JPH01144553A - Electron beam microanalyzer - Google Patents

Electron beam microanalyzer

Info

Publication number
JPH01144553A
JPH01144553A JP62303985A JP30398587A JPH01144553A JP H01144553 A JPH01144553 A JP H01144553A JP 62303985 A JP62303985 A JP 62303985A JP 30398587 A JP30398587 A JP 30398587A JP H01144553 A JPH01144553 A JP H01144553A
Authority
JP
Japan
Prior art keywords
sample
electron beam
sample surface
stage
optical microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62303985A
Other languages
Japanese (ja)
Other versions
JP3303916B2 (en
Inventor
Naomasa Niwa
丹羽 直昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30398587A priority Critical patent/JP3303916B2/en
Publication of JPH01144553A publication Critical patent/JPH01144553A/en
Application granted granted Critical
Publication of JP3303916B2 publication Critical patent/JP3303916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To perform the high precision automatic high-speed mapping even when the sample surface has a swell by installing an automatic focusing device on an optical microscope and controlling a sample stage so that the sample surface is invariably located at the focal point of an electron beam. CONSTITUTION:Characteristic X-rays generated from the sample surface by an electron beam B are detected by a characteristic X-ray detector 2. Scanning of a sample A in the X and Y directions is performed by controlling a sample stage 8 with an XY stage controller 4 at a high speed. The sample surface is monitored by an automatic focusing device 6 via an optical microscope 5 at this time, a sample state lifting device 7 is controlled via a control circuit 8. Automatic high-speed mapping can be thereby performed over the whole measurement area without reducing the analysis precision even when the sample surface has a swell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子線マイクロアナライザに関するもので、特
にステージ走査によって試料面の2次元分析を行う所謂
高速マツピング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electron beam microanalyzer, and particularly to a so-called high-speed mapping device that performs two-dimensional analysis of a sample surface by scanning a stage.

(従来技術) 電子線マイクロアナライザは、電子ビームで試料面を2
次元的に走査して試料の原子をイオン化し、その時発生
する特性X線等の二次放射線を測定することによって成
分元素の分布等を測定するものであるが、通常電子光学
系とXgA光学系との間の調整、試料面の分析位置の確
認などのために光学顕微鏡が付属装備されており、また
試料室には試料をXYZ方向にμm程度の精度で微動で
きる試料ステージが組み込まれている。
(Prior technology) An electron beam microanalyzer uses an electron beam to scan the sample surface in two directions.
It measures the distribution of component elements by scanning dimensionally to ionize the atoms of the sample and measuring secondary radiation such as characteristic X-rays generated at that time, but it usually uses an electron optical system and an XgA optical system An optical microscope is attached for adjustment between the sample and the sample surface, and confirmation of the analysis position on the sample surface.The sample chamber also has a built-in sample stage that can move the sample minutely in the X, Y, and Z directions with an accuracy of about μm. .

近年大形の試料がミクロ領域で分析される傾向があり、
それに対応して上記試料ステージをXY力方向自動走査
することにより、広い面積のマツピング(面分析)を行
うことのできる高速マツピング装置が開発されている。
In recent years, there has been a tendency for large samples to be analyzed in the micro area.
Correspondingly, a high-speed mapping device has been developed that can map a wide area (area analysis) by automatically scanning the sample stage in the XY force directions.

(発明が解決しようとする問題点) ところで従来は、マツピングが狭い領域で行われていた
ために、試料面の傾きや平坦度は分析精度にあまり大き
な影響を及ぼさなかった。しかし上記のような大型試料
のマツピングの際には試料面のうねりや凹凸の影響が無
視できないから、予め試料面を平坦に仕上げ、マツピン
グ装置へ試料をセットする際の傾きも注意して水平にセ
ットするようにしなければならず、測定準備が面倒な上
に、試料面を平坦仕上げできない場合もあって平坦度が
分析精度に大きく影響を及ぼすという問題力(ある。
(Problems to be Solved by the Invention) Conventionally, since mapping was performed in a narrow area, the inclination and flatness of the sample surface did not have much of an effect on analysis accuracy. However, when mapping a large sample like the one mentioned above, the influence of undulations and unevenness on the sample surface cannot be ignored, so the sample surface must be flattened in advance, and when setting the sample on the mapping device, the inclination should be taken care of and leveled. This poses a problem in that the measurement preparation is troublesome, and in some cases the sample surface cannot be finished flat, so the flatness has a large effect on analysis accuracy.

