JPH01145550A - Prism for discriminating fluid - Google Patents

Prism for discriminating fluid

Info

Publication number
JPH01145550A
JPH01145550A JP30537487A JP30537487A JPH01145550A JP H01145550 A JPH01145550 A JP H01145550A JP 30537487 A JP30537487 A JP 30537487A JP 30537487 A JP30537487 A JP 30537487A JP H01145550 A JPH01145550 A JP H01145550A
Authority
JP
Japan
Prior art keywords
light
prism
fluid
critical angle
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30537487A
Other languages
Japanese (ja)
Inventor
Yasuo Shiraiwa
白岩 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tatsuno Co Ltd
Original Assignee
Tokyo Tatsuno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tatsuno Co Ltd filed Critical Tokyo Tatsuno Co Ltd
Priority to JP30537487A priority Critical patent/JPH01145550A/en
Publication of JPH01145550A publication Critical patent/JPH01145550A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the reliable detection of the kind of a fluid with a high signal ratio, by providing the title prism with a plurality of reflecting surfaces and by setting each reflecting surface to form a critical angle substantially for the fluid to be detected. CONSTITUTION:Reflecting surfaces 3, 4, 5 and 6 of a prism 1 are so set as to form critical angles for light oil, gasoline, water and kerosene respectively, and the prism 1 is fitted to the fore end of a nozzle of a lorry and inserted into a tank together with a hose. When a modulated 21 light from a light- emitting element 20 is made to enter the prism 1 through a light-conductive member 11, it is reflected by the reflecting surfaces 3, 4, 5 and 6 and returns to an incidence/emission surface 2 and then enters a light-sensing element 22 through a light-conductive member 12. In the state wherein the prism 1 is immersed in water in the tank, on the occasion, the incident light is transmitted through the reflecting surface 5 by about 90% of the quantity of the incident light, and the element 22 outputs a signal of a level of about 10% of the one of a gas. In this way, a liquid to be discriminated is brought into contact, and the kind of the liquid can be discriminated on the basis of the quantity of the return light being varied in relation to be quantity of the incident light.

Description

【発明の詳細な説明】 (技術分野) 本発明は、被判別液体を接触させ、入射光量に対する回
帰光量か変化することに基づいて液体の種類を判別する
製雪に使用するプリズムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a prism used in snow making that brings a liquid to be determined into contact with the prism and discriminates the type of liquid based on a change in the amount of reflected light relative to the amount of incident light.

(従来技術) 例えば、給油所においでは販売品目であるガソリン、灯
油、軽油をそれぞれ独立したタンクに貯蔵し、減少した
段階でローりにより補給するようにしでいる。この補給
に際して同一油種を補給する必要があるが、時として油
種の判別を誤る可能注がある。
(Prior Art) For example, at a gas station, gasoline, kerosene, and light oil are stored in separate tanks, and when they are depleted, they are replenished using a trowel. During this replenishment, it is necessary to replenish the same type of oil, but there is a possibility that the type of oil may be misjudgedNote.

このような問題を解消するため、導光材に対して入出射
関係を維持するようにプリズムを取付けでなる液種判別
装Mを使用し、反射面に接する液体の種類による反射率
の相違からタンク内の液種を判定するようにしている(
特開昭60−251094号公報)。この装置によれば
、火災等の危険を冒すことなく液種の判定が可能となる
が、1つの接液面における臨界角の変化に基づく反射率
の違いを利用しているため、(ガソリンの臨界角以下の
反射面におけるおおよその反射率はガソリンにあっては
10%、灯油にあっては0.09%、軽油にあっては0
.08%)液種相互間による反射率の変化が小さく、検
出誤差を生じるという問題がある。
In order to solve this problem, we used a liquid type discriminator M, which consists of a prism attached to maintain the incident and exit relationship with the light guiding material. I am trying to determine the type of liquid in the tank (
(Japanese Patent Application Laid-Open No. 60-251094). According to this device, it is possible to determine the type of liquid without running the risk of fire, etc., but since it uses the difference in reflectance based on the change in the critical angle on a single liquid contact surface, The approximate reflectance on reflective surfaces below the critical angle is 10% for gasoline, 0.09% for kerosene, and 0 for light oil.
.. 08%) There is a problem in that the change in reflectance between liquid types is small, resulting in detection errors.

