JPH01144360A - Automatic gain adjusting device - Google Patents

Automatic gain adjusting device

Info

Publication number
JPH01144360A
JPH01144360A JP62302894A JP30289487A JPH01144360A JP H01144360 A JPH01144360 A JP H01144360A JP 62302894 A JP62302894 A JP 62302894A JP 30289487 A JP30289487 A JP 30289487A JP H01144360 A JPH01144360 A JP H01144360A
Authority
JP
Japan
Prior art keywords
voltage
circuit
load
operational amplifier
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62302894A
Other languages
Japanese (ja)
Inventor
Misao Furuya
操 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP62302894A priority Critical patent/JPH01144360A/en
Publication of JPH01144360A publication Critical patent/JPH01144360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a malfunction by detecting the terminal voltage of a load by a voltage detection circuit and performing an error amplification between the detected voltage and the reference voltage by an error amplifier circuit. CONSTITUTION:An operational amplifier (an error amplifier) OP1 is such that the reference voltage generated from a reference voltage generation circuit 1 is supplied to an inverting input terminal as constant voltage divided by the resistance R13 and R14, the voltage supplied from a chopper 6 to a load 5 is divided by the resistance R11 and R12 which is a voltage detection circuit, and is supplied to a non-inverting input terminal. A first feedback loop is constituted of a path returning to the inverting input terminal of the operational amplifier OP1 through the resistance Rf1 from an output terminal of the operational amplifier OP1, and a second feedback loop is constituted of a path through the transistance R2, transistors(Tr) Q1-Q2 and from the operational amplifier OP1. The output of the operational amplifier OP1 and a signal of a triangle wave generation circuit 4 are supplied to a voltage comparator 2, and is supplied as a pulse signal to the chopper circuit 6 from a chopper controlling circuit 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動利得調整回路に係り、特にDC−DCコン
バータ等に用いられる誤差増幅器の利得を負荷に加わる
電圧によって自動的に調整し得る自動利得調整回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an automatic gain adjustment circuit, and more particularly to an automatic gain adjustment circuit that can automatically adjust the gain of an error amplifier used in a DC-DC converter or the like according to a voltage applied to a load. Regarding circuits.

従来の技術 第5図は従来の誤差増幅回路を適用したDC−DCコン
バータの回路系統図を示す。同図にJ3いて負荷5に印
加される電圧はフィードバックされ抵抗R15,R16
を介して演算増幅回路(以下オペアンプと略称する)O
Plの非反転入力端子に供給され、基準電圧発生回路1
より発生される基準電圧は抵抗R17を介、シエオペア
ンブOP、の反転入力端子に一定の電圧を供給する。
BACKGROUND ART FIG. 5 shows a circuit diagram of a DC-DC converter to which a conventional error amplification circuit is applied. In the figure, the voltage applied to load 5 at J3 is fed back to resistors R15 and R16.
Operational amplifier circuit (hereinafter abbreviated as operational amplifier) O
The reference voltage generation circuit 1 is supplied to the non-inverting input terminal of Pl.
The reference voltage generated by the resistor R17 supplies a constant voltage to the inverting input terminal of the amplifier OP.

オペアンプOP は抵抗R15,R16によって分割さ
れる負荷5に印加される電圧と基準電圧とを比較しその
差を増幅して出力するが、その際の利得は抵抗R17,
R18,R1,によって設定されることどなる。オペア
ンプoP1の出力電圧は電圧比較回路2へ供給され、三
角波発生回路4によって発生される三角波の信号電圧と
比較されその大小に応じて2値のパルス信号を発生する
The operational amplifier OP compares the voltage applied to the load 5 divided by the resistors R15 and R16 with the reference voltage, amplifies the difference, and outputs it.
The settings are made by R18, R1, and so on. The output voltage of the operational amplifier oP1 is supplied to a voltage comparison circuit 2, which compares it with a triangular wave signal voltage generated by a triangular wave generating circuit 4, and generates a binary pulse signal depending on the magnitude thereof.

