladding having a high carrier concentration without causing such a decrease in crystallinity.

〔問題点を解決するための手段〕[Means for solving problems]

前記従来構造のレーザにおいて、P−GaAs層とP型
電極との接触抵抗を下げるべくP−GaAs層へのZn
の拡散を試みたところ、直列抵抗の低い素子が得られた
。これはZnの拡散がP−A Q G a I n P
クラッドまで到し、クラッド層の低抵抗化に基づくと考
えられる。この拡散によって低抵抗化したクラッド層の
結晶性は同等キャリア濃度でエピタキシャル成長した結
晶より格段と良質であることがわかった。
In the conventional laser structure, Zn is added to the P-GaAs layer in order to reduce the contact resistance between the P-GaAs layer and the P-type electrode.
When attempting to diffuse the ions, an element with low series resistance was obtained. This means that the diffusion of Zn is P-A Q G a I n P
This is thought to be due to the lower resistance of the cladding layer. It was found that the crystallinity of the cladding layer, whose resistance was lowered by this diffusion, was much better than that of a crystal grown epitaxially at the same carrier concentration.

本発明の短波長レーザは、(AlxGai−x) yI
nt−yP活性層と該活性層を挾んで(A Q x’ 
G a 1−X’ ) yI nt−yP(x’ >x
)より選んだ1種以上のp型クラッド層よりなる半導体
レーザにおいて、該p型クラッド層に隣接してキャリア
濃度が5X1010ロ一3以上のZn含有p型G a 
A s層を設けたものである。
The short wavelength laser of the present invention has (AlxGai-x) yI
nt-yP active layer and the active layer (A Q x'
G a 1-X' ) yI nt-yP (x'> x
), in which a Zn-containing p-type Ga having a carrier concentration of 5×1010 or more is adjacent to the p-type cladding layer;
It is provided with an As layer.

〔発明の実施例〕[Embodiments of the invention]

比較例 第1図に示す結晶層を有機金属気相成長法を用い種々の
条件で成長した。■族元素の原料としてトリメチルイン
ジウム(以下T M I nと記す)、トリエチルガリ
ウム(以下TEGaと記す)、トリエチルアルミニウム
(以下TEAQと記す)、および■族元素の原料として
PHaAsHaを用い、n型GaAs基板11の面上に
順次SeドープG a A s層12、Seドープ(A
lo、7Gao、3)o、aIno、3Pクラッド層1
3、Gao、flIno、gP活性層14、Znドープ
(A Q 0.7G a o、a)o、a I no、
r+Pクラッド層15、ZnドープGaAs 16およ
びSeドープG a A s 17を0.1〜1μmの
厚みで成長した。
Comparative Example The crystal layer shown in FIG. 1 was grown under various conditions using organometallic vapor phase epitaxy. Using trimethylindium (hereinafter referred to as TMI n), triethyl gallium (hereinafter referred to as TEGa), and triethylaluminum (hereinafter referred to as TEAQ) as the raw material for the group ■ element, and PHaAsHa as the raw material for the group ■ element, n-type GaAs Se-doped GaAs layer 12 and Se-doped (A
lo, 7Gao, 3) o, aIno, 3P cladding layer 1
3, Gao, flIno, gP active layer 14, Zn doped (A Q 0.7G ao, a)o, aIno,
An r+P cladding layer 15, Zn-doped GaAs 16 and Se-doped GaAs 17 were grown to a thickness of 0.1-1 μm.

成長温度は600〜700℃であった。The growth temperature was 600-700°C.

