JPH01144304A - Controller for electric motor vehicle - Google Patents

Controller for electric motor vehicle

Info

Publication number
JPH01144304A
JPH01144304A JP62302022A JP30202287A JPH01144304A JP H01144304 A JPH01144304 A JP H01144304A JP 62302022 A JP62302022 A JP 62302022A JP 30202287 A JP30202287 A JP 30202287A JP H01144304 A JPH01144304 A JP H01144304A
Authority
JP
Japan
Prior art keywords
winding
exciter
current
main
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62302022A
Other languages
Japanese (ja)
Inventor
Toshiro Hasebe
寿郎 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62302022A priority Critical patent/JPH01144304A/en
Publication of JPH01144304A publication Critical patent/JPH01144304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enable control of rotary force of a main motor over a wide speed range, by providing a separately excited winding as well as a series winding to a DC main motor then feeding a portion of current flowing through an exciter side field regulation resistor to the separately excited winding. CONSTITUTION:In an exciter 2, a differential winding 5 to be excited reversely by the load current of a main generator 1 is provided to a shunt generator 4 employing an battery 3 as a power source. Output characteristic of the main generator is regulated to be constant by means of exciting circuit regulating resistors R1-R3 for the exciter 2 and a resistor R4 inserted in series with the exciting coil of the main generator 1. A series motor 6 is connected to the output of the main generator 1. A separately excited winding 11 which is constituted such that it is functionable cumulatively when current (i1) flowing from the battery 3 to the resistor R1 is in same direction as the current flowing through a series winding 7 is connected between the resistor R1 arranged in the exciting winding of the exciter 2 and the exciting battery 3.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば内燃機関によって直流主発電機と励
磁機とを駆動し、この直流主電動機の発生電力を直流主
電動機に供給して車両を駆動するような電気車の制御装
置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention is directed to driving a DC main generator and an exciter by, for example, an internal combustion engine, and transferring the generated power of the DC main motor to the DC main motor. The present invention relates to a control device for an electric vehicle that supplies electricity to drive the vehicle.

(従来の技術) 例えばディーゼル電気車と呼ばれるエンジン電気車では
、直流直巻電動機を駆動用主電動機としており、この主
電動機に給電するための直流主発電機には、車両の起動
に際しては大きな牽引力を出し得るように低電圧、ダイ
オード電流を主電動機に供給し、車両の速度が上昇する
に伴って電圧を上げ、かつ電流を減らす制御ができるこ
とが要求される。しかも、車両の走行中は、その全速度
領域でエンジン出力を最大限に利用することが望ましい
ため、1発を機の入力が常にエンジン最大出力とほぼ等
しくなるような特性が必要となり、種々の励磁方式が提
案されている。
(Prior art) For example, in an engine electric vehicle called a diesel electric vehicle, a DC series motor is used as the main motor for driving, and the DC main generator for supplying power to the main motor has a large traction force when starting the vehicle. It is required to supply a low voltage and diode current to the traction motor so that it can output the same amount of power, and to be able to control the voltage to increase and the current to decrease as the vehicle speed increases. Moreover, while the vehicle is running, it is desirable to make maximum use of the engine output over the entire speed range, so it is necessary to have characteristics such that the input per engine is always approximately equal to the maximum engine output, and various Excitation methods have been proposed.

第5図は、このような技術的要望に答えるものとして使
用されている従来の電気車の制御装置の一%Jを示して
おり、エンジン(図示せず)によって駆動される主発電
機1は、同じエンジンによって駆動される励磁62の出
力により励磁されるようになっている、励磁a2は、バ
ッテリ3を電源とする分巻発電機4に主発電機1の負荷
電流により逆励磁される差動巻線5を設けた構成である
FIG. 5 shows 1%J of a conventional electric vehicle control device used to meet such technical demands, and the main generator 1 driven by the engine (not shown) is , the excitation a2 is excited by the output of the excitation 62 driven by the same engine, and the excitation a2 is a difference in which the shunt generator 4 whose power source is the battery 3 is reversely excited by the load current of the main generator 1. This is a configuration in which a moving winding 5 is provided.

