JPH01144374A - Controlling method for electroviscous fluid - Google Patents

Controlling method for electroviscous fluid

Info

Publication number
JPH01144374A
JPH01144374A JP29733387A JP29733387A JPH01144374A JP H01144374 A JPH01144374 A JP H01144374A JP 29733387 A JP29733387 A JP 29733387A JP 29733387 A JP29733387 A JP 29733387A JP H01144374 A JPH01144374 A JP H01144374A
Authority
JP
Japan
Prior art keywords
voltage
fluid
impressed
electroviscous fluid
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29733387A
Other languages
Japanese (ja)
Inventor
Akio Inoue
昭夫 井上
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29733387A priority Critical patent/JPH01144374A/en
Priority to US07/209,807 priority patent/US5607617A/en
Publication of JPH01144374A publication Critical patent/JPH01144374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent obstacles such as dielectric breakdown and so on by alternately changing a code of voltage to be applied pulsatively between electrodes holding the electroviscous fluid. CONSTITUTION:An actuator is constituted by using the electroviscous fluid which is the liquid to disperse fine grains causing a dielectric polarization by impressed external field into the electric insulating oil. The actuator actuates the electroviscous fluid by impressing the voltage between electrodes holding said fluid. At this time, as impressed voltage, it is so constituted that the voltage changing a code alternately is pulsatively impressed. According to the constitution, the settling due to the charge of fine grains in the electoviscous fluid can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電気粘性流体、すなわち、外部電界強度に応じ
てその粘度を著るしく変化させる流体の作動を電気的に
制御する方法に関するもので、クラッチ、バルブ、ショ
ックアブソーバ−等における新しいアクチュエーターに
応用できるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for electrically controlling the operation of electrorheological fluids, i.e. fluids whose viscosity changes significantly in response to the strength of an external electric field. It can be applied to new actuators for clutches, valves, shock absorbers, etc.

[従来技術] スピンドル油、トランス油、塩化パラフィン等の電気絶
縁曲中にシリカ、デンプン、セルロース等の含水固体微
粒子を分散させた流体に、外部電界を印加すると流体の
粘度が著るしく変化する現象が見られる。この現象はウ
ィンズロ−効果として古くから知られており1940年
代から、クラッチ、バルブ、振動素子等への応用が検討
されている。
[Prior art] When an external electric field is applied to a fluid in which water-containing solid particles such as silica, starch, or cellulose are dispersed in an electrically insulating material such as spindle oil, transformer oil, or chlorinated paraffin, the viscosity of the fluid changes significantly. A phenomenon can be seen. This phenomenon has long been known as the Winslow effect, and its application to clutches, valves, vibration elements, etc. has been studied since the 1940s.

電気粘性流体は従来、直流及び交流の両者に感応し粘度
変化をすることは知られているが、連続的に電圧を印加
していると徐々に電圧値が低下(一定電圧の印加では粘
度が低下)したり絶縁破壊し易くなる傾向があり、また
電力消費量も高いといった問題がある。これに対し英国
特許2125230は直流パルス電圧を印加する方法を
提案しており、クラッチやブレーキに使用した場合、上
記問題を解決し、スベリをうまく制御できることを述べ
ている。
It has been known that electrorheological fluids change their viscosity in response to both direct current and alternating current; however, when a voltage is continuously applied, the voltage value gradually decreases (when a constant voltage is applied, the viscosity changes). There is a problem that there is a tendency for dielectric breakdown to occur easily, and that power consumption is also high. In contrast, British Patent No. 2125230 proposes a method of applying a DC pulse voltage, and states that when used in clutches and brakes, the above problem can be solved and slippage can be effectively controlled.