第61(A)〜(D)は上記信号の様子を模式的に示し
たものであり、同図(A)で三角波a1とオペアンプO
P の出力信号b1とが電圧比較回路2において比較さ
れ、同図(B)に示すようにal〉blのときはハイレ
ベルとなり、al<b のとはO−レベルとなる信号C
1が出力されす る。同図(C)はオペアンプOP1の出力b2が同図(
A)に比べて低下した場合の様子を示し、その結果電圧
比較回路2の出力信号パルスは同図(D)の如くとなり
同図(B)に比較してハイレベルの期間が長くなる。
61(A) to 61(D) schematically show the states of the above signals. In the same figure (A), the triangular wave a1 and the operational amplifier
The output signal b1 of P is compared in the voltage comparator circuit 2, and as shown in FIG.
1 is output. In the same figure (C), the output b2 of the operational amplifier OP1 is shown in the same figure (
This figure shows the situation when the voltage is lowered compared to A), and as a result, the output signal pulse of the voltage comparator circuit 2 becomes as shown in FIG.

この電圧比較回路2の出力信号はチョッパ回路3に供給
され、′rR源電圧Vccをチョップし、かつこれを平
滑化することにより略一定の直流電圧として負荷5に所
定の電圧を供給する。負荷5に供給される電圧が何らか
の原因により変動した場合には、この電圧変動は抵抗R
15を介してオペアンプOP1の非反転入力端子に伝達
され、オペアンプOP、はこの変動した電圧と基準電圧
との誤差分を増幅して電圧比較回路2に供給することに
より電圧比較回路2の出力信号のパルス幅が適当に調節
され、チョッパ回路3がこのパルス幅に応じて負荷5に
供給される電圧を所定のレベルに変化させる。
The output signal of this voltage comparator circuit 2 is supplied to a chopper circuit 3, which chops the 'rR source voltage Vcc and smoothes it to supply a predetermined voltage to the load 5 as a substantially constant DC voltage. If the voltage supplied to the load 5 fluctuates due to some reason, this voltage fluctuation will be absorbed by the resistor R.
15 to the non-inverting input terminal of the operational amplifier OP1, and the operational amplifier OP amplifies the error between this fluctuating voltage and the reference voltage and supplies it to the voltage comparator circuit 2, thereby generating the output signal of the voltage comparator circuit 2. The pulse width of is adjusted appropriately, and the chopper circuit 3 changes the voltage supplied to the load 5 to a predetermined level according to this pulse width.

発明が解決しようとする問題点 しかしながら負荷のインピーダンスは一般に負荷となる
種々の機器の使用状態によって大きく変化する。このた
め特に、負荷5のインピーダンスがある値以上に高くな
り(これを軽負荷という)それによって負荷5に流れる
電流が減少すると、第7図に示すように回路全体の総合
利得は上!/i′する。この総合利得が同図に2で示す
レベル以上に上昇すると高利得のため回路全体は不安定
な状態となり、誤動作を伴う種々の乱調現象が生じるこ
ととなる。例えば第6図(B)、(D)のパルス信号C
1,C2が数パルスおきに発生して負荷に加わる電圧が
異常な値となったり、チョップされる出力電圧にリップ
ル成分が多きく含まれて負荷として接続されるvi器の
動作に影響を及ぼす等の問題点があった。
Problems to be Solved by the Invention However, the impedance of a load generally varies greatly depending on the usage conditions of various devices serving as the load. Therefore, especially when the impedance of the load 5 becomes higher than a certain value (this is called a light load) and the current flowing through the load 5 decreases, the overall gain of the entire circuit increases as shown in Figure 7! /i' to do. When this total gain rises above the level indicated by 2 in the figure, the entire circuit becomes unstable due to the high gain, and various disturbance phenomena accompanied by malfunctions occur. For example, the pulse signal C in FIGS. 6(B) and (D)
1.C2 occurs every few pulses, and the voltage applied to the load becomes an abnormal value, or the chopped output voltage contains a large ripple component, which affects the operation of the VI device connected as a load. There were problems such as.