(目的) 本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは入射光量に対する回帰光量の
比から高い信号比でもって検出することができる流体判
別用プリズムを提供することにある。
(Objective) The present invention has been made in view of the above problems, and its purpose is to provide a fluid discrimination prism that can detect a fluid with a high signal ratio based on the ratio of the amount of reflected light to the amount of incident light. It's about doing.

(発明の概要) すなわち、本発明が特徴とするところは、複数の反射面
を有するとともに、各反射面か検出すべき各流体に対し
て略々臨界角を形成し、被検出流体の臨界角以下の反射
においては、構成を略々透過するようにして回帰光量の
変化を大きくするようにした点にある。
(Summary of the Invention) That is, the present invention is characterized in that it has a plurality of reflecting surfaces, and each reflecting surface forms approximately a critical angle with respect to each fluid to be detected, and the critical angle of the fluid to be detected is In the following reflection, the change in the amount of returning light is increased by substantially transmitting the light through the structure.

(実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は本発明の一実施例を示したものであって、図中
符号1は発光部から光ファイバー等の導光材11を介し
て光を受け、また導光材12を介して受光部(こ送出す
るプリズムで、1つの人出射面2と4つの反射面3.4
.5.6を有して、人出射面2から入射した光11を各
面で順次反射古せて元の人出射面2に回帰させるように
断面駒型に形成されていて、第1の反射面3は、入射光
線p□に対して第1の流体、例えば軽油に対して臨界角
を有する入射角θ1に、また第2の反射面4は、第1の
反射面3で反射された光β2か第2の流体、例えばガソ
リンに対して臨界角を有する入射角θりに、さらに第3
の反射面5は第2の反射面4て反射された光β3か第3
の流体、例えば水に対して臨界角を有する入射角θ3と
なる入射角に、ざらに第4の反射面6は、第3の反射面
5で反射された光ρ4が第4の流体、例えば灯油に対し
て臨界角となる入射角θ4となるとともに人出射面【こ
戻るように設定されでいる。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 indicates a light receiving section that receives light from a light emitting section via a light guiding material 11 such as an optical fiber, and a light receiving section that receives light via a light guiding material 12. (This is a prism that sends out one person exit surface 2 and four reflection surfaces 3.4
.. 5.6, it is formed into a piece-shaped cross section so that the light 11 incident from the person exit surface 2 is sequentially reflected on each surface and returns to the original person exit surface 2, and the first reflection The surface 3 is arranged at an angle of incidence θ1 having a critical angle for the first fluid, e.g. β2 has a critical angle of incidence θ with respect to the second fluid, for example gasoline, and a third
The reflective surface 5 is the light β3 reflected by the second reflective surface 4 or the third
Roughly speaking, at an incident angle θ3 having a critical angle with respect to a fluid such as water, the fourth reflective surface 6 is such that the light ρ4 reflected by the third reflective surface 5 is transmitted to the fourth fluid, such as water. The angle of incidence is set to θ4, which is a critical angle for kerosene, and the angle of incidence is set so that it returns to the exit surface.

第2図は、上述のプリズムを使用した流体判別製画の一
実施例を示すものであって、図中符号20は、導光材1
1を介してプリズム1に光を入射させる発光素子で、周
囲環境に影響されにくい波長、例えば近赤外領域の波長
の光を発光するもので、変調回路2]からの駆動信号に
より一定強度により発光するものである。22はプリズ
ム1により回帰された光を導光材12を介しで受ける受
光素子で、これからの信号は、変調回路2]からの信号
を受ける同期整流回路23により復調された後、最も回
帰光量の少ない液体に基づく信号を検出可能ならしめる
まで増幅され、ついて流体の種類毎に定まるレベルが設
定されている比較回路24により比較され、判定回路2
5により流体の種類が判定されるように構成されている
FIG. 2 shows an example of fluid discrimination drawing using the above-mentioned prism, and the reference numeral 20 in the figure indicates the light guide material 1.
This is a light-emitting element that allows light to enter the prism 1 through the prism 1, and emits light at a wavelength that is not easily affected by the surrounding environment, for example, a wavelength in the near-infrared region. It emits light. 22 is a light receiving element that receives the light returned by the prism 1 via the light guiding material 12, and the signal from this is demodulated by the synchronous rectifier circuit 23 which receives the signal from the modulation circuit 2], and then is demodulated by the synchronous rectifier circuit 23 which receives the signal from the modulation circuit 2]. A signal based on a small amount of liquid is amplified until it becomes detectable, and then compared by a comparison circuit 24 having a level determined for each type of fluid.
5, the type of fluid is determined.