主発電機1の出力特性は、前記励磁R2の励磁回路調整
用抵抗R1〜R3と主発電機1の励磁コイルに直接挿入
された抵抗R4とによりほぼ一定の出力となるように調
整される。
The output characteristics of the main generator 1 are adjusted to a substantially constant output by the excitation circuit adjusting resistors R1 to R3 of the excitation R2 and the resistor R4 directly inserted into the excitation coil of the main generator 1.

これらの抵抗R1〜R4に流れる電流i1〜i4と、主
発tR出力電圧Vg、電流Igとの関係が第6図に示さ
れている。つまり、励磁機2により励磁電流11〜i3
が制御され、この励磁電流iI〜i3により主発電機1
の励磁コイルに流れる励磁電流i4が決定される。そし
て、この主発電機1の励磁電流i4が主発電機1の出力
電圧Vg、出力電流Igを決定するのである。
FIG. 6 shows the relationship between the currents i1 to i4 flowing through these resistors R1 to R4, the main tR output voltage Vg, and the current Ig. In other words, the exciting current 11 to i3 is generated by the exciter 2.
is controlled, and the main generator 1 is controlled by this excitation current iI to i3.
The excitation current i4 flowing through the excitation coil is determined. The exciting current i4 of the main generator 1 determines the output voltage Vg and output current Ig of the main generator 1.

しかしながら、この主発電機1の出力特性に直巻主電動
機6を接続しただけでは、狭い範囲の速度領域でしかエ
ンジンの出力が牽引力として発生しないため、一般的に
は、第5図に示すように主電動機6の直巻巻線7に並列
に弱め抵抗8を接触器9を介して接続し、ある速度Vま
で全界磁(FF)で運転した後、速度Vに到達すると主
電動機6の直巻巻線7に流れる電流を弱め抵抗8に分流
し、弱め界磁(WF)として使用するようにしている。
However, if the series-wound traction motor 6 is simply connected to the output characteristics of the main generator 1, the engine output will only be generated as traction force within a narrow speed range, so generally speaking, the output characteristics of the main generator 1 are as shown in FIG. A weakening resistor 8 is connected in parallel to the series winding 7 of the traction motor 6 via a contactor 9, and after operating at full field (FF) up to a certain speed V, when the speed V is reached, the traction motor 6 The current flowing through the series winding 7 is shunted to a weakening resistor 8 to be used as a field weakening (WF).

このようにすることにより、第7図に示すように、実際
の直巻巻線7に流れる電流は従来と同一であっても、弱
め抵抗8に流れる分流分がプラスされるため、主電動1
16に流れる全電流の制御幅を大きくすることができ、
より広い速度範囲でエンジン出力を有効に牽引力とする
ことができるのである。
By doing this, as shown in FIG. 7, even though the actual current flowing through the series winding 7 is the same as the conventional one, the shunt flowing through the weakening resistor 8 is added, so that the main motor 1
It is possible to increase the control width of the total current flowing through 16,
This allows the engine output to be used effectively as traction over a wider speed range.

(発明が解決しようとする問題点) しかしながら、このような従来の電気車の制御装置にあ
っても、次のような問題点があった。
(Problems to be Solved by the Invention) However, even with such a conventional electric vehicle control device, there are the following problems.

すなわち、このような制御を行なうとすると、第5図に
示すように弱め抵抗8、この弱め抵抗8の投入、開放制
御を行なうための接触器9、さらに所定の速度Vで接触
器9を開閉するための電圧検知回路10が必要となり、
制御器の重量や設置スペースの増加が避けられない問題
点があった。
That is, if such control is to be carried out, as shown in FIG. A voltage detection circuit 10 is required to
There was a problem in that the weight of the controller and the installation space were unavoidable.

また、第7図(a>に示すように、速度Vにおいて弱め
抵抗8を投入した時、主電動!!16の電流が増加する
が、この時の速度Vにおける安定した電流だけを見れば
、主電動機6の牽引力は弱界磁となる前後で同一である
が、ごく短時間の過渡現象では主電動機6のトルクが変
動する。その様子が第8図に示されている。
Furthermore, as shown in Fig. 7 (a), when the weakening resistor 8 is turned on at the speed V, the current of the main motor!!16 increases, but if we only look at the stable current at the speed V at this time, Although the traction force of the main motor 6 is the same before and after the weak field, the torque of the main motor 6 fluctuates due to very short-term transient phenomena.This situation is shown in FIG.

この第8図<a)に示すように時刻t1で弱め抵抗8が
投入されると、同図(b)に示すように主電動機電流I
gは比較的短時間T+(数十m5ec程度)で上昇し、
安定するが、同図(c)に示すように主発電機1の出力
電圧Vgは前記主電動機電流Igの変化を受けて励磁機
2の差動巻線5を逆励磁し、励磁機2の出力電圧が低下
する。
When the weakening resistor 8 is turned on at time t1 as shown in FIG. 8<a), the main motor current I
g rises in a relatively short time T+ (about several tens of m5ec),
However, as shown in the figure (c), the output voltage Vg of the main generator 1 reversely excites the differential winding 5 of the exciter 2 in response to the change in the main motor current Ig, and the Output voltage decreases.

この出力電圧の低下により、1発を機界磁巻線への電流
I4が減少し、出力電圧Vgも低下するという電気的な
遅れ要素が幾重にも重なっているため、安定するまでに
かなりの時間T2  (数百m5ec〜1sec程度)
がかかる、従って、電圧が低い値で安定するまでの間は
、同図(d)に示すように主電動機トルクが短時間T3
の間増加する結果となる。このため、運転中にトルクシ
ョ・7りが出て、客車牽引の場合には乗り心地を悪くし
たり、車輪がスリップしてフラット(部分的な車輪摩耗
)を発生する問題点があった。
Due to this decrease in output voltage, the current I4 to the machine field winding decreases, and the output voltage Vg also decreases.There are multiple electrical delay factors, so it takes a considerable amount of time to stabilize the output voltage. Time T2 (several hundred m5ec to 1sec)
Therefore, until the voltage stabilizes at a low value, the traction motor torque remains at T3 for a short time as shown in (d) of the same figure.
This results in an increase in For this reason, there was a problem in that torque shock and vibration occurred during operation, which worsened the riding comfort when towing a passenger car, and caused the wheels to slip and cause flatness (partial wheel wear).

この発明は、このような従来の問題点を解決するために
なされたもので、弱め界磁の切換用抵抗や接触器、電圧
検知回路等を必要とせず、しかも広い速度範囲で安定し
た牽引力を出し得る電気車の制御装置を提供することを
目的とする。
This invention was made to solve these conventional problems, and it does not require field-weakening switching resistors, contactors, voltage detection circuits, etc., and can provide stable traction force over a wide speed range. The purpose of this invention is to provide a control device for electric vehicles that can be used for electric vehicles.

[発明の構成] (問題点を解決するための手段) この発明は、直流1発tllと励磁機とを有し、これら
の主発電機と励磁機との励磁回路に押入された抵抗の調
整により定まる出力特性に従って主電動機の回転力を制
御する電気車の制御装置において、主1!動機の直巻巻
線に対してこの直巻巻線と同じ方向に電流が流れた場合
に和動に働くように他励巻線を設け、この他励巻線を前
記励磁機の界磁巻線励磁用のバッテリから励磁機界磁調
整用抵抗へ流れるラインに接続し、励磁機励磁電流をこ
の他励巻線に流すようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) This invention has a single DC TLL and an exciter, and adjusts the resistance inserted into the excitation circuit between the main generator and the exciter. In an electric vehicle control device that controls the rotational force of the main motor according to the output characteristics determined by the main 1! A separately excited winding is provided so that it acts harmoniously when current flows in the same direction as the series winding of the motor, and this separately excited winding is connected to the field winding of the exciter. It is connected to a line that flows from the line excitation battery to the exciter field adjustment resistor, and the exciter current is made to flow through the other excitation windings.

1:刷 この発明の電気車の制御装置では、直流主電動機に直巻
巻線の他に他動巻線を設け、この他励巻線に励磁機側の
界磁調整用抵抗に流す電流の一部を通電することにより
、車両の起動時には主電動機の直巻巻線と起磁力が和動
で働き、車両が高速走行するようになると起磁力が打ち
消し合うように働いて主電動機の回転力を広い速度範囲
で制御できる。
1: In the control device for an electric vehicle of this invention, the DC main motor is provided with a passive winding in addition to the series winding, and in addition to this, the excitation winding is configured to control the current flowing through the field adjustment resistor on the exciter side. By partially energizing, the series winding of the traction motor and the magnetomotive force act in harmony when the vehicle starts, and when the vehicle starts traveling at high speed, the magnetomotive force acts to cancel each other out, resulting in the rotational force of the traction motor. can be controlled over a wide speed range.

(実施例) 以下、この発明の実施例を図に基づいて詳説する。(Example) Hereinafter, embodiments of the present invention will be explained in detail based on the drawings.

第1図はこの発明の一実施例を示し、主発電機1、励磁
機2、バッテリ3、分巻発電機4、差動巻線5、主電動
機6、直巻巻線7は従来例で示した第5図の構成と同様
である。また、励磁812の界磁調整用の抵抗R1〜R
3、主発電機1の励磁巻線に対する抵抗R4も従来例と
同様であり、従って従来例と同様に作用する。
FIG. 1 shows an embodiment of the present invention, in which a main generator 1, an exciter 2, a battery 3, a shunt generator 4, a differential winding 5, a main motor 6, and a series winding 7 are the same as those of the conventional example. The configuration is similar to that shown in FIG. 5. In addition, resistors R1 to R for adjusting the field of the excitation 812
3. The resistance R4 to the excitation winding of the main generator 1 is also the same as in the conventional example, and therefore operates in the same manner as in the conventional example.

この実施例の特徴とするところは、励磁812の励磁巻
線に設けられた抵抗R1と励磁用バッテリ3との間に他
動巻線11を接続し、この他励巻線11を主電動R6の
直巻巻線7に近接させたことにある。
The feature of this embodiment is that the passive winding 11 is connected between the resistor R1 provided in the excitation winding of the excitation 812 and the excitation battery 3, and the passive winding 11 is connected to the main motor R6. This is due to the fact that it is located close to the series winding 7.

この他励巻線11は、バッテリ3から抵抗R。This separately excited winding 11 is connected to a resistor R from the battery 3.

に流れる電流11が直巻巻線7に流れる電流と同一の方
向にあるとき和動に働くように構成されている。
When the current 11 flowing through the series winding 7 is in the same direction as the current flowing through the series winding 7, the current 11 acts harmoniously.

このように構成された電気車の制御装置の動作について
、次に説明する。
The operation of the electric vehicle control device configured as described above will be described next.

主発電機1はエンジン(図示せず)により駆動され、同
じくエンジンにより駆動される励磁機2の励磁電流によ
り励磁され、電圧Vg、電流1gの出力を主電動機6に
与える。
The main generator 1 is driven by an engine (not shown), is excited by an excitation current of an exciter 2 which is also driven by the engine, and provides an output of voltage Vg and current 1g to the main motor 6.

主発電機1の励磁コイルに流れる励磁電流は、バッテリ
3から抵抗R1〜R3を介して流れる励磁電流により制
御される励磁機2の電流により出力が一定になるように
制御される。
The excitation current flowing through the excitation coil of the main generator 1 is controlled so that the output is constant by the current of the exciter 2, which is controlled by the excitation current flowing from the battery 3 via the resistors R1 to R3.

この主発電機1の出力特性、バッテリ3から他励巻線1
1に流れる電流の特性、および主電動機界磁率の特性が
第2図に示されており、同図(a)に示すように主発電
機1の負荷電流Igが大きい場合、つまり車両の起動時
には励磁機励磁回路への流入電流11も+側に大きくな
り、他励巻線11を直巻巻線7と和動して働く向きに励
磁することができ、主電動機6に大きな起磁力を与える
ことができ、牽引力を大きくとることができる。
The output characteristics of this main generator 1, from the battery 3 to the separately excited winding 1
Figure 2 shows the characteristics of the current flowing through the main generator 1 and the characteristics of the traction motor field magnetic flux. The inflow current 11 to the exciter excitation circuit also increases to the + side, and the separately excited winding 11 can be excited in the direction in which it works in harmony with the series winding 7, giving a large magnetomotive force to the main motor 6. It is possible to obtain a large traction force.