本発明は上記の点に鑑みて創作されたものであり、負荷
のインピーダンスが高くなり、負荷に流れる電流が減少
することにより総合利得が乱調現象を起こすほど高くな
ることを防止し得る自動利得調整回路を提供することを
目的とする。
The present invention has been created in view of the above points, and provides automatic gain adjustment that can prevent the total gain from becoming so high as to cause disturbance due to an increase in the impedance of the load and a decrease in the current flowing through the load. The purpose is to provide circuits.

問題点を解決するための手段 本発明は基準電圧を発生する基準電圧発生回路と、負荷
の端子電圧を検出する電圧検出回路と、出力側から入力
側に到る第1の帰還ループ及び出力側からスイッチ回路
を介して入力側に到る第2の帰還ループを有し、基準電
圧と電圧検出回路の検出電圧との誤差増幅を行う誤差増
幅回路とからなり、誤差増幅回路の出力電圧が所定レベ
ル以下のときはスイッチ回路によって第2の帰還ループ
を切り離し、誤差増幅回路は第1の帰還ループにより設
定される利得で誤差増幅を行い、誤差増幅回路の出力電
圧が所定レベル以上のとぎはスイッチ回路によって第2
の帰還ループを接続し誤差増幅回路は第1及び第2の帰
還ループにより設定される利得で誤差増幅を行う構成と
する。
Means for Solving the Problems The present invention includes a reference voltage generation circuit that generates a reference voltage, a voltage detection circuit that detects the terminal voltage of a load, a first feedback loop from the output side to the input side, and the output side. and an error amplification circuit that amplifies the error between the reference voltage and the detection voltage of the voltage detection circuit. When the output voltage of the error amplification circuit is below a predetermined level, the second feedback loop is disconnected by the switch circuit, and the error amplification circuit amplifies the error with the gain set by the first feedback loop. 2nd by circuit
feedback loops are connected, and the error amplification circuit is configured to perform error amplification with gains set by the first and second feedback loops.

作用 本発明に係る自動利得調整回路は、負荷の端子電圧を電
圧検出回路が検出し、誤差増幅回路はこの検出電圧と基
準電圧発生回路からの基準電圧を入力信号として誤差増
幅を行う。
Operation In the automatic gain adjustment circuit according to the present invention, the voltage detection circuit detects the terminal voltage of the load, and the error amplification circuit performs error amplification using this detected voltage and the reference voltage from the reference voltage generation circuit as input signals.

ここで負荷のインピーダンスが十分低い場合は回路全体
の総合利得は低くなり、誤差増幅回路の出力電圧も所定
のレベルより低い。この時は、スイッチ回路によって第
2の帰還ループは等価的に切り離され、誤差増幅回路自
体の利得は第1の帰還ループによって決定される高い利
得によって動作する。
If the impedance of the load is sufficiently low, the overall gain of the entire circuit will be low, and the output voltage of the error amplification circuit will also be lower than a predetermined level. At this time, the second feedback loop is equivalently separated by the switch circuit, and the error amplifier circuit itself operates at a high gain determined by the first feedback loop.

負荷のインピーダンスが高い場合は回路仝休の総合刊1
7ち高くなる。この時は、スイッチ回路によって第2の
帰還ループは等価的に接続され、誤差増幅回路自体の利
得は第1及び第2の帰還ループによって決定される低い
利得によって動作する。
If the load impedance is high, please refer to the general publication 1 for circuit interruption.
7 It gets expensive. At this time, the second feedback loop is equivalently connected by the switch circuit, and the error amplification circuit itself operates at a low gain determined by the first and second feedback loops.

このため回路の総合利得も乱調現宋を引き起す程の高レ
ベルとなることを抑えることができる。
Therefore, it is possible to prevent the total gain of the circuit from reaching a level so high as to cause disturbances.