上記試料面の傾きについては、試料をセットする際に傾
斜角を調節できるような簡単な補正機構を試料ステージ
に装備することによって解決することができるが、平坦
度については今のところ、試料面に仕上げ加工を行う以
外には適当な解決手段がなく、従′って表面にうねりの
ある試料については、高速マツピング装置による精度の
高い分析ができないという欠点があった。
The tilt of the sample surface mentioned above can be solved by equipping the sample stage with a simple correction mechanism that can adjust the tilt angle when setting the sample. There is no suitable solution other than performing a finishing process, and therefore samples with undulations on the surface cannot be analyzed with high accuracy using a high-speed mapping device.

本発明は上記の点に鑑み、表面にうねりのある試料につ
いても精度の高い分析ができ、しかもステージ走査の高
速性に影響を及ぼす虞れのない高速マツピング装置を提
供することを目的とするものである。
In view of the above points, it is an object of the present invention to provide a high-speed mapping device that can perform highly accurate analysis even for samples with undulations on the surface, and that does not pose a risk of affecting the high speed of stage scanning. It is.

(問題点を解決するための手段) 上記の目的を達成するために本発明による電子線マイク
ロアナライザは、電子ビーム照射装置lと、二次放射線
検出装置2と、試料ステージ3をXY力方向自動走査す
るXYステージ制御装置4を備えると共に、試料面を監
視する光学顕微鏡5を付属した電子線マイクロアナライ
ザにおいて、上記光学顕微鏡5の出力部に自動焦点装置
6を装備し、該自動焦点装置6の出力により試料面が常
時電子ビームBの焦点位置に位置するように試料ステー
ジ昇降装置7を制御せしめたものである。
(Means for Solving the Problems) In order to achieve the above object, the electron beam microanalyzer according to the present invention has an electron beam irradiation device 1, a secondary radiation detection device 2, and a sample stage 3 automatically arranged in XY force directions. In an electron beam microanalyzer equipped with an XY stage control device 4 for scanning and an attached optical microscope 5 for monitoring the sample surface, an automatic focusing device 6 is equipped at the output section of the optical microscope 5, and the automatic focusing device 6 is equipped with an automatic focusing device 6. The sample stage lifting device 7 is controlled by the output so that the sample surface is always located at the focal position of the electron beam B.

(作用) 上記の構成によれば、電子ビームの結像位置と試料面と
のずれが光学的に検出され、その出力によって試料ステ
ージが自動的に昇降制御されるので、試料面にうねりが
あっても分析精度を低下させることなく、全測定域に亙
って自動高速マツピングを行うことが可能であり、また
電子線マイクロアナライザに通常付属している光学顕微
鏡を有効に利用して自動焦点装置を構成できるので、構
造も簡単で安価に提供できる。
(Function) According to the above configuration, the deviation between the imaging position of the electron beam and the sample surface is optically detected, and the sample stage is automatically controlled to move up and down based on the output, so that there is no undulation on the sample surface. Automatic high-speed mapping can be performed over the entire measurement range without reducing analysis accuracy even when the electron beam microanalyzer is used. The structure is simple and can be provided at low cost.