この実施例において、例えば第1.2.3.4の反射面
3.4.5.6での臨界角を、それぞれ軽油、ガソリン
、水、灯油に対して略々一致する角度としたプリズムを
用い(第3図)、これを口−りの供給ノズルの先端1こ
装着して、ホースと共にタンクに挿入する。
In this embodiment, for example, a prism is used in which the critical angle of the reflecting surface 3.4.5.6 of No. 1.2.3.4 is approximately the same angle for light oil, gasoline, water, and kerosene, respectively. (Fig. 3), attach it to the tip of the supply nozzle at the mouth, and insert it into the tank together with the hose.

この状態で検出装Mを動作させると、発光素子20は、
変調器2]により一定周波数で点滅するとともに、ピー
ク値が一定に調整された光を導光部材11を介してプリ
ズム1に入射させる。この光は、反射面3.4.5.6
で反射を受けながら人出射面2に回帰して導光部材12
を介して受光素子22に入射する。
When the detection device M is operated in this state, the light emitting element 20
Modulator 2] causes the light to flicker at a constant frequency and whose peak value is adjusted to be constant, and enters the prism 1 via the light guide member 11. This light is reflected on the reflective surface 3.4.5.6
The light guide member 12 returns to the person exit surface 2 while being reflected by the light guide member 12.
The light enters the light receiving element 22 via the light receiving element 22 .

このとき、タンク内に空気やガソリン蒸気等の気体が存
在する状態にあっては、反射面3.4.5.6に入射す
る光は、臨界角以上となるから、全ての反射面3.4.
5.6て全反射されて入射した光量の略々100%のも
のが受光素子22に入射する。受光素子22からの信号
は、同期整流回路23により発光素子20の駆動信号に
同期する成分だけを選択的に抽出されて所定レベルに増
幅された後、比較回路24に入力し、予め設定されてい
る液体の種類判別用基準値と比較され、いずれの基準レ
ベルにも一敗しないから、気体であることが判定される
At this time, if there is gas such as air or gasoline vapor in the tank, the light incident on the reflective surfaces 3.4.5.6 will have an angle greater than the critical angle, so all the reflective surfaces 3.4.5. 4.
5.6, approximately 100% of the amount of incident light is totally reflected and enters the light receiving element 22. The signal from the light-receiving element 22 is selectively extracted by a synchronous rectifier circuit 23 to only the component synchronized with the driving signal of the light-emitting element 20 and amplified to a predetermined level. The liquid is compared with a reference value for determining the type of liquid present, and since it does not meet any of the reference levels, it is determined that it is a gas.

タンクに水か存在し、プリズム1が水に浸漬されると、
第1、第2の反射面3.4が水よりも屈折率の高い液体
に対して臨界角か設定されているので、臨界角以上とな
って反射面3.4で全反射して第3の反射面5に入射す
る。
When there is water in the tank and prism 1 is immersed in water,
Since the first and second reflecting surfaces 3.4 are set at a critical angle with respect to the liquid having a higher refractive index than water, the critical angle is exceeded and the third reflecting surface 3.4 is totally reflected. is incident on the reflective surface 5 of.

一方、第3の反射面5は、水に対して臨界角となるため
、この面(こ入射した光量の約90%か透過しでしまい
、残りの約10%たけか反射される。この光は第4の反
射面6に入射するか、この反射面は水より屈折率の高い
液体に対しで臨界角か設定されているから、ここでは全
反射されて受光素子22に入射する。これにより、受光
素子22は、気体の場合の出力の約10%のレベルを有
する信号を出力することになり、判定回路24は流体か
水であると判断する。
On the other hand, since the third reflective surface 5 has a critical angle with respect to water, only about 90% of the light incident on this surface is transmitted, and only about 10% of the remaining light is reflected. is incident on the fourth reflecting surface 6, or since this reflecting surface is set at a critical angle with respect to a liquid with a higher refractive index than water, it is totally reflected and enters the light receiving element 22.As a result, , the light receiving element 22 outputs a signal having a level of approximately 10% of the output in the case of gas, and the determination circuit 24 determines that it is a fluid or water.