実施例 第1図は本発明の第1実施例の回路系統図を示す。同図
において第5図と同一構成部分には同一符号を付しであ
る。オペアンプOP1は第5図と同様に誤差増幅器とな
り、基準電圧発生回路1より発生される基準電圧が抵抗
R13,R14によって分割された一定電圧として反転
入力端子に供給され、ブヨツバ回路6から負荷5に供給
される電圧が電圧検出回路となる抵抗R11,R1□に
よって分割され非反転入力端子に供給される。
Embodiment FIG. 1 shows a circuit diagram of a first embodiment of the present invention. In this figure, the same components as in FIG. 5 are given the same reference numerals. The operational amplifier OP1 functions as an error amplifier in the same way as in FIG. The supplied voltage is divided by resistors R11 and R1□, which serve as a voltage detection circuit, and is supplied to the non-inverting input terminal.

オペアンプOP1の出力端子から抵抗Rf1を介してオ
ペアンプOP1の反転入力端子に戻る経路は第1の帰還
ループを構成し、オペアンプOP1の出力端子から抵抗
R2、PNPトランジスタQ1、NPNトランジスタQ
2、抵抗Rf3を介してオペアンプOP7の反転入力端
−F1.:戻る経路は第2の帰還ループを構成する。
The path from the output terminal of the operational amplifier OP1 to the inverting input terminal of the operational amplifier OP1 via the resistor Rf1 constitutes a first feedback loop.
2, the inverting input terminal -F1. of the operational amplifier OP7 via the resistor Rf3. : The return path constitutes a second feedback loop.

ここで、PNPトランジスタQ1、NPNトランジスタ
Q2はスイッチ回路を構成し、PNPトランジスタQ1
のベースに加えられる電圧が所定のレベル以下の時はP
NPトランジスタQ1、NPNトランジスタQ2共にオ
フとなり、PNPトランジスタQ1のベースに加えられ
る電圧がこの所定のレベル以上のときPNPトランジス
タQ1、NPNトランジスタQ2共にオンとなる。
Here, the PNP transistor Q1 and the NPN transistor Q2 constitute a switch circuit, and the PNP transistor Q1
When the voltage applied to the base of is below a predetermined level, P
Both NP transistor Q1 and NPN transistor Q2 are turned off, and when the voltage applied to the base of PNP transistor Q1 is equal to or higher than this predetermined level, both PNP transistor Q1 and NPN transistor Q2 are turned on.

オペアンプOP1の出力電圧及び三角波発生回路4の出
力電圧信号は電圧比較回路2へ供給されて第6図と同様
な比較動作を行い、その比較結果に対応するパルス信号
を発生し、このパルス信号は・チョッパ回路6が何らか
の理由でオンとなり続けることを防ぐためのチョッパ制
御回路8を介してチョッパ回路6に供給される。
The output voltage of the operational amplifier OP1 and the output voltage signal of the triangular wave generation circuit 4 are supplied to the voltage comparison circuit 2, which performs a comparison operation similar to that shown in FIG. 6, and generates a pulse signal corresponding to the comparison result. - It is supplied to the chopper circuit 6 via the chopper control circuit 8 to prevent the chopper circuit 6 from being turned on for some reason.

チョッパ回路6は、PNPトランジスタQ3のベースに
供給される電圧比較回路2よりのパルス信号によってエ
ミッタに供給される電源電圧Vccをスイッチングして
コレクタより出力し、この電圧をコイル上1コンデンサ
c1.c2によって平滑化して負荷5に供給する。した
がって第6図で説明したようにPNPトランジスタQ3
のベースに供給されるパルス信号によってPNPトラン
ジスタQ3がオンとなる期間が長い場合には負荷5に供
給される電圧は高くなり、逆にPNPトランジスタQ3
がオンとなる期間が短い場合には負荷5に供給される電
圧は低くなる。
The chopper circuit 6 switches the power supply voltage Vcc supplied to the emitter by a pulse signal from the voltage comparator circuit 2 supplied to the base of the PNP transistor Q3 and outputs it from the collector, and this voltage is applied to one capacitor c1 . It is smoothed by c2 and supplied to load 5. Therefore, as explained in FIG.
If the period during which PNP transistor Q3 is turned on by the pulse signal supplied to the base of PNP transistor Q3 is long, the voltage supplied to load 5 becomes high;
When the period in which the switch is on is short, the voltage supplied to the load 5 becomes low.