車両が高速となってきた場合、主発電機1の出力電圧V
gが高くなり、電流1gは低くなるが、この場合にはバ
ッテリ3から抵抗R1に流れる電流11が一側になり、
従って他励巻線11には直巻巻線7と逆向きの起磁力が
発生し、主電動機6に対する起磁力を弱め、高速回転を
可能とする。
When the vehicle speeds up, the output voltage V of the main generator 1
g becomes higher and the current 1g becomes lower, but in this case, the current 11 flowing from the battery 3 to the resistor R1 is on one side,
Therefore, a magnetomotive force is generated in the separately excited winding 11 in the opposite direction to that of the series winding 7, weakening the magnetomotive force on the main motor 6 and enabling high-speed rotation.

この特性をさらに詳しく説明するなめに、今、直巻巻線
7のみに電流が流れている状態を界磁率100%とし、
これによって伴られる起磁力Asとする。また、他励巻
線11により作られる起磁力Ahとする。このとき、起
動時の界磁率FSsは、 であって、100%以上となり、直巻巻線7のみの通電
時よりも磁束量が増加し、低速、大トルクを発生する。
To explain this characteristic in more detail, let us assume that the state in which current flows only through the series winding 7 is 100% field rate.
The magnetomotive force caused by this is assumed to be As. Further, it is assumed that the magnetomotive force Ah generated by the separately excited winding 11 is used. At this time, the field rate FSs at startup becomes 100% or more, the amount of magnetic flux increases compared to when only the series winding 7 is energized, and low speed and large torque are generated.

また、高速走行時の界磁率FShは、 であって、100%よりも小さくなり、等価的な弱め抵
抗を挿入した状態と同じになり、磁束量が小さくなって
高速回転となる。
Further, the magnetic field factor FSh during high-speed running is as follows, which is smaller than 100%, which is the same as when an equivalent weakening resistor is inserted, and the amount of magnetic flux becomes small, resulting in high-speed rotation.

この界磁率の変化が第2図(c)に示されている。This change in field rate is shown in FIG. 2(c).

このようにして他励界磁制御を行なう場合の車両の速度
に対する主電動816の電流Ig、界磁率、牽引力の変
化が第3図(a)に示され、主発電機1の出力特性が同
図(b)に示されている。
Changes in the current Ig of the main electric motor 816, field rate, and traction force with respect to the vehicle speed when performing separately excited field control in this way are shown in FIG. 3(a), and the output characteristics of the main generator 1 are shown in FIG. b).

車両の起動時には大きな牽引力が必要となるが、そのな
めに電流1gを大きくとると共に、他励巻線11による
起磁力もプラスすることにより界磁率を大きくし、大き
な機動力を得ることができる。
A large traction force is required when starting the vehicle, and by increasing the current 1 g and adding the magnetomotive force by the separately excited winding 11, the field rate can be increased and a large maneuverability can be obtained.

そして、高速走行になると、電流Igを低下させ、電圧
Vgを高くすると共に、他動巻線11により主電動機6
の起磁力を抑え、界磁率を低下させることにより回転数
を上げることができる。
When running at high speed, the current Ig is lowered and the voltage Vg is increased, and the passive winding 11 causes the main motor 6 to
The rotational speed can be increased by suppressing the magnetomotive force and lowering the magnetic field rate.

第4図はこの発明の他の実施例を示し、第1実施例にお
いてはバッテリ3から励磁機2の励磁回路調整抵抗R1
に流れる電流i1 を直接に主電動R6の他動巻線11
に通電していたしのを、他励巻線11の巻数や弱め界磁
率等の調整のために調整用抵抗R1の前段に分流抵抗R
5を挿入し、分流電流11−が他励巻線11に流れるよ
うに構成したものである。
FIG. 4 shows another embodiment of the present invention. In the first embodiment, the excitation circuit adjustment resistor R1 of the exciter 2 is connected to the battery 3.
The current i1 flowing through the main motor R6 is directly connected to the passive winding 11 of the main motor R6.
In order to adjust the number of turns of the separately excited winding 11, field weakening rate, etc., a shunt resistor R is installed before the adjustment resistor R1.
5 is inserted so that a shunt current 11- flows through the separately excited winding 11.