タンク内にガソリンが存在してプリズム1がガソリンに
浸漬されると、反射面の内、第2と、第3の反射面か臨
界角以下となるため、第1の反射面で全反射された光は
第2の反射面4て約10%が反射され、また第3の反射
面5ではその入射角に比例しで約9%が反射され、つい
で第4の反射面6で全反射されて受光素子22に回帰す
る。これにより入射した光量のO,l0X0.09=O
,O○9、つまり約0.9%だけか受光素子22に入射
するから、判定回路24はガンリンであると判定する。
When there is gasoline in the tank and the prism 1 is immersed in gasoline, the second and third reflecting surfaces are below the critical angle, so the light is totally reflected by the first reflecting surface. Approximately 10% of the light is reflected by the second reflecting surface 4, about 9% is reflected by the third reflecting surface 5 in proportion to the incident angle, and then it is totally reflected by the fourth reflecting surface 6. It returns to the light receiving element 22. As a result, the amount of incident light is O, l0X0.09=O
, O○9, that is, only about 0.9% is incident on the light-receiving element 22, so the determination circuit 24 determines that it is Ganlin.

タンク内に灯油か存在してプリズム1が灯油に浸漬され
ると、第2、第3の反射面3.4か臨界角以下となるた
め、第2の反射面では約9%の、また第3の反射面では
8%の光が反射され、ざらに灯油に対して臨界角となる
第4の面では約10%か反射されることになるため、入
射光量の0.09x0.08x0.1=0.00072
、つまり約0.072%の光が受光素子に入射する。
When kerosene is present in the tank and the prism 1 is immersed in kerosene, the second and third reflecting surfaces 3.4 will be less than the critical angle. 8% of the light is reflected on the third reflecting surface, and about 10% is reflected on the fourth surface, which is roughly at the critical angle to the kerosene, so the amount of incident light is 0.09x0.08x0.1 =0.00072
That is, approximately 0.072% of the light is incident on the light receiving element.

タンク内に軽油か存在してプリズムが軽油に浸漬された
場合には、第1の反射面が臨界角3となるため、ここで
約10%が反射され、以下第2、第3、第4の反射面に
おいて約8れ、7%、9%づつ反射され、合計として0
、Ix O,08x 0.07x 0.09= 0.0
0005 、つまり約0.005%の光か回帰すること
になる。
If light oil is present in the tank and the prism is immersed in light oil, the first reflecting surface will have a critical angle of 3, so about 10% will be reflected here. Approximately 8 rays are reflected on the reflective surface of , 7% and 9% are reflected, making the total
, Ix O,08x 0.07x 0.09= 0.0
0005, that is, about 0.005% of the light returns.

すなわち、プリズムに接触する流体か異なる毎に、回帰
してくる光量が1桁づつ箱違して流体種間における信号
レベル差が大きく異なることになるため、確実に検出さ
れることになる。
In other words, each time the type of fluid that comes into contact with the prism differs, the amount of returning light changes by one order of magnitude, and the difference in signal level between the types of fluids differs greatly, so that detection can be ensured.

なお、上述の例においては軽油の場合には帰還されでく
る光量が極めで少ないが、電気的に増幅しでいるため、
検出不能となることはない。
In addition, in the above example, in the case of light oil, the amount of light returned is extremely small, but since it is amplified electrically,
It will not become undetectable.

第4図は、本発明の第2実施例を示すものであって、図
中符号30は、断面矩形に形成されたプリズムで、人出
射面31と、第1、第2、及び第3の反射面32.33
.34を有し、第1の反射面32は、屈折率1.429
以上の流体、例えばガソリンに対して臨界角以上となる
入射角θ5に、また第2の反射面33は屈折率1.1以
上の例えばガソリン蒸気に対して臨界角となる入射度θ
6に、さらに第3の反射面34は、屈折率1.446の
流体、例えば灯油に対して入射角θ7にそれぞれ設定さ
れている。
FIG. 4 shows a second embodiment of the present invention, in which reference numeral 30 denotes a prism formed with a rectangular cross section, and a prism with a person exit surface 31, a first, a second, and a third prism. Reflective surface 32.33
.. 34, and the first reflective surface 32 has a refractive index of 1.429.
The second reflecting surface 33 has a refractive index of 1.1 or more, such as gasoline vapor, at an incident angle θ5 that is equal to or greater than the critical angle for the above-mentioned fluid, for example, gasoline.
Further, the third reflecting surface 34 is set at an incident angle θ7 with respect to a fluid having a refractive index of 1.446, for example, kerosene.

この実施例によれば、タンク内に空気が存在する場合に
は反射面32.33.34において全反射され、またガ
ソリン蒸気が存在する場合には、入反射面31から入射
した光は、第2の反射面33で臨界角以下となって約1
0%だけ反射され、他の反射面32.34では企及Hさ
れる。
According to this embodiment, when air is present in the tank, the light is totally reflected at the reflective surfaces 32, 33, 34, and when gasoline vapor is present, the light incident from the incident reflective surface 31 is The critical angle becomes less than the critical angle at the reflecting surface 33 of 2, and the angle becomes approximately 1
0% is reflected, and the other reflective surfaces 32, 34 are reflected H.

ざらにガソリンにあっては第2、第3反射面33.34
に臨界角以下となる一方、第1反射面32では全反射す
るため、0.09X0.1=O0○09、つまり約0.
9%の光が回帰されで来る。
For gasoline, the second and third reflective surfaces 33.34
is below the critical angle, while total reflection occurs at the first reflecting surface 32, so 0.09X0.1=O0○09, that is, approximately 0.
9% of the light returns.

また灯油や、これよりも屈折率が高い軽油にあっては全
ての反射面32.33.34においで臨界角以下となる
ため、01 X 0.09X O,08=0.0007
2 、つまり0.072%の光が回帰されることになり
、流体の種類毎に]桁しベルが異なる信号を得ることが
できる。
In addition, in the case of kerosene or light oil with a higher refractive index than this, all the reflecting surfaces 32, 33, 34 are below the critical angle, so 01 x 0.09X O,08 = 0.0007
2, that is, 0.072% of the light is returned, and it is possible to obtain signals that differ by an order of magnitude for each type of fluid.

なお、検出すべき流体の種類が限られている場合には、
それらの種類の内で最も小ざい臨界角以下の面、例えば
第1実施例においでは水の判別が不要である場合は反射
面5を、また第2実施例においではガソリン蒸気の判別
が不要である場合は、反射面33を鏡面処理しておくこ
とにより、回帰光線量を多くしで、信号増幅回路のコス
ト引下げと、判別の簡素化を図ることができる。
In addition, if the type of fluid to be detected is limited,
Among these types, the surface with the smallest critical angle or less, for example, in the first embodiment, the reflective surface 5 is used when it is not necessary to discriminate water, and in the second embodiment, it is unnecessary to discriminate gasoline vapor. In some cases, by mirror-finishing the reflective surface 33, the amount of returning light can be increased, thereby reducing the cost of the signal amplification circuit and simplifying the discrimination.

(効果) 以上説明したように本発明によれば、複数の反射面を有
するとともに、各反射面が検出すべき流体に対して略々
臨界角を形成したので、流体の種類に対して臨界角以下
の反射率での減衰をなざしぬて液種毎に1桁異なる光量
変化を形成することができて、高い信号比でもって液種
を確実に検出することができる。
(Effects) As explained above, according to the present invention, there is a plurality of reflecting surfaces, and each reflecting surface forms approximately a critical angle with respect to the fluid to be detected. It is possible to create a change in light intensity that differs by one order of magnitude for each liquid type without attenuation due to the following reflectance, and it is possible to reliably detect the liquid type with a high signal ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すプリズムの断面図、第
2図は同上プリズムを使用した流体判別装ての一実施例
を示す構成図、第3図は同上プリズムの具体例を示す説
明図、第4図は本発明の他の実施例を示す断面図である
。 1・・・・流体の種類判別用プリズム 2・・・・人出射面 3.4.5.6・・・・反射面 11、]2・・・・導光材
Fig. 1 is a sectional view of a prism showing an embodiment of the present invention, Fig. 2 is a configuration diagram showing an embodiment of a fluid discrimination device using the same prism, and Fig. 3 is a specific example of the same prism. The explanatory diagram, FIG. 4, is a sectional view showing another embodiment of the present invention. 1...Fluid type discrimination prism 2...Person exit surface 3.4.5.6...Reflection surface 11, ]2...Light guiding material

Claims (1)

【特許請求の範囲】[Claims]  複数の反射面を有するとともに、各反射面が検出すべ
き各液体に対して略々臨界角を形成するようにしてなる
流体判別用プリズム。
A fluid discriminating prism having a plurality of reflective surfaces, each reflective surface forming approximately a critical angle with respect to each liquid to be detected.
JP30537487A 1987-12-01 1987-12-01 Prism for discriminating fluid Pending JPH01145550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30537487A JPH01145550A (en) 1987-12-01 1987-12-01 Prism for discriminating fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30537487A JPH01145550A (en) 1987-12-01 1987-12-01 Prism for discriminating fluid

Publications (1)

Publication Number Publication Date
JPH01145550A true JPH01145550A (en) 1989-06-07

Family

ID=17944346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30537487A Pending JPH01145550A (en) 1987-12-01 1987-12-01 Prism for discriminating fluid

Country Status (1)

Country Link
JP (1) JPH01145550A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321757U (en) * 1989-07-12 1991-03-05
JPH06288914A (en) * 1991-11-11 1994-10-18 F M T:Kk Salt content detecting sensor and salt content detecting method
EP0809098A1 (en) * 1996-05-22 1997-11-26 Schlumberger Limited (a Netherland Antilles corp.) A method and apparatus for optically discriminating between the phases of a three-phase fluid
WO2012052752A3 (en) * 2010-10-18 2012-06-07 D. Berry & Co. (Pipe Fitting Supplies) Limited Fluid discrimination apparatus and method
JP2014025824A (en) * 2012-07-27 2014-02-06 Tatsuno Corp Oil kind discriminating device
US11130669B2 (en) 2018-02-16 2021-09-28 Berrys (Holdings) Technologies Limited Fuel delivery spout for avoiding misfuelling and method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604844A (en) * 1983-06-23 1985-01-11 Canon Inc Water-air discriminating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604844A (en) * 1983-06-23 1985-01-11 Canon Inc Water-air discriminating apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321757U (en) * 1989-07-12 1991-03-05
JPH06288914A (en) * 1991-11-11 1994-10-18 F M T:Kk Salt content detecting sensor and salt content detecting method
EP0809098A1 (en) * 1996-05-22 1997-11-26 Schlumberger Limited (a Netherland Antilles corp.) A method and apparatus for optically discriminating between the phases of a three-phase fluid
FR2749080A1 (en) * 1996-05-22 1997-11-28 Schlumberger Services Petrol METHOD AND APPARATUS FOR OPTICAL PHASE DISCRIMINATION FOR THREE-PHASE FLUID
WO2012052752A3 (en) * 2010-10-18 2012-06-07 D. Berry & Co. (Pipe Fitting Supplies) Limited Fluid discrimination apparatus and method
GB2487311A (en) * 2010-10-18 2012-07-18 Berrys Holdings Technologies Ltd Fluid discrimination apparatus and method
GB2487311B (en) * 2010-10-18 2013-02-20 Berrys Holdings Technologies Ltd Fluid discrimination apparatus and method
JP2014025824A (en) * 2012-07-27 2014-02-06 Tatsuno Corp Oil kind discriminating device
US11130669B2 (en) 2018-02-16 2021-09-28 Berrys (Holdings) Technologies Limited Fuel delivery spout for avoiding misfuelling and method therefor

Similar Documents

Publication Publication Date Title
US4559454A (en) Bubble detecting infusion apparatus
US6356675B1 (en) Fiber optic refractive index monitor
US4994682A (en) Fiber optic continuous liquid level sensor
US6975388B2 (en) Optical-fiber refractometer
US5065037A (en) Corrosion resistant refractive and adsorptive type optical liquid level sensors
EP0601205B1 (en) Optical measurement instrument
EP1254775A3 (en) Ink tank and ink-jet printer using the same
US5159834A (en) Device for optoelectronic interface measurement and refractometry in liquids
CA1332205C (en) Fibre optic sensors for the continuous measurement of liquid level and other parameters
JPH01145550A (en) Prism for discriminating fluid
US6693285B1 (en) Fluorescent fluid interface position sensor
KR940003737B1 (en) Fibre optic liquid level gauge
JPS63273042A (en) Optical measuring instrument
JPS5826226A (en) Detector for liquid level
US4787329A (en) Device for detection of imminent gas depletion of a liquified gas tank and gas lighter equipped with this device
JPH08261925A (en) Substance information detecting system by optical method
JP3071644B2 (en) Total reflection type refractive index sensor
JP2875291B2 (en) Gas detector
JPH05223733A (en) Optical alcohol concentration measuring device
US5224188A (en) Eccentric core optical fiber
JP2004198376A (en) Fluid level sensing device
EP0578482B1 (en) Apparatus for measuring cross-sectional distribution of refractive index of optical waveguide
JP2567526Y2 (en) Optical sensor
JPH01270646A (en) Apparatus for detecting alcohol content
JPH112554A (en) Liquid level detecting element