負vJ3として接続される機器は、一般にその動作状態
よってインピーダンスが大ぎく異なる。負荷5のインピ
ーダンスが比較的低い重負荷のときは第7図に示すよう
に負荷電流は大きく、この場合には第1図に示す回路全
体の総合利得は小さくなる。また逆に負荷5のインピー
ダンスが比較的高い軽負荷のときは第7図に示すように
負荷電流は小さく、総合利得は大きくなる。
Generally, the impedance of a device connected as a negative VJ3 varies greatly depending on its operating state. When the impedance of the load 5 is relatively low and the load is heavy, the load current is large as shown in FIG. 7, and in this case, the overall gain of the entire circuit shown in FIG. 1 becomes small. Conversely, when the load 5 is a light load with a relatively high impedance, the load current is small and the overall gain is large, as shown in FIG.

第1図において抵抗R1,R2の接続点◎の電圧Voは となる。ここでVrefは基F1!電圧電圧回路より発
生されるIS準電圧である。又、NPNトランジスタQ
2の1ミツタと抵抗R3との接続点Oの電圧VεはPN
Pt−ランジスタQ1とNPNトランジスタQ2のレベ
ルシフト動作によって略◎点の電圧Voと略等しくなる
In FIG. 1, the voltage Vo at the connection point ◎ between the resistors R1 and R2 is as follows. Here, Vref is the base F1! This is the IS quasi-voltage generated by the voltage voltage circuit. Also, NPN transistor Q
The voltage Vε at the connection point O between 1 of 2 and resistor R3 is PN
Due to the level shift operation of the Pt-transistor Q1 and the NPN transistor Q2, the voltage becomes approximately equal to the voltage Vo at the point ◎.

第2図(A)は0点の電圧vc、三角波発生回路4の出
力三角波のプラスビークP+、マイナスビークP−及び
負荷電流との関係を示し、同図(B)はオペアンプOP
1の利得AVと負荷電流との関係を示している。第2図
<A)、(B)共に横軸は負荷電流あって、この負荷電
流は負荷5のインピーダンスの変化に伴って変化する。
Figure 2 (A) shows the relationship between the voltage vc at the 0 point, the positive peak P+, negative peak P- of the triangular wave output from the triangular wave generating circuit 4, and the load current, and the diagram (B) shows the relationship between the voltage VC at the 0 point and the load current.
1 shows the relationship between a gain AV of 1 and load current. In both FIGS. 2A and 2B, the horizontal axis represents the load current, and this load current changes as the impedance of the load 5 changes.

この負荷電流が大きくなる方向(同図右方向)がm負荷
の場合、負荷電流が小さくなる方向(同図左方向)が軽
負荷の場合である。
If the direction in which the load current increases (to the right in the figure) is m load, the direction in which the load current decreases (to the left in the figure) corresponds to a light load.

同図(A)において、負荷電流がT1より大きい小負荷
の場合には0点の電圧VcはVcsよりも小さく、負荷
に加えられる電圧は低いため端子7の電圧がオペアンプ
OP1によって増幅される0点及び0点の電圧は十分低
く、PNPトランジスタQ1、NPNトランジススタQ
2はオフとなっており、実質上0点と0点とは切り離さ
れた状態と考えられる。このためオペアンプoP1の利
得△v1は抵抗R13= R14,Rf4によってAV
I−一ゴUコ一一         ■R+3/R綽 となる。ここで、R13/R14は抵抗R13及びR1
4を並列接続した場合の合成抵抗を表わす(以下同様)
。これによって回路全体の総合利得は第3図においてT
2より右の領域の状態を示す。
In the same figure (A), in the case of a small load where the load current is larger than T1, the voltage at the 0 point Vc is smaller than Vcs, and the voltage applied to the load is low, so the voltage at the terminal 7 is amplified by the operational amplifier OP1. The voltages at the point and zero point are sufficiently low, and the voltages at the PNP transistor Q1 and the NPN transistor Q
2 is off, and it is considered that the 0 point and the 0 point are substantially separated from each other. Therefore, the gain △v1 of the operational amplifier oP1 is reduced to AV by the resistor R13 = R14, Rf4.
I-ichigo Ukoichi ■It becomes R+3/R. Here, R13/R14 is the resistance R13 and R1
Represents the combined resistance when 4 are connected in parallel (the same applies below)
. As a result, the overall gain of the entire circuit is T in Figure 3.
The state of the area to the right of 2 is shown.

負荷5が軽負荷となって回路全体の総合利(りが上昇す
ると、オペアンプoP1の出力電圧、つまり0点の電圧
は上昇し、これに伴って0点の電圧Voも上昇する。0
点の電圧Voが0点の電圧v8と等しくなるときの0点
の電圧VcsはVcs=V   −(1+  ”   
)Vs   ■ref      R+ となり、第2図(A)において負荷電流がT1となり、
Vc =Vc sとなるとPNPトランジスタQ 1N
PNトランジスタQ2は共にオンとなり抵抗Rf3とD
点とが等価的に接続された状態となる。
When the load 5 becomes a light load and the overall profit of the entire circuit increases, the output voltage of the operational amplifier oP1, that is, the voltage at the 0 point increases, and accordingly, the voltage Vo at the 0 point also increases.
When the voltage Vo at the point becomes equal to the voltage v8 at the 0 point, the voltage Vcs at the 0 point is Vcs=V − (1+ ”
)Vs ■ref R+, and the load current becomes T1 in Fig. 2 (A),
When Vc = Vc s, PNP transistor Q 1N
PN transistor Q2 is both turned on and resistors Rf3 and D
The points become equivalently connected.

このときにはオペアンプOP1の帰遠帛は増加し、オペ
アンプoP1の利得AV2は となり、0式に比較して小さくなる。このため回路全体
の総合利得も第2図のT2より左の部分に丞すようにオ
ペアンプOP1の利得が抵抗R13゜R14−Rrlの
みによって決定される場合の総合利?!7(破線によっ
て示す)よりも小さくなる。このためそ、総合利得が同
図に斜線で示す乱調領域に到るほど高くなることはなく
、この結果広い範のインピーダンスの負荷を接続するこ
とが可能であり、安定した動作が確保される。
At this time, the return wave of the operational amplifier OP1 increases, and the gain AV2 of the operational amplifier oP1 becomes, which is smaller than that in equation 0. Therefore, the overall gain of the entire circuit is increased to the left side of T2 in FIG. ! 7 (indicated by the dashed line). Therefore, the total gain does not become so high as to reach the disturbance range shown by diagonal lines in the figure, and as a result, it is possible to connect loads with impedances in a wide range, and stable operation is ensured.

第4図は本発明の第2実施例の回路図を示す。FIG. 4 shows a circuit diagram of a second embodiment of the invention.

同図においては本発明の主要部分のみを示し、第1図と
同一構成部分には同一符号を付し、その説明を省略する
In this figure, only the main parts of the present invention are shown, and the same components as those in FIG.

同図では、第1図の抵抗R1,R2の代りにオペアンプ
OP2、抵抗R5,RG、R7,R8が設けられており
、第1図と同様に誤差増幅回路となるオペアンプOP 
 の出力が抵抗R7を介してオペアンプOP2の非反転
入力端子に接続され、基準電圧発生回路によって発生さ
れる基準電圧は抵抗R5,R6によって分割されて反転
入力端子に供給され、オペアンプOP  の出力は抵抗
R8を介して反転入力端子に帰還されている。
In the same figure, an operational amplifier OP2, resistors R5, RG, R7, and R8 are provided in place of the resistors R1 and R2 in FIG.
The output of the operational amplifier OP is connected to the non-inverting input terminal of the operational amplifier OP2 via the resistor R7, and the reference voltage generated by the reference voltage generating circuit is divided by the resistors R5 and R6 and supplied to the inverting input terminal, and the output of the operational amplifier OP is It is fed back to the inverting input terminal via resistor R8.