まず従来技術を確認するためSeドープn型GaAs1
2(17も同様)および(A Qo、7Gao、a)o
、aI no、in型クラッドJl113のキャリア濃
度をI X 10 lacm−”にしてZnドープp型
G a A s層16のキャリア濃度がI X 10 
”cm−”、 5 Xl016’cm−”、I X 1
0111>−”および、Znドープ(Aflo、7G 
a o、a)o、+s I n o、+sP型クラッド
層15のキャリア濃度が1×1017.5X10”およ
びlXl0”8Q11− ”のエピタキシャル成長層を
加工し第2図の構造レーザを試作した。試作したレーザ
のうちp型G a A s層26およびP型クラッド層
25が低キヤリア濃度(それぞれI X 10 ”cs
−”および1×1017dl−s)のものを除き、すべ
て室温連続発振した。上記低キヤリア濃度の素子に関し
てはP−G a A sとp型電極との接触抵抗が大き
く、これが室温連続発振しなかった原因と考える。室温
連続発振した素子の直列抵抗はp型GaAs、p型クラ
ッドのキャリア濃度とともに低減し、これはキャリア濃
度を高くすることにより、主抵抗成分であるp型G a
 A Sとp型電極との接触抵抗およびp型クラッド層
の比抵抗が低下したためと考える。一方素子の信頼性を
調べる目的で25℃10mW出力での連続動作したとこ
ろ、動作時間とともに出力が低下し、この劣化はp型ク
ラッドのキャリア濃度の高い素子で著しいことが分った
。この理由としては劣化した素子の断面観察から活性層
とp型クラッド層との境界に結晶転移などの欠陥が発生
しており、高ドーピングによって生じたp型クラッド層
の結晶欠陥が、素子の連続動作によって活性層まで成長
したことによると考えられる。
First, to confirm the conventional technology, Se-doped n-type GaAs1
2 (same as 17) and (A Qo, 7Gao, a) o
, aI no, the carrier concentration of the in-type clad Jl 113 is set to I x 10 lacm-'', and the carrier concentration of the Zn-doped p-type Ga As layer 16 is set to I x 10 lacm-''.
"cm-", 5 Xl016'cm-", I X 1
0111>-” and Zn-doped (Aflo, 7G
A o, a) o, +s I no, +s The epitaxial growth layer of the P-type cladding layer 15 with a carrier concentration of 1×1017.5×10” and 1×10”8Q11-” was processed to fabricate a prototype laser with the structure shown in FIG. 2. Prototype production Of the lasers, the p-type GaAs layer 26 and the p-type cladding layer 25 have a low carrier concentration (I
-'' and 1 x 1017 dl-s), all of them exhibited continuous oscillation at room temperature.For the devices with low carrier concentration mentioned above, the contact resistance between the P-GaAs and the p-type electrode is large, and this causes continuous oscillation at room temperature. The series resistance of a device that continuously oscillated at room temperature decreases with the carrier concentration of p-type GaAs and p-type cladding, and this is because by increasing the carrier concentration, the main resistance component, p-type Ga
This is thought to be due to a decrease in the contact resistance between AS and the p-type electrode and the specific resistance of the p-type cladding layer. On the other hand, when the device was continuously operated at 25° C. and a 10 mW output for the purpose of examining the reliability of the device, it was found that the output decreased with the operating time, and this deterioration was significant in devices with a high carrier concentration in the p-type cladding. The reason for this is that defects such as crystal dislocations have occurred at the boundary between the active layer and the p-type cladding layer, based on cross-sectional observation of deteriorated devices, and the crystal defects in the p-type cladding layer caused by high doping are caused by the continuity of the device. This is thought to be due to the growth of the active layer due to the operation.

実施例1 比較例の第1図と同様の方法でp型G a A 5(1
6)およびp型クラッド層15のキャリア濃度がツレぞ
し5 X 1019m−”オckヒI X 10工フc
m−”(7)エピタキシャル成長層を形成し、実施例1
と同様のプロセスにて第2図および第3図に示す構造の
レーザを試作した。素子の直列抵抗は高抵抗層(p型り
ラッド層/数Ω)が存在しているにもかかわらず3〜6
Ωと低く、第3図に示した電流狭 くさく型においても
低抵抗な素子が得られたことからp型G a A s層
中のZnがp型クラッド層に拡散し低抵抗化したことに
よると考えられる。得られた素子はいずれも室温連続発
信し、実施例1に示した従来のレーザと異なり数百時間
での劣化は観られなかった。これは低抵抗化したP型ク
ラッド層の結晶性が高ドーピングで成長させたエピタキ
シャル層の結晶性と異なり良質であることによると考え
る。
Example 1 P-type G a A 5 (1
6) And the carrier concentration of the p-type cladding layer 15 is distorted.
Example 1
A laser with the structure shown in FIGS. 2 and 3 was prototyped using a process similar to that shown in FIG. The series resistance of the element is 3 to 6 despite the presence of a high resistance layer (p-type rad layer/several ohms).
Ω, and even in the current narrow type shown in Figure 3, a low resistance element was obtained, indicating that Zn in the p-type GaAs layer diffused into the p-type cladding layer and lowered the resistance. it is conceivable that. All of the obtained devices emitted continuous light at room temperature, and unlike the conventional laser shown in Example 1, no deterioration was observed after several hundred hours. This is considered to be because the crystallinity of the P-type cladding layer with reduced resistance is of good quality, unlike the crystallinity of the epitaxial layer grown with high doping.

なお、以上の結果によれば低キヤリア濃度(〜I X 
10100m−”)のp型G a A s層を通してZ
n拡散を行なっても同様の効果が期待され、ZnAsz
nAs中で5iaNaマスクからの選択拡散により本発
明の効果を実験的に確認した。
Furthermore, according to the above results, low carrier concentration (~I
Z through the p-type GaAs layer of
A similar effect is expected even if n-diffusion is performed, and ZnAsz
The effect of the present invention was experimentally confirmed by selective diffusion from a 5iaNa mask in nAs.