このように構成することにより、分流抵抗R5の調整に
より分流電流1.−の調整ができ、制御特性のきめ細か
な調整が可能となる。
With this configuration, by adjusting the shunt resistor R5, the shunt current 1. - can be adjusted, making it possible to finely adjust the control characteristics.

[発明の効果コ 以上のようにこの発明によれは、直流主発電機と励磁機
を有し、これらの主発電機および励磁機の励磁回路に挿
入された調整用抵抗の調整により定まる出力特性に従っ
て主電動機に給電する電気車の制御装置において、主電
動機の直巻巻線と和動するように働く他動巻線を設け、
この他励巻線に励磁機励磁巻線励磁用のバッテリから励
磁回路調整用抵抗に流れる電流を通電するようにしてい
るため、車両の起動時には主発電機の負荷電流による直
巻巻線により生じる起磁力と共に主発電機励磁用電流に
よる他動巻線の起磁力により主電動機に強い起動トルク
を与えることができ、また主電動機が高速回転する時に
は主電動機の直巻巻線による起磁力が他励巻線による逆
向きの起磁力により打ち消され、界磁率を低くすること
により高速回転を可能とすることができ、広い速度範囲
で制御ができる。
[Effects of the Invention] As described above, the present invention has a DC main generator and an exciter, and the output characteristics are determined by adjusting the adjustment resistors inserted in the excitation circuits of the main generator and the exciter. In a control device for an electric vehicle that supplies power to a traction motor, a passive winding is provided that works in harmony with the series winding of the traction motor,
In addition, the current flowing from the battery for excitation of the exciter winding to the excitation circuit adjustment resistor is passed through the excitation winding, so when the vehicle is started, the current generated by the series winding due to the load current of the main generator is generated. Strong starting torque can be given to the traction motor by the magnetomotive force of the passive winding due to the main generator excitation current in addition to the magnetomotive force, and when the traction motor rotates at high speed, the magnetomotive force due to the series winding of the traction motor is This is canceled out by the magnetomotive force in the opposite direction due to the excitation wire, and by lowering the field rate, high-speed rotation is possible, and control can be performed over a wide speed range.

しかも、この発明によれば、従来のように弱め抵抗とそ
の投入用接触器、電圧検知回路等を必要としないため、
装置の大型化を避けることができる。さらに、投入器の
ような電流を断続する構成機器がないため、トルクショ
ックが起こらず、滑らかな制御が可能である。
Moreover, according to the present invention, there is no need for a weakening resistor, a contactor for making it, a voltage detection circuit, etc., as in the past.
It is possible to avoid increasing the size of the device. Furthermore, since there is no component such as a dosing device that intermittents the current, torque shock does not occur and smooth control is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回路図、第2図は上記実
施例の動作特性図であって、同図(a)は主発電機の出
力特性グラフ、同図(b)はバッテリから励磁機励磁回
路に流入する電流の特性グラフ、同図(c)は主電動機
の界磁率特性グラフ、第3図(a)は上記実施例の主電
動機の牽引力、励磁電流、界磁率特性を示すグラフ、第
3図(b)は上記実施例の動作特性を説明するグラフ、
第4図はこの発明の他の実施例の回路図、第5図は従来
例の回路図、第6図は従来例の主発電機の動作特性を示
すグラフ、第7図、第8図m−は従来例の電気車の動作
説明図である。 1・・・主発″X機     2・・・励磁機3・・・
バッテリ     4・・・分流電動機5・・・差動巻
線     6・・・主電動機7・・・直巻巻線   
 11・・・他動巻線11〜I4・・・励磁電流 Ig
・・・出力電流R1〜R4・・・励磁回路調整用抵抗
FIG. 1 is a circuit diagram of an embodiment of the present invention, and FIG. 2 is an operating characteristic diagram of the above embodiment, where (a) is an output characteristic graph of the main generator, and (b) is a graph of the battery. FIG. 3(c) is a characteristic graph of the current flowing into the exciter circuit of the exciter, FIG. 3(c) is a graph of the field rate characteristic of the traction motor, and FIG. The graph shown in FIG. 3(b) is a graph explaining the operating characteristics of the above embodiment.
Figure 4 is a circuit diagram of another embodiment of the present invention, Figure 5 is a circuit diagram of a conventional example, Figure 6 is a graph showing the operating characteristics of a conventional main generator, Figures 7 and 8. - is an explanatory diagram of the operation of a conventional electric vehicle. 1... Main generator "X machine" 2... Exciter machine 3...
Battery 4... Shunt motor 5... Differential winding 6... Main motor 7... Series winding
11...Passive winding 11-I4...Exciting current Ig
... Output current R1 to R4 ... Excitation circuit adjustment resistor