[発明が解決しようとする問題点] 直流パルス電圧を印加する英国特許2+25230は先
に述べた問題を改良する有効な方法を提示するものでは
あるが、やはり長期間使用すると電圧値が低下するので
、本質的な解決策とは言えない。すなわち、直流をパル
ス的に印加する方法でも、連続的に使用すると印加電圧
の低下(一定電圧の印加では粘度の低下が起る)や絶縁
破壊の傾向を避けられず、長期間安定な使用は難しい。
[Problems to be solved by the invention] Although British Patent 2+25230, which applies a DC pulse voltage, presents an effective method for improving the above-mentioned problem, the voltage value decreases after long-term use. , cannot be called an essential solution. In other words, even with the method of applying direct current in pulses, if used continuously, there is an unavoidable tendency for the applied voltage to decrease (viscosity decreases when constant voltage is applied) and dielectric breakdown, so long-term stable use is impossible. difficult.

[問題点を解決するための手段] 本発明は電極部での粒子の挙動に若目し上記問題の原因
を詳細な観察により追及した結果到達したものである。
[Means for Solving the Problems] The present invention was achieved as a result of underestimating the behavior of particles at the electrode portion and pursuing the causes of the above problems through detailed observation.

すなわち、電気粘性流体中の微粒子は電圧印加により電
界方向に配列するが、直流電圧印加では時間経過ととも
に、微粒子が一方、場合によっては双方の電極面に移行
し電極面に沈着していく傾向を何する。沈着した微粒子
は次第に電極間隔を狭め、かつ沈着粒子部分は電気粘性
流体の本来の電気抵抗より低い電気抵抗値を有するため
、電気的にも実質的な電極間隔を狭めることになる。更
にこの沈着は電極面に均一の厚さで発生するのではなく
、部分的な突起状を呈して発生することが多く、より実
質的な電極間隔の低下を引き起こすことが判った。
In other words, fine particles in an electrorheological fluid are aligned in the direction of the electric field when a voltage is applied, but when a DC voltage is applied, the fine particles tend to migrate to one or, in some cases, both electrode surfaces and deposit on the electrode surface over time. What do you do? The deposited fine particles gradually narrow the electrode spacing, and since the deposited particle portion has an electrical resistance value lower than the original electrical resistance of the electrorheological fluid, the substantial electrode spacing is electrically narrowed as well. Furthermore, it has been found that this deposition does not occur with a uniform thickness on the electrode surface, but often occurs in the form of partial protrusions, causing a more substantial reduction in the electrode spacing.

この現象は直流電圧を連続的に印加し続けた際には激し
い。パルス的に直流電圧を印加した際には、ある程度緩
和するが、時間経過とともに同じ現象が観察される。
This phenomenon becomes severe when DC voltage is continuously applied. When a DC voltage is applied in a pulsed manner, it is alleviated to some extent, but the same phenomenon is observed over time.

本発明者はこの現象が微粒子の荷電性、即ち正あるいは
負のいずれかに荷電され易い特性によるものと考えた。
The inventors of the present invention considered that this phenomenon is due to the chargeability of the fine particles, that is, their tendency to be charged either positively or negatively.

そこで、パルス的に印加する電圧の符号を交互に変える
ことにより、この現象の発生を抑え得るものと考え実験
を重ねた結果見り【に実証することができ本発明に至っ
た。
Therefore, it was thought that the occurrence of this phenomenon could be suppressed by alternating the sign of the voltage applied in a pulsed manner, and as a result of repeated experiments, the present invention was successfully demonstrated.

即ち、本発明の構成は、電気粘性流体を用いたアクチュ
エーターにおいて、該流体を挾む電極間に、交互に符号
を変えた電圧をパルス的に印加し、電気粘性流体を作動
させる制御方法である。。
That is, the configuration of the present invention is a control method for actuating an electrorheological fluid by applying voltages of alternately different signs in pulses between electrodes sandwiching the fluid in an actuator using an electrorheological fluid. . .

本発明にいう電気粘性流体とは、外部電界の印加により
誘電分極を起こす微粒子を電気絶縁油に分散させた流体
であり、外部電圧の印加によりその粘性を大きく変化さ
せる流体である。
The electrorheological fluid referred to in the present invention is a fluid in which fine particles that cause dielectric polarization upon application of an external electric field are dispersed in electrically insulating oil, and whose viscosity changes significantly upon application of an external voltage.