〔発明の効果〕〔Effect of the invention〕

本発明によればp型GaAs層のZn濃度によってp型
クラッド層への拡散Zn量を制御できるのでZnAsz
nAs中での熱処理による拡散プロセスと比ベプロセス
の制御性の面で効果がある。
According to the present invention, the amount of Zn diffused into the p-type cladding layer can be controlled by the Zn concentration in the p-type GaAs layer.
This is effective in controlling the diffusion process by heat treatment in nAs and the comparison process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエピタキシャル成長層の構成を示す断面図、第
2および第3図は本発明を開示するために用いた半導体
レーザの構造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of an epitaxial growth layer, and FIGS. 2 and 3 are cross-sectional views showing the structure of a semiconductor laser used to disclose the present invention.

Claims (1)

【特許請求の範囲】 1、(Al_xGa_1_−_x)_yIn_1_−_
yP活性層と該活性層を挾んで(Al_x′Ga_1_
−_x′)_yIn_1_−_yP(x′>x)より選
んだ1種以上のP型クラッド層より成る半導体レーザに
おいて、該P型クラッド層に隣接してキャリア濃度が5
×10^1^9cm−^3以上のZn含有p型GaAs
層を有する短波長半導体レーザ。 2、Zn含有P型クラッド層のキャリア濃度が2×10
^1^7cm−^3以下である特許請求範囲第1項記載
の短波長半導体レーザ。 3、GaAsを基板としyが0.49から0.52の範
囲である特許請求の範囲第1項および第2項記載の短波
長半導体レーザ。
[Claims] 1. (Al_xGa_1_-_x)_yIn_1_-_
yP active layer and the active layer (Al_x'Ga_1_
-_x')_yIn_1_-_yP (x'>x) In a semiconductor laser comprising one or more P-type cladding layers selected from
×10^1^9cm-^3 or more Zn-containing p-type GaAs
Short wavelength semiconductor laser with layers. 2. The carrier concentration of the Zn-containing P-type cladding layer is 2×10
The short wavelength semiconductor laser according to claim 1, which has a wavelength of ^1^7 cm-^3 or less. 3. A short wavelength semiconductor laser according to claims 1 and 2, which uses GaAs as a substrate and has y in the range of 0.49 to 0.52.
JP30313887A 1987-12-02 1987-12-02 Short-wave semiconductor laser Pending JPH01145882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30313887A JPH01145882A (en) 1987-12-02 1987-12-02 Short-wave semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30313887A JPH01145882A (en) 1987-12-02 1987-12-02 Short-wave semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01145882A true JPH01145882A (en) 1989-06-07

Family

ID=17917337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30313887A Pending JPH01145882A (en) 1987-12-02 1987-12-02 Short-wave semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01145882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175278A (en) * 1987-12-29 1989-07-11 Sony Corp Semiconductor laser
JPH01243598A (en) * 1988-03-25 1989-09-28 Toshiba Corp Semiconductor light emitting element
US5177757A (en) * 1990-06-18 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser producing visible light

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175278A (en) * 1987-12-29 1989-07-11 Sony Corp Semiconductor laser
JPH01243598A (en) * 1988-03-25 1989-09-28 Toshiba Corp Semiconductor light emitting element
US5177757A (en) * 1990-06-18 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser producing visible light

Similar Documents

Publication Publication Date Title
JP2001044569A (en) Doped semiconductor material, production thereof, and semiconductor device
JP3251046B2 (en) Method for growing compound semiconductor, compound semiconductor light emitting device and method for manufacturing the same
JP2006245341A (en) Semiconductor optical element
JPH01145882A (en) Short-wave semiconductor laser
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
JPH0969667A (en) Semiconductor laser device and manufacture thereof
EP0516162A1 (en) Semiconductor light emitting device
JPH0846283A (en) Manufacture of semiconductor laser
JP3348015B2 (en) Method for producing electrode contact layer for non-alloy
JP3432444B2 (en) Semiconductor light emitting device
JP3146501B2 (en) Semiconductor laser and method of manufacturing the same
US7046708B2 (en) Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP3861995B2 (en) Method for manufacturing Zn-based semiconductor light emitting device
JP2642403B2 (en) Manufacturing method of semiconductor laser
JPS61280616A (en) Impurity introduction process by ion implantation
JP2804093B2 (en) Optical semiconductor device
JP3703927B2 (en) Semiconductor laser element
JP4060438B2 (en) Thin film growth method with low dislocation density
JP2841849B2 (en) Manufacturing method of epitaxial wafer
JPH01214083A (en) Semiconductor laser device and its manufacture
JPH07221386A (en) Manufacture of semiconductor laser
JPH0370391B2 (en)
JPS6066420A (en) Manufacture of compound semiconductor epitaxial wafer
JPS6086889A (en) Manufacture of semiconductor laser
JPH10256599A (en) Semiconductor light emitting device