Claims (1)

【特許請求の範囲】 直流主発電機と励磁機とを有し、これらの主発電機と励
磁機との励磁回路に挿入された抵抗の調整により定まる
出力特性に従って主電動機の回転力を制御する電気車の
制御装置において、 主電動機の直巻巻線に対してこの直巻巻線と同じ方向に
電流が流れた場合に和動に働くように他励巻線を設け、
この他励巻線を前記励磁機の界磁巻線励磁用のバッテリ
から励磁機界磁調整用抵抗へ流れるラインに接続し、励
磁機励磁電流をこの他励巻線に流すようにして成る電気
車の制御装置。
[Claims] The main motor has a DC main generator and an exciter, and the rotational force of the main motor is controlled according to the output characteristics determined by adjusting the resistance inserted in the excitation circuit of the main generator and the exciter. In a control device for an electric vehicle, a separately excited winding is provided to act harmoniously when current flows in the same direction as the series winding of the main motor.
The other excitation winding is connected to a line flowing from the field winding excitation battery of the exciter to the exciter field adjustment resistor, and the exciter current is caused to flow through the other excitation winding. car control device.
JP62302022A 1987-11-30 1987-11-30 Controller for electric motor vehicle Pending JPH01144304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302022A JPH01144304A (en) 1987-11-30 1987-11-30 Controller for electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302022A JPH01144304A (en) 1987-11-30 1987-11-30 Controller for electric motor vehicle

Publications (1)

Publication Number Publication Date
JPH01144304A true JPH01144304A (en) 1989-06-06

Family

ID=17903953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302022A Pending JPH01144304A (en) 1987-11-30 1987-11-30 Controller for electric motor vehicle

Country Status (1)

Country Link
JP (1) JPH01144304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774123C1 (en) * 2021-12-29 2022-06-15 Акционерное общество "Научно-исследовательский и конструкторско-технологический институт подвижного состава" (АО ВНИКТИ") Device for regulating the traction force of locomotive traction motors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774123C1 (en) * 2021-12-29 2022-06-15 Акционерное общество "Научно-исследовательский и конструкторско-технологический институт подвижного состава" (АО ВНИКТИ") Device for regulating the traction force of locomotive traction motors

Similar Documents

Publication Publication Date Title
CN102130653B (en) Method and system for controlling an electric motor using zero current offset value cancellation
JP3810441B2 (en) Voltage feeder
US4960178A (en) Motor-driven power steering apparatus
JPH01144304A (en) Controller for electric motor vehicle
JPS6329512B2 (en)
JPH08331895A (en) Motor and control method therefor
US2116420A (en) Control system
US2716209A (en) Plural motor drive with wheel slip detection
JP2753043B2 (en) Electric car control device
US2072768A (en) Electrical generator supplying two loads, one at variable voltage and another at constant voltage
US5408166A (en) Dynamic current feedback magnetizing type series or compound DC motor-generator control circuit
US2679625A (en) Excitation system
US1965606A (en) Dynamo-electric machine regulation
JPS61258633A (en) Power source unit for vehicle
US2265019A (en) Engine speed control system
JPH0683550B2 (en) Control device for vehicle charging generator
US2179546A (en) Drive system for gas electric automobiles
JPH0731077A (en) Generator for vehicle
US3311802A (en) Ward-leonard plural motor electrical drive means
US1358738A (en) Sylvania
US2179547A (en) Drive system for gas electric automobiles
US1367103A (en) System of control
US2105384A (en) Control system
US1361992A (en) System of control
US1320049A (en) System of control