これに用いられる代表的な微粒子としてはシリカ、デン
プン、イオン交換樹脂等の含水微粒子、ポリ(アセン−
キノン)、アニリンブラック等の半導体微粒子、あ唇い
は表面をアルミナ化したアルミニウム、表面を窒化ケイ
素化した金属ケイ素等の表面を電気絶縁性にした金属微
粒子等が挙げられる。
Typical fine particles used for this purpose include water-containing fine particles such as silica, starch, and ion exchange resin, and poly(acene).
Semiconductor fine particles such as quinone), aniline black, etc., metal fine particles having an electrically insulating surface such as aluminum whose lip surface is aluminized, and metal silicon whose surface is silicon nitride.

代表的な電気絶縁油としてはシリコーン油、スピンドル
油、塩化パラフィン等が挙げられる。
Typical electrical insulating oils include silicone oil, spindle oil, and chlorinated paraffin.

また本発明にいう交互に符号を変えた電圧のパルス的な
印加とは、第1図に示す如く、印加電圧の極性を一定の
規則に従い交互に変化させる方法であり、例えばA−1
およびA−2のように、−パルス毎に極性を変化させる
方法、Bのように、−パルス内で交流的に極性を変化さ
せる方法、またCのようにある時間間隔で極性を変化さ
せる方法、が挙げられる。
Furthermore, the pulse-like application of voltages with alternating signs as used in the present invention refers to a method in which the polarity of the applied voltage is alternately changed according to a certain rule, as shown in FIG.
and, as in A-2, - a method of changing the polarity for each pulse; as in B, - a method of alternating polarity within a pulse; and a method of changing the polarity at a certain time interval as in C. , can be mentioned.

パルス幅やパルスの山谷比(デュテー比)は任意であり
、またパルスの形状も必ずしも方形波でなくとも正弦波
、場合によっては三角波であってもよい。
The pulse width and pulse peak-to-valley ratio (duty ratio) are arbitrary, and the pulse shape is not necessarily a square wave, but may be a sine wave, or in some cases a triangular wave.

電気粘性流体の応答速度は一般にミリ妙のオーダーであ
り、−パルスの幅は数ミリ秒あるいはそれ以上で信号に
合った応答をするが、Bの方法では一パルス内の極性変
化(周波数)か高くなるほど電力損失が大きく、100
Hz以下、特に6011z以下が好ましい。
The response speed of an electrorheological fluid is generally on the order of a millimeter, and the pulse width responds to the signal within a few milliseconds or more, but in method B, the polarity change (frequency) within one pulse is The higher the value, the greater the power loss; 100
It is preferably Hz or less, particularly 6011z or less.

要するにパルス的に印加されれる電圧の極性を交互に変
化することにより、電気粘性流体中の微粒子の荷電によ
る沈着を防上する目的にかなう波形であればよい。
In short, any waveform may be used as long as it serves the purpose of preventing deposition of fine particles in the electrorheological fluid by alternating the polarity of the voltage applied in a pulsed manner.

微粒子の電極面への沈着は、微粒子が含水系や小粒径の
場合に激しいが、このような場合でも本発明の方法は大
きな効果があり、特にAやBの方法は効果が大きい。
Deposition of fine particles on the electrode surface is severe when the fine particles are water-containing or have a small particle size, but even in such cases, the method of the present invention is highly effective, and methods A and B are particularly effective.

[実施例コ 以下、実施例および比較例によって、本発明を具体的に
説明する。なお、実施例に記載の各成分の!1(部)は
重量部である。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. In addition, each component described in the examples! 1 (part) is a part by weight.