(実施例) 第1図は本発明の一実施例を示したもので、電子ビーム
照射装置llは電子銃、電子レンズなどで構成され、試
料Aの表面に電子ビームBによる照射スポットを結像さ
せるものであり、この電子ビームBによって試料面から
発生した特性X線が特性X線検出装置2に検出される。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which the electron beam irradiation device 11 is composed of an electron gun, an electron lens, etc., and images the irradiation spot of the electron beam B on the surface of the sample A. The characteristic X-rays generated from the sample surface by this electron beam B are detected by the characteristic X-ray detection device 2.

試料AのXY力方向走査は、XYステージ制御装置4で
試料ステージ3を高速制御することによって行われる。
Scanning of the sample A in the XY force direction is performed by controlling the sample stage 3 at high speed with the XY stage control device 4.

試料面は光学顕微鏡5を介して自動焦点装置6により監
視されており、制御回路8では自動焦点装置6からの出
力を受けて試料ステージ昇降装置7を制御している。
The sample surface is monitored by an automatic focusing device 6 via an optical microscope 5, and a control circuit 8 receives an output from the automatic focusing device 6 and controls a specimen stage lifting device 7.

第2図は自動焦点装置6の具体構成例を示したもので、
イメージセンサ9が光学顕微鏡5の接眼レンズに対向し
て設置され、接眼レンズは接眼レンズ駆動回路lOによ
って常時振動的に駆動されている。映像信号解析回路1
1ではイメージセンサ9の出力信号をフーリエ変換し、
最も高周波成分の多い時点を合焦点時として検出し、処
理回路I2では、その時点における接眼レンズの位置か
ら試料ステージ3の駆動量を演算して、演算結果を制御
回路8へ送出する。
FIG. 2 shows a specific example of the configuration of the automatic focusing device 6.
An image sensor 9 is installed opposite to an eyepiece of the optical microscope 5, and the eyepiece is constantly vibrated and driven by an eyepiece drive circuit IO. Video signal analysis circuit 1
1, the output signal of the image sensor 9 is Fourier transformed,
The time point at which the most high-frequency components are present is detected as the in-focus time, and the processing circuit I2 calculates the drive amount of the sample stage 3 from the position of the eyepiece at that time point, and sends the calculation result to the control circuit 8.

あるいはまた、光学顕微鏡の所定焦点位置を挟んで互い
に光軸の反対側に前後して二つの撮像素子を配置し、各
撮像素子により得られる映像信号につき合焦度合いを演
算する。試料面が正しい高さにあるとき、二つの映像信
号の合焦度合いは等しく、試料面の高さがその位置より
少し上下すると、いずれか一方の映像信号の合焦度合い
が増加−し、他方がより減少するので、試料面が高過ぎ
るか低過ぎるか検知できる。従って二つの映像信号の合
焦度合いが等しくなるように試料ステージの上下位置を
制御すればよい。
Alternatively, two imaging devices are arranged one behind the other on opposite sides of the optical axis with a predetermined focus position of the optical microscope in between, and the degree of focus is calculated for the video signal obtained by each imaging device. When the sample surface is at the correct height, the degree of focus of the two video signals is equal; if the height of the sample surface is slightly higher or lower than that position, the degree of focus of one of the video signals increases, and the degree of focus of the other video signal increases. Since this decreases further, it is possible to detect whether the sample surface is too high or too low. Therefore, it is only necessary to control the vertical position of the sample stage so that the degrees of focus of the two video signals are equal.

これらの構成によれば、合焦点位置の検出のために慣性
の大きい試料ステージ昇降装置7を試行錯誤的に駆動し
なくてもよいので、試料面の上下変動に対する応答性は
極めて良好である。
According to these configurations, it is not necessary to drive the sample stage elevating device 7, which has large inertia, by trial and error in order to detect the focal point position, so the responsiveness to vertical fluctuations of the sample surface is extremely good.