本実施例では重負荷時のオペアンプOP1の利得は第1
実施例の場合と同様に抵抗R13,R14゜Rflによ
って決定されるが、軽負荷時にはこの他に抵抗R5乃至
R8、オペアンプOP2によってオペアンプOP1の利
得が決定される。このような構成とすることにより、第
2図(B)のT1でオペアンプOP1の利得がA V 
1からAV2に遷移する場合の傾きを急峻にすることが
可能となる。
In this embodiment, the gain of the operational amplifier OP1 during heavy load is the first
As in the case of the embodiment, the gain of the operational amplifier OP1 is determined by the resistors R13 and R14°Rfl, but when the load is light, the gain of the operational amplifier OP1 is determined by the resistors R5 to R8 and the operational amplifier OP2. With this configuration, the gain of the operational amplifier OP1 becomes A V at T1 in FIG. 2(B).
It is possible to make the slope steeper when transitioning from 1 to AV2.

発明の効果 上述の如く、本発明によれば、本発明を例えばDC−D
Cコンバータに適用した場合に出力端子に接続された負
荷が軽負荷となり、負荷電流が減少した場合であっても
、誤差増幅回路の利(’/が自動的に切換えられること
により軽負荷時の総合利得が下げられ、総合利得が高い
ままの状181おいて生じる神々の乱調現宋を防止する
ことができ1、負荷として接続された各種機器がこの乱
調用やを原因とて誤動作を起こすことを防止することが
可能である等の特長を有する。
Effects of the Invention As described above, according to the present invention, the present invention can be applied to DC-D
When applied to a C converter, even if the load connected to the output terminal becomes a light load and the load current decreases, the error amplifier circuit's gain ('/) is automatically switched to reduce the load at light loads. The total gain is lowered, and it is possible to prevent the disturbance of the gods that occurs when the total gain remains high181, and various devices connected as loads may malfunction due to this disturbance. It has features such as being able to prevent

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の回路系統図、第2図は負
荷電流と誤差増幅回路の出力電圧及び利得との関係を示
す図、第3図及び第7図は負荷電流と総合利得との関係
を示す図、第4図は本発明の第2実施例の回路図、第5
図は従来回路の回路系統図、第6図は三角波発生回路の
出力電圧と誤差増幅回路との比較動作によって発生され
るパルス信号についての説明図である。 1・・・基準電圧発生回路、2・・・電圧比較回路、3
゜6・・・ブヨツバ回路、4・・・三角波発生回路、5
・・・負荷、Ql・・・PNPトランジスタ、Q2・・
・NPNトランジスタ、OPl、OF2・・・オペアン
プ、R41,R73,R1,R2,R3,R5−R8゜
R11〜R19・・・抵抗。 特許出願人 ミツミ電機株式会社 第2図 第5図 i6図 ノ頁gqjLにも
FIG. 1 is a circuit diagram of the first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the load current and the output voltage and gain of the error amplification circuit, and FIGS. 3 and 7 are the load current and the overall FIG. 4 is a circuit diagram of the second embodiment of the present invention, and FIG. 5 is a diagram showing the relationship with gain.
The figure is a circuit system diagram of a conventional circuit, and FIG. 6 is an explanatory diagram of a pulse signal generated by a comparison operation between the output voltage of the triangular wave generating circuit and the error amplifying circuit. 1... Reference voltage generation circuit, 2... Voltage comparison circuit, 3
゜6... Buzz circuit, 4... Triangular wave generation circuit, 5
...Load, Ql...PNP transistor, Q2...
- NPN transistor, OPl, OF2... operational amplifier, R41, R73, R1, R2, R3, R5-R8° R11-R19... resistor. Patent applicant: Mitsumi Electric Co., Ltd.Also on page gqjL of Figure 2, Figure 5, Figure i6, page gqjL.

Claims (1)

【特許請求の範囲】 基準電圧を発生する基準電圧発生回路と、 負荷の端子電圧を検出する電圧検出回路と、出力側から
入力側に到る第1の帰還ループ及び該出力側からスイッ
チ回路を介して該入力側に到る第2の帰還ループを有し
、該基準電圧と該電圧検出回路の検出電圧との誤差増幅
を行う誤差増幅回路とからなり、 該誤差増幅回路の出力電圧が所定レベル以下のときは該
スイッチ回路によって該第2の帰還ループを切り離し、
該誤差増幅回路は該第1の帰還ループにより設定される
利得で誤差増幅を行い、該誤差増幅回路の出力電圧が該
所定レベル以上のときは該スイッチ回路によって該第2
の帰還ループを接続し該誤差増幅回路は該第1及び第2
の帰還ループにより設定される利得で誤差増幅を行う構
成としたことを特徴とする自動利得調整回路。
[Claims] A reference voltage generation circuit that generates a reference voltage, a voltage detection circuit that detects a terminal voltage of a load, a first feedback loop that extends from the output side to the input side, and a switch circuit that connects the output side to the input side. an error amplification circuit that amplifies an error between the reference voltage and the detection voltage of the voltage detection circuit, and has a second feedback loop that reaches the input side via the voltage detection circuit, and the output voltage of the error amplification circuit is a predetermined value. When the voltage is below the level, the second feedback loop is disconnected by the switch circuit;
The error amplification circuit performs error amplification with a gain set by the first feedback loop, and when the output voltage of the error amplification circuit is equal to or higher than the predetermined level, the switch circuit amplifies the error with a gain set by the first feedback loop.
and the error amplification circuit connects the first and second feedback loops.
An automatic gain adjustment circuit characterized in that it is configured to perform error amplification with a gain set by a feedback loop.
JP62302894A 1987-11-30 1987-11-30 Automatic gain adjusting device Pending JPH01144360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302894A JPH01144360A (en) 1987-11-30 1987-11-30 Automatic gain adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302894A JPH01144360A (en) 1987-11-30 1987-11-30 Automatic gain adjusting device

Publications (1)

Publication Number Publication Date
JPH01144360A true JPH01144360A (en) 1989-06-06

Family

ID=17914383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302894A Pending JPH01144360A (en) 1987-11-30 1987-11-30 Automatic gain adjusting device

Country Status (1)

Country Link
JP (1) JPH01144360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003786A (en) * 2012-06-18 2014-01-09 Rohm Co Ltd Power supply device, and on-vehicle apparatus and vehicle using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678371A (en) * 1979-11-29 1981-06-27 Fujitsu Denso Ltd Dc-dc converter circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678371A (en) * 1979-11-29 1981-06-27 Fujitsu Denso Ltd Dc-dc converter circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003786A (en) * 2012-06-18 2014-01-09 Rohm Co Ltd Power supply device, and on-vehicle apparatus and vehicle using the same

Similar Documents

Publication Publication Date Title
US4672518A (en) Current mode control arrangement with load dependent ramp signal added to sensed current waveform
JP2500999B2 (en) Switch mode converter
EP0892332B1 (en) Low power consumption linear voltage regulator having a fast response with respect to the load transients
JP4453172B2 (en) Power supply device and power supply system
JPH0713803B2 (en) Battery feed integrated circuit
US6348783B2 (en) DC/DC converter for suppressing effects of spike noise
US6204646B1 (en) Power supply device
JP3493285B2 (en) Power factor improvement circuit
JP3821717B2 (en) DC stabilized power supply
JP3414228B2 (en) POWER SUPPLY DEVICE AND POWER SUPPLY SYSTEM USING THE SAME
US4075546A (en) Regulated power supply with combined series and shunt regulating transistors
JP3384834B2 (en) Turn-on control circuit
JPH01144360A (en) Automatic gain adjusting device
US6104170A (en) Method and circuit for preventing oscillations in a battery charger
JPH0136591B2 (en)
JP7133463B2 (en) voltage converter
WO2000019572A1 (en) Monitoring output power to protect a power amplifier
JPH0635538Y2 (en) Voltage amplification circuit with current limiting circuit
JP3571947B2 (en) Ripple filter
JPH061418B2 (en) Constant current power supply circuit
JPH0210664Y2 (en)
JPS63299767A (en) Dc-dc converter
JP2849885B2 (en) Pulse power supply
RU2052211C1 (en) Dc stabilizer
JP3365865B2 (en) Constant voltage power supply circuit