実施例1 粒径5μmの球状シリカ(含水率9νt%)30部をジ
メチルシリコーン油(50cst)70部に分散させた
電気粘性流体を同一中心軸をもつ内径40+nLQの金
属シリンダーと外径38mmの金属ローターの間隙(1
,On+m)に封入した。この流体に200sec−’
の剪断速度をかけ、第1表及び第2図に示す波形の一定
電圧(P−P)を印加し、時間経時による上記流体の粘
度の低下率及び絶縁破壊するまでの印加開始後からの時
間を測定した。
Example 1 An electrorheological fluid made by dispersing 30 parts of spherical silica with a particle size of 5 μm (water content 9 νt%) in 70 parts of dimethyl silicone oil (50 cst) was applied to a metal cylinder with an inner diameter of 40+nLQ having the same central axis and a metal with an outer diameter of 38 mm. Rotor gap (1
, On+m). 200sec-' for this fluid
A constant voltage (P-P) with the waveform shown in Table 1 and Figure 2 is applied at a shear rate of was measured.

なお、粘度低下率は絶縁破壊直前の値であり、実験No
、1〜N0.4は実施例をNo、5〜No、7は比較例
を示す。
Note that the viscosity reduction rate is the value immediately before dielectric breakdown, and is the value in Experiment No.
, 1 to No. 4 indicate examples, and 5 to No. 7 indicate comparative examples.

第1表 1;第2図参照、m2.ゼロ−ビーク電圧、lI3:N
o、1〜No、4は4g[hrl後の値実施例2 電極部でのシリカ粒子の沈着状態を調べるため、ガラス
板上にタンザク状の銅板電極(長さ50+am、幅6■
、厚さ1aua)を2枚、電極間隙を1、hmにして並
べ、その電極間に実施例1の電気粘性流体を流延し、電
圧印加による粒子の挙動を調べた。電圧印加は実施例1
と同一の条件で行った。結果を第2表に示す。
Table 1 1; see Figure 2, m2. Zero-peak voltage, lI3:N
o, 1 to No., and 4 are 4 g [Values after hrl Example 2 In order to investigate the deposition state of silica particles at the electrode part, a tanzak-shaped copper plate electrode (length 50 + am, width 6 cm) was placed on a glass plate.
, thickness 1 aua) were arranged with an electrode gap of 1 hm, and the electrorheological fluid of Example 1 was cast between the electrodes, and the behavior of the particles due to voltage application was investigated. Voltage application is as in Example 1
It was carried out under the same conditions. The results are shown in Table 2.

第2表 東1 :実施例1の実験No、と対応 C発明の効果コ 本発明によれば、電気粘性流体を用いた場合の大きな問
題点の1つである微粒子の電極面への沈むによる、連続
運転時の印加電圧の低下や絶縁破壊等の障害を防止し、
長期間安定な運転が可能となり、電気粘性流体を用いた
クラッチやバルブ等のアクチュエーターの実用化に大き
な貢献をする。
Table 2 East 1: Experiment No. of Example 1 and Correspondence C Effects of the Invention According to the present invention, one of the major problems when using an electrorheological fluid is that fine particles sink to the electrode surface. , prevents problems such as voltage drop and dielectric breakdown during continuous operation,
This enables stable operation over long periods of time, making a major contribution to the practical application of actuators such as clutches and valves that use electrorheological fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−1ないしCは印加電圧波形のモデルを示す。 第2図りないしGは実施例1および実施例2において印
加した電圧波形を示す。 各図面とも横軸は時間、縦軸は電圧を示す。 t、・・・電圧印加の周期、t6・・・連続印加時間、
t6・・・連続解除時間、 t+およびt2・・・各パルスの山と谷の時間。 特許出願人 旭化成工業株式会社 代理人 弁理士 小 松 秀 岳
FIGS. 1A-1 to 1C show models of applied voltage waveforms. Second figures to G show voltage waveforms applied in Example 1 and Example 2. In each drawing, the horizontal axis shows time and the vertical axis shows voltage. t,...period of voltage application, t6...continuous application time,
t6... continuous release time, t+ and t2... peak and trough times of each pulse. Patent applicant Asahi Kasei Industries Co., Ltd. agent Patent attorney Hide Komatsu

Claims (1)