第3図は本発明装置の動作を示したもので、通常の平坦
な試料の場合にはi−+ b−* c−4d−+ aの
ループを通ってデータの収集を行う。すなわちaにおい
て試料ステージ3をXY力方向駆動することにより1画
素分走査し、その状態で焦点が合っていれば直ちに特性
X線の検出を行う。もし試料面にうねりがありbで焦点
が合わなければ、e→f4e→fのループで試料ステー
ジを昇降させて焦点を合わせたのち、Cでデータの収集
を行うのである。
FIG. 3 shows the operation of the apparatus of the present invention. In the case of a normal flat sample, data is collected through a loop of i-+b-*c-4d-+a. That is, at point a, one pixel is scanned by driving the sample stage 3 in the XY force directions, and if the focus is in that state, characteristic X-rays are immediately detected. If there are undulations on the sample surface and the focus cannot be achieved at point b, the sample stage is moved up and down in a loop of e→f4e→f to focus, and then data is collected at step C.

ところで高速マツピング装置においては、1画素分(例
えば1μm)移動させるのに約1msの時間をかけてい
る。これは特性X線を検出するための制約で゛あるが、
通常オートフォーカス装置を用いれば1μmの誤差を補
正するのに数μsで充分であり、また試料面の水平方向
の1μmに対して高さ方向の補正量は1μm以下である
から、本発明によれば従来のマツピング装置の高速性能
に殆ど影響を与えることなく、試料ステージを昇降制御
することができるのである。
By the way, in a high-speed mapping device, it takes about 1 ms to move one pixel (for example, 1 μm). This is a restriction for detecting characteristic X-rays, but
Normally, if an autofocus device is used, several μs is sufficient to correct an error of 1 μm, and the amount of correction in the height direction is less than 1 μm for 1 μm in the horizontal direction of the sample surface. In other words, it is possible to control the elevation and descent of the sample stage with almost no effect on the high-speed performance of conventional mapping devices.

(発明の効果) 上述のように本発明は、自動焦点装置の出力によって常
に試料面が所定高さに位置するように試料ステージを昇
降制御するものであるから、試料面に凹凸やうねりがあ
っても分析精度が低下しないという利点があり、光学系
として電子線マイクロアナライザに通常付属している光
学顕微鏡が利用できるので、構造が簡単で且つ低コスト
で提供できるという利点があり、また高速マツピング装
置の速度性能は特性X線検出のための制約によって比較
的遅いので、本発明による分析精度向上のために分析速
度が殆ど低下しないという利点がある。
(Effects of the Invention) As described above, the present invention controls the raising and lowering of the specimen stage so that the specimen surface is always located at a predetermined height using the output of the automatic focusing device. It has the advantage that the analysis accuracy does not decrease even when the electron beam microanalyzer is used, and the optical microscope that is normally attached to the electron beam microanalyzer can be used as the optical system, so it has the advantage that it has a simple structure and can be provided at low cost. Since the speed performance of the device is relatively slow due to constraints for characteristic X-ray detection, there is an advantage that the analysis speed is hardly reduced due to the improved analysis accuracy provided by the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示すブロック図、第2
図は同上の自動焦点装置の具体構成を示すブロック図、
第3図は同上の動作を示すフローチャートである。 1・・・電子ビーム照射装置、2・・・特性X線検出装
置、3・・・試料ステージ、4・・・XYステージ制御
装置、5・・・光学顕微鏡、6・・・自動焦点装置、7
・・・試料ステージ昇降装置、8・・・制御回路、A・
・・試料、B・・・電子ビーム。
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a block diagram showing the specific configuration of the autofocus device mentioned above.
FIG. 3 is a flowchart showing the same operation as above. DESCRIPTION OF SYMBOLS 1... Electron beam irradiation device, 2... Characteristic X-ray detection device, 3... Sample stage, 4... XY stage control device, 5... Optical microscope, 6... Automatic focus device, 7
...Sample stage lifting device, 8...Control circuit, A.
...sample, B...electron beam.