【特許請求の範囲】[Claims] 電気粘性流体を用いたアクチュエーターにおいて、該流
体を挾む電極間に、交互に符号を変えた電圧をパルス的
に印加し、該流体を作動させることを特徴とする電気粘
性流体の制御方法。
1. A method for controlling an electrorheological fluid in an actuator using an electrorheological fluid, which comprises applying voltages of alternating signs in pulses between electrodes sandwiching the fluid to actuate the fluid.
JP29733387A 1987-06-29 1987-11-27 Controlling method for electroviscous fluid Pending JPH01144374A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29733387A JPH01144374A (en) 1987-11-27 1987-11-27 Controlling method for electroviscous fluid
US07/209,807 US5607617A (en) 1987-06-29 1988-06-22 Electroviscous fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29733387A JPH01144374A (en) 1987-11-27 1987-11-27 Controlling method for electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH01144374A true JPH01144374A (en) 1989-06-06

Family

ID=17845159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29733387A Pending JPH01144374A (en) 1987-06-29 1987-11-27 Controlling method for electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH01144374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332329A (en) * 1992-05-26 1993-12-14 Ckd Corp Speed control device for drive cylinder
JPH0650310A (en) * 1992-07-28 1994-02-22 Ckd Corp Electroviscous fluid controller
US5377721A (en) * 1994-01-05 1995-01-03 Ckd Corporation Control apparatus for electroviscous fluid
JP2009174565A (en) * 2008-01-22 2009-08-06 Er Tec:Kk Method of controlling er (electrorheological) fluid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332329A (en) * 1992-05-26 1993-12-14 Ckd Corp Speed control device for drive cylinder
JPH0650310A (en) * 1992-07-28 1994-02-22 Ckd Corp Electroviscous fluid controller
US5377721A (en) * 1994-01-05 1995-01-03 Ckd Corporation Control apparatus for electroviscous fluid
GB2285494A (en) * 1994-01-05 1995-07-12 Ckd Corp Control apparatus for an electroviscous fluid
DE4401459A1 (en) * 1994-01-05 1995-07-20 Ckd Corp Control unit for electroviscous fluid
DE4401459C2 (en) * 1994-01-05 1998-04-02 Ckd Corp Device for controlling an electroviscous fluid
GB2285494B (en) * 1994-01-05 1998-04-22 Ckd Corp Control apparatus for an electroviscous fluid
JP2009174565A (en) * 2008-01-22 2009-08-06 Er Tec:Kk Method of controlling er (electrorheological) fluid

Similar Documents

Publication Publication Date Title
US4782927A (en) Electroviscous fluid-actuated devices
JPH0737626B2 (en) Electrorheological fluid
Deinega et al. Electric fields in the rheology of disperse systems
US20060231357A1 (en) Field responsive shear thickening fluid
Block et al. Electro-rheology
Sprecher et al. Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil
US5032307A (en) Surfactant-based electrorheological materials
KR19990023669A (en) clutch
Otsubo et al. Electrorheological properties of suspensions of inorganic shell/organic core composite particles
US5516445A (en) Fluid having magnetic and electrorheological effects simultaneously and
Kuramoto et al. Electrorheological property of a polyaniline-coated silica suspension
JPH01144374A (en) Controlling method for electroviscous fluid
Otsubo Electrorheology of whisker suspensions
Chen et al. Study on the rheological and polishing properties of electromagnetic two-phase composite particles with abrasive characteristics
Otsubo Electrorheological properties of barium titanate suspensions under oscillatory shear
Guzel et al. Polyindene/organo‐montmorillonite conducting nanocomposites. II. electrorheological properties
US7070708B2 (en) Magnetorheological fluid resistant to settling in natural rubber devices
JP2617959B2 (en) Electrorheological fluid
US7001532B2 (en) Electro-rheological composition
JP3263346B2 (en) Method for controlling fluidity of liquid and fluid flow control device used in this method
JPH01260710A (en) Operating method for electrical viscous fluid
JP3915026B2 (en) Control method of electrorheological fluid
Otsubo et al. Electrorheological toners for electrophotography
KR20060015843A (en) An electrorheological fluid consisting of polyaniline/titanium dioxide composites as conducting particles and its preparation
JPH07168533A (en) Display device