Claims (1)

【特許請求の範囲】[Claims] (1)電子ビーム照射装置と、二次放射線検出装置と、
試料ステージをXY方向に自動走査するXYステージ制
御装置を備えると共に、試料面を監視する光学顕微鏡を
付属した電子線マイクロアナライザにおいて、上記光学
顕微鏡の出力部に自動焦点装置を装備し、該自動焦点装
置の出力により試料面が常時所定高さに位置するように
試料ステージ昇降装置を制御せしめて成る電子線マイク
ロアナライザ。
(1) An electron beam irradiation device, a secondary radiation detection device,
In an electron beam microanalyzer equipped with an XY stage control device that automatically scans the sample stage in the XY directions and an attached optical microscope that monitors the sample surface, the output section of the optical microscope is equipped with an autofocus device, and the autofocus An electron beam microanalyzer that uses the output of the device to control a sample stage lifting device so that the sample surface is always positioned at a predetermined height.
JP30398587A 1987-11-30 1987-11-30 Sample surface mapping device using the principle of electron beam microanalyzer Expired - Fee Related JP3303916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30398587A JP3303916B2 (en) 1987-11-30 1987-11-30 Sample surface mapping device using the principle of electron beam microanalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30398587A JP3303916B2 (en) 1987-11-30 1987-11-30 Sample surface mapping device using the principle of electron beam microanalyzer

Publications (2)

Publication Number Publication Date
JPH01144553A true JPH01144553A (en) 1989-06-06
JP3303916B2 JP3303916B2 (en) 2002-07-22

Family

ID=17927652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30398587A Expired - Fee Related JP3303916B2 (en) 1987-11-30 1987-11-30 Sample surface mapping device using the principle of electron beam microanalyzer

Country Status (1)

Country Link
JP (1) JP3303916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250220A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Sample observation method, image processing device, and charged particle beam device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440132U (en) * 1977-08-25 1979-03-16
JPS6064238A (en) * 1983-09-20 1985-04-12 Seiko Instr & Electronics Ltd X-ray analyzing apparatus using electron beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440132U (en) * 1977-08-25 1979-03-16
JPS6064238A (en) * 1983-09-20 1985-04-12 Seiko Instr & Electronics Ltd X-ray analyzing apparatus using electron beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250220A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Sample observation method, image processing device, and charged particle beam device
JP4734148B2 (en) * 2006-03-14 2011-07-27 株式会社日立ハイテクノロジーズ Sample observation method, image processing apparatus, and charged particle beam apparatus

Also Published As

Publication number Publication date
JP3303916B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US4615621A (en) Auto-focus alignment and measurement system and method
CA2370813C (en) Laser calibration apparatus and method
US4627009A (en) Microscope stage assembly and control system
US6888139B2 (en) Electron microscope
US4600832A (en) Method and apparatus for automatic optical focusing on an optically discernible feature on an object
JPS6314426A (en) Apparatus for determining surface outline
CN1150253A (en) Atomic force microscope
US4580900A (en) Auto focus alignment and measurement system and method
JPS61196532A (en) Exposure device
US4725884A (en) Optical metrology
US5798822A (en) Exposure apparatus
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
JPH01144553A (en) Electron beam microanalyzer
US10495579B2 (en) System and method for compensation of illumination beam misalignment
JP2003014611A (en) Scanning type probe microscope
JPH07280537A (en) Imaging type inspection method and apparatus
KR100927639B1 (en) Laser Machining Specimen Tilt Compensator
JPH02114113A (en) Microscope apparatus with function of measuring flatness
US6735005B2 (en) Cartesian scanning system
CN113964006B (en) Beam spot tracking method and system of particle beam device
JP3606410B2 (en) Vertical illumination setting device for epi-illumination optical system
JP3366066B2 (en) Observation depth setting method for crystal defect detection device
KR100190688B1 (en) Camera focus controller by using the laser beam
JPH0221553A (en) Electron ray length-measuring device
JPH065243A (en) Analyzing position correcting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees