JP2753043B2 - Electric car control device - Google Patents

Electric car control device

Info

Publication number
JP2753043B2
JP2753043B2 JP1132660A JP13266089A JP2753043B2 JP 2753043 B2 JP2753043 B2 JP 2753043B2 JP 1132660 A JP1132660 A JP 1132660A JP 13266089 A JP13266089 A JP 13266089A JP 2753043 B2 JP2753043 B2 JP 2753043B2
Authority
JP
Japan
Prior art keywords
main generator
main
voltage
winding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1132660A
Other languages
Japanese (ja)
Other versions
JPH033602A (en
Inventor
寿郎 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1132660A priority Critical patent/JP2753043B2/en
Publication of JPH033602A publication Critical patent/JPH033602A/en
Application granted granted Critical
Publication of JP2753043B2 publication Critical patent/JP2753043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業の上の利用分野) この発明は、例えばディーゼルエンジンのような内燃
機関によって主発電機と励磁機とを駆動し、主発電機の
発生電力を直流主電動機に供給して車両を駆動する方式
の電気車制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention drives a main generator and an exciter by an internal combustion engine such as a diesel engine, and generates electric power of the main generator. To a DC main motor to drive a vehicle.

(従来の技術) 例えば、ディーゼル電気車と呼ばれるエンジン電気車
では、直流直巻電動機を駆動用主電動機としており、こ
の主電動機に給電するための主発電機には、車両の起動
に際しては大きな牽引力を出し得るように低電圧、大電
流を発生し、車両の速度が上昇するに伴なって電圧を上
げ、且つ電流を減らす制御が行なえることが要求され
る。
(Prior Art) For example, in an engine electric vehicle called a diesel electric vehicle, a DC series motor is used as a driving main motor. It is required that control can be performed to generate a low voltage and a large current so that the voltage can be reduced, to increase the voltage as the speed of the vehicle increases, and to reduce the current.

しかも、車両の走行中には、その全速度領域でエンジ
ン出力を最大限に利用することが望ましいため、主発電
機の入力が常にエンジンの最大出力とほぼ等しくなるよ
うな特性が求められ、このような要望に応えるために従
来から種々の励磁方式が提案されている。
Moreover, since it is desirable to maximize the engine output in the entire speed range while the vehicle is running, it is required that the input of the main generator always be substantially equal to the maximum output of the engine. In order to meet such demands, various excitation systems have been conventionally proposed.

第5図は、このような電気車制御装置の従来例を示して
おり、ディーゼルエンジン(図示せず)によって駆動さ
れる回転界磁型主発電機1は、同一軸上に設置された励
磁機2に出力により励磁されるようになっている。
FIG. 5 shows a conventional example of such an electric vehicle control device, in which a rotating field type main generator 1 driven by a diesel engine (not shown) has an exciter installed on the same shaft. 2 is excited by the output.

そして励磁機2は、バッテリ3を電源とする回転電機
子型の交流発電機であり、その交流出力を同一回転軸上
に設置された回転整流器4により直流に変換して主発電
機1の回転界磁5を励磁するようになっている。
The exciter 2 is a rotating armature type AC generator using a battery 3 as a power source. The AC output is converted to DC by a rotary rectifier 4 installed on the same rotating shaft, and the rotation of the main generator 1 is performed. The field 5 is excited.

また、バッテリ3により励磁される励磁機2の界磁巻
線6とバッテリ3との間には、エンジンのガバナー(図
示せず)により制御される可変抵抗値のロードレギュレ
ータ7が挿入されており、このロードレギュレータ7の
抵抗値の調整により、主発電機1の交流出力を主整流器
8により直流に変換した後の主発電機出力電力Wg(=Ig
・Vg)がほぼ一定となるように調整するようにしてい
る。
A load regulator 7 having a variable resistance value controlled by a governor (not shown) of the engine is inserted between the field winding 6 of the exciter 2 excited by the battery 3 and the battery 3. By adjusting the resistance value of the load regulator 7, the main generator output power Wg (= Ig) after the AC output of the main generator 1 is converted into DC by the main rectifier 8.
・ Vg) is adjusted to be almost constant.

この時の主整流器8の出力電圧Vg及び負荷電流Igの関
係は第6図に示すようなものとなり、使用領域のほぼ全
体に渡ってVg・Ig=一定としている。
At this time, the relationship between the output voltage Vg of the main rectifier 8 and the load current Ig is as shown in FIG. 6, and Vg · Ig = constant over almost the entire use area.

しかしながら、この主発電機1の出力特性に直巻主電
動機9を接続しただけでは狭い範囲の速度領域でしかエ
ンジンの出力が牽引力として発生しないため、一般的に
は第5図に示すように主電動機9の直巻巻線10に並列に
弱め抵抗11を接触器12を介して接続し、ある速度vまで
全界磁(FF)で運転した後、速度vに到達すると主電動
機9の直巻巻線10に流れる電流を弱め抵抗11に分流さ
せ、弱め界磁(WF)として使用するようにしている。
However, simply connecting the series-wound main motor 9 to the output characteristics of the main generator 1 causes the engine output to be generated only as a traction force in a narrow range of speeds. Therefore, generally, as shown in FIG. A weakening resistor 11 is connected in parallel to a series winding 10 of the electric motor 9 via a contactor 12, and after operating at a certain speed v in the full field (FF), when the speed v is reached, a series winding of the main motor 9 is performed. The current flowing through the winding 10 is diverted to the weakening resistor 11 so as to be used as a weakening field (WF).

このようにすることにより、第7図及び第8図に示す
ように実線の直巻巻線10に流れる電流は従来と同一であ
っても、弱め抵抗11に流れる分流分がプラスされるた
め、主電動機9に流れる全電流の制御幅を大きくするこ
とができ、より広い範囲でエンジン出力を有効に牽引力
に転換することができるようになる。
By doing so, even if the current flowing through the solid series winding 10 is the same as the conventional one as shown in FIGS. 7 and 8, the shunt current flowing through the weakening resistor 11 is added. The control width of the total current flowing through the main motor 9 can be increased, and the engine output can be effectively converted to traction in a wider range.

(発明が解決しようとする課題) しかしながら、このような従来の電気車制御装置にあ
っても、次のような問題点があった。
(Problems to be Solved by the Invention) However, such a conventional electric vehicle control device has the following problems.

すなわち、上記のように弱め抵抗11を設けるこにより
主電動機9に流れる全電流の制御幅を大きくしようとす
る場合、第5図に示すように弱め抵抗11と、この弱め抵
抗11の投入、開放制御を行なうための接触器12と、更に
所定の速度vで接触器12を開閉するための電圧検知回路
13とが必要となり、制御装置全体の重量や設置スペース
の増加が避けられない問題点があった。
That is, when the control width of the total current flowing through the main motor 9 is to be increased by providing the weakening resistor 11 as described above, as shown in FIG. A contactor 12 for performing control and a voltage detecting circuit for opening and closing the contactor 12 at a predetermined speed v
Therefore, there is a problem that the weight of the entire control device and the installation space are inevitably increased.

また、第7図に示すように、速度vにおいて弱め抵抗
11を投入した時に主電動機9の電流が増加するが、この
時の速度vにおける安定した電流だけを見るならば、主
電動機9の牽引力は弱界磁となる前後で同一となっては
いても、ごく短時間の過渡現象として見る時に主電動機
9のトルクが変動する。
In addition, as shown in FIG.
When the motor 11 is turned on, the current of the main motor 9 increases, but if only the stable current at the speed v at this time is observed, the traction force of the main motor 9 is the same before and after the weak field is generated. When viewed as a transient phenomenon for a very short time, the torque of the main motor 9 fluctuates.

つまり、第9図に過渡的な現象について示してある
が、同図(a)に示すように時刻t1で弱め抵抗11が投入
されたとすると、同図(b)に示すように主電動機電流
Iaは比較的短時間T1(=数10ms程度)で上昇して安定す
る。ところが、同図(c)に示すように、主発電機1の
出力電圧Vgは主電動機電流Iaの変化を受けて負荷が増加
したことによるエンジン回転数の微小変化ガバナーが感
知し、ロードレギュレータ7を調整し、励磁機2の界磁
巻線6に流れる電流を変化させ、これによって励磁機2
の出力電圧を変化させ、主発電機1の回転界磁5に流れ
る電流を調整するという機械的、電気的な遅れ要素が幾
重にも重なっているため、安定するまでにかなりの時間
T2(数100ms〜1s程度)がかかる。
That is, the ninth are shown for transient phenomena in drawing, FIG. (A) When the resistance 11 weakened at time t 1 as shown in is to have been turned on, the main motor current as shown in FIG. (B)
Ia rises and stabilizes in a relatively short time T 1 (= about several tens of ms). However, as shown in FIG. 3 (c), the output voltage Vg of the main generator 1 is sensed by the governor of a slight change in the engine speed due to the increase in the load due to the change in the main motor current Ia, and the load regulator 7 To change the current flowing through the field winding 6 of the exciter 2, thereby
The output voltage of the main generator 1 is changed to adjust the current flowing through the rotating field 5 of the main generator 1, so that the mechanical and electrical delay elements are superposed one after another, so that it takes a considerable amount of time to stabilize.
T 2 (a few 100ms~1s) is applied.

そして、この結果として、電圧が低い値で安定するま
での間は、同図(b)に示すように主電動機トルクが短
時間T3の間増加する結果となり、この主電動機トルクの
瞬間的な増加がトルクショックとして表われ、特に客車
牽引時には乗心地を悪くしたり、車輪がスリップしてフ
ラット(部分的な車輪の摩耗)を発生する問題点があっ
た。
Then, as a result, until stabilized at the voltage low value, results in the main motor torque, as shown in FIG. (B) is increased for a short time T 3, instantaneous of the main motor torque The increase is manifested as a torque shock, and there is a problem that the ride quality is deteriorated particularly when the passenger car is towed, and the wheels slip and flat (partial wheel wear) occurs.

この発明は、このような従来の問題点を解決するため
になされたものであって、弱め界磁の切替用抵抗や接触
機、電圧検知回路などを不要とし、しかも広い速度範囲
で安定した牽引力を出すことのできる電気車制御装置を
提供することを目的とする。
The present invention has been made in order to solve such a conventional problem, and eliminates the need for a field weakening switching resistor, a contactor, a voltage detection circuit, and the like, and has a stable traction force in a wide speed range. It is an object of the present invention to provide an electric vehicle control device that can emit the electric power.

[発明の構成] (課題を解決するための手段) この発明の電気車制御装置は、内燃機関により駆動さ
れる主発電機と、この主発電機の出力電力をほぼ一定に
保つ機能を有する励磁機と、前記主発電機の出力特性に
従い、主電動機の回転数及び回転力を低電圧・大電流か
ら高電圧・小電流の間で制御する電気車制御装置におい
て、前記主電動機の直巻巻線と同じ方向に電流が流れる
時に直巻巻線の励磁方向と逆向きに励磁するように他励
巻線を設け、この他励巻線に対して、前記主発電機の出
力電圧を接続すると共に、前記主発電機の全使用電圧範
囲の中程に調整され、主発電機出力電圧と逆極性の一定
電圧を与える補助電源を接続し、前記直巻巻線を含めた
前記主電動機の電機子回路に、前記主発電機の発生電圧
による電流に対して順方向となるように整流素子を挿入
したものである。
[Structure of the Invention] (Means for Solving the Problems) An electric vehicle control device according to the present invention has a main generator driven by an internal combustion engine and an excitation having a function of keeping the output power of the main generator substantially constant. And an electric car control device for controlling the number of revolutions and the rotating force of the main motor between a low voltage and a large current to a high voltage and a small current in accordance with the output characteristics of the main generator. When a current flows in the same direction as the line, a separately excited winding is provided so as to be excited in a direction opposite to the exciting direction of the series winding, and the output voltage of the main generator is connected to the separately excited winding. In addition, an auxiliary power supply that is adjusted to the middle of the entire working voltage range of the main generator and provides a constant voltage having a polarity opposite to the main generator output voltage is connected, and the electric motor of the main motor including the series winding is connected. The slave circuit has a forward direction with respect to the current generated by the voltage generated by the main generator. It is obtained by inserting a rectifying element so.

(作用) この発明の電気車制御装置では、車両の起動時に主発
電機の負荷電流による直巻巻線により生じる起磁力と共
に、主発電機電圧と補助電源からの添加電圧の差により
生じる他励巻線の起磁力が加わり、主電動機に強いトル
クを与えることができる。一方、主電動機が高速回転に
なると、主電動機の直巻巻線による起磁力が他励巻線に
よる逆向きの起磁力により打消され、界磁率を低くする
ことができ、広い速度範囲においてスムーズな速度制御
ができることになる。
(Effect) In the electric vehicle control device according to the present invention, when the vehicle is started, together with the magnetomotive force generated by the series winding due to the load current of the main generator, separately excited due to the difference between the main generator voltage and the added voltage from the auxiliary power supply. The magnetomotive force of the winding is applied, and a strong torque can be given to the main motor. On the other hand, when the main motor rotates at a high speed, the magnetomotive force generated by the series winding of the main motor is canceled by the opposing magnetomotive force generated by the separately excited winding, so that the field rate can be reduced and the motor can be smoothly operated over a wide speed range. Speed control can be performed.

(実施例) 以下、この発明の実施例を図に基づいて詳説する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例を示しており、主発電機
1、励磁機2、バッテリ3の構成は第5図に示した従来
例と同一の構成を有し、同一の符号を付して示されてい
る。また、主制御器8、主電動機9及び直巻巻線10につ
いても、第5図の従来例と同一であり、従来例と同様の
作用を行なうものとする。
FIG. 1 shows an embodiment of the present invention, in which the configurations of a main generator 1, an exciter 2, and a battery 3 have the same configurations as those of the conventional example shown in FIG. Are shown. The main controller 8, the main motor 9, and the series winding 10 are the same as in the conventional example shown in FIG. 5, and perform the same operations as in the conventional example.

そしてこの実施例の特徴とするところは、直巻巻線10
を含む主電動機9の電気子回路に、主発電機1の発生電
圧による電流に対して順方向となるようにダイオード14
を挿入し、更に直巻巻線10の巻かれている鉄心上に他励
巻線15を巻き、この他励巻線15に主電動機9の直巻巻線
10と同一方向に電流が流れた時に逆向きの励磁が起り、
差動に働くようにしたところにある。
The feature of this embodiment is that the series winding 10
The diode 14 is connected to the armature circuit of the main motor 9 including the
Is inserted, and the separately excited winding 15 is wound on the iron core around which the series wound winding 10 is wound.
When current flows in the same direction as 10, excitation in the opposite direction occurs,
There is a place to work differentially.

更に、この実施例では、交流補助発電機16を設け、こ
の交流補助発電機16の出力電圧を補助変圧器17により適
当な電圧に変換し、更に補助整流器18により直流電圧Eo
に変換し、主整流器8の出力電圧Vgに対して逆向きで並
列に接続している。
Further, in this embodiment, an AC auxiliary generator 16 is provided, an output voltage of the AC auxiliary generator 16 is converted into an appropriate voltage by an auxiliary transformer 17, and a DC voltage Eo is further converted by an auxiliary rectifier 18.
And connected in parallel in the opposite direction to the output voltage Vg of the main rectifier 8.

次に、上記の構成の電気車制御装置の動作について説
明する。
Next, the operation of the electric vehicle control device having the above configuration will be described.

第2図は第1図に示した実施例の動作を説明するため
に簡略化した等価回路であるが、第2図において他励巻
線15に流れる電流Isは他励巻線の抵抗値Rsとする時、 Is=i1-i2=Vg/Rs−Eo/Rs =(Vg−Eo)/Rs …(1) となる。
FIG. 2 is a simplified equivalent circuit for explaining the operation of the embodiment shown in FIG. 1. In FIG. 2, the current Is flowing through the separately excited winding 15 is represented by the resistance Rs of the separately excited winding. Then, Is = i 1 -i 2 = Vg / Rs−Eo / Rs = (Vg−Eo) / Rs (1)

ここで、Eoを主発電機1の主整流器8の出力電圧Vgの
全使用範囲のほぼ中間程度の電圧とした場合、 Vg<Eoの時にはIsは負 となり、逆に、 Vg>Eoの時にはIsは正 となる。
Here, if Eo is a voltage approximately at the middle of the entire use range of the output voltage Vg of the main rectifier 8 of the main generator 1, Is is negative when Vg <Eo, and conversely, Is when Vg> Eo. Is positive.

また、直巻巻線10のみに電流が流れている状態を界磁
率100%とし、これによる起磁力をAmとし、他励巻線15
により作られる起磁力をAsとすると、車両起動時にはVg
がOかまたは極めて低い値であるために、Isは負の向
き、すなわち差動に接続された他励巻線15により直巻巻
線10に対して加極に作用するため、この時の界磁率FSs
は、 FSs=[(Am+As)/Am]×100% …(2) であり、このFSsは100%以上となり、直巻巻線10のみ
の通電時よりも磁束量が増加し、低速で大トルクを発生
することができるようになる。
Further, a state in which a current is flowing only in the series winding 10 is defined as a field susceptibility of 100%.
Assuming that the magnetomotive force produced by
Is zero or a very low value, Is acts in a negative direction, that is to say, acts on the series winding 10 by the differentially connected separately-excited winding 15 so that Is is applied. Magnetic susceptibility FSs
Is: FSs = [(Am + As) / Am] × 100% (2) where FSs is 100% or more, the amount of magnetic flux increases more than when only the series winding 10 is energized, and a large torque at low speed. Can be generated.

逆に、車両が高速走行に入ると、Vgが最大値付近にな
るため、Isは正の向き、すなわち差動に接続された他励
巻線15により直巻巻線10に対して減極に作用する。そし
てこの時の界磁率FShは、 FSh=[(Am−As)/Am]×100% …(3) であり、100%よりも小さな値となり、等価的に弱め
抵抗を挿入した状態と同じになり、磁束量が小さくなっ
て高速回転を可能とする。
Conversely, when the vehicle enters high-speed running, Vg becomes close to the maximum value, so that Is is depolarized with respect to the series winding 10 by the positively-excited winding 15 connected in the positive direction, that is, differentially. Works. Then, the field susceptibility FSh at this time is FSh = [(Am−As) / Am] × 100% (3), which is a value smaller than 100%, equivalent to a state where a weaker resistance is inserted. As a result, the amount of magnetic flux is reduced, enabling high-speed rotation.

第3図は上記の変化を示すものであり、同図(a)に
示すように主発電機出力電圧Vgは主発電機負荷電流Igと
Vg・Ig=一定の関係で変化し、これに対して補助発電機
16から補助制御器18を介して与えられる添加電圧Eoは、
Vgの変化範囲におけるほぼ中間の値で一定となってい
る。
FIG. 3 shows the above change. As shown in FIG. 3A, the main generator output voltage Vg is different from the main generator load current Ig.
Vg / Ig = changes in a fixed relationship, whereas the auxiliary generator
The added voltage Eo provided from the auxiliary controller 18 through the auxiliary controller 18 is
It is constant at a substantially intermediate value in the change range of Vg.

そして同図(b)に示すように、他励巻線15に流れる
電流Iaは、電流Igが増加するに対して正側から負側に変
化し、主電動機10の界磁率FSは同図(c)に示すように
100%を越える大きな値から弱め抵抗を挿入した状態と
同じような低い値まで連続的に変化させることができ
る。
Then, as shown in FIG. 3B, the current Ia flowing through the separately excited winding 15 changes from the positive side to the negative side with respect to the increase of the current Ig, and the field ratio FS of the main motor 10 is changed as shown in FIG. As shown in c)
It can be continuously changed from a large value exceeding 100% to a low value similar to a state where a weaker resistance is inserted.

しかも、この界磁率の変化は滑らかな曲線に沿って生
じており、弱め抵抗を投入する時のような不連続状態が
生じない特徴がある。
In addition, the change in the magnetic susceptibility occurs along a smooth curve, and there is a feature that a discontinuous state such as when a weak resistance is applied is not generated.

このようにして得られる他励巻線による界磁制御を行
なう場合の車両の速度に対する主電動機9の電流Ia、界
磁率FS、牽引力Pの変化は第4図(a)に示したものと
なり、主発電機1の出力特性が同図(b)に示したよう
になり、車両の起動時から最高速度値まで主発電機の出
力電圧Vgと主発電機負荷電流Igの変化は滑らかな曲線に
沿って行なうことができ、トルクショックを生じさせな
いものとなることがわかる。
Changes in the current Ia, the field ratio FS, and the tractive force P of the main motor 9 with respect to the vehicle speed when the field control is performed by the separately excited winding obtained in this manner are as shown in FIG. The output characteristics of the generator 1 are as shown in FIG. 5B, and the change of the output voltage Vg of the main generator and the load current Ig of the main generator along the smooth curve from the start of the vehicle to the maximum speed value. It can be understood that torque shock can be prevented.

このようにしてこの発明の実施例では、車両の起動時
には大きな牽引力が必要となるが、おのために電流Iaを
大きくとると共に他励巻線15により起磁力もプラスする
ことができ、界磁率FSを大きくして起動トルクを大きく
することができ、逆の高速走行時には電流Iaを低下さ
せ、電圧Vgを高くすると共に、他励巻線15により主電動
機9の起磁力を抑え、界磁率FSを低下させることにより
回転数を大きく上げることができるのである。
In this manner, in the embodiment of the present invention, a large traction force is required at the time of starting the vehicle. However, the current Ia can be increased and the magnetomotive force can be increased by the separately excited winding 15 for the sake of simplicity. By increasing the FS, the starting torque can be increased. Conversely, during high-speed running, the current Ia is reduced, the voltage Vg is increased, and the magnetomotive force of the main motor 9 is suppressed by the separately excited winding 15, so that the field rate FS By lowering the rotation speed, the number of rotations can be greatly increased.

[発明の効果] 以上のようにこの発明によれば、主電動機に直巻巻線
の他に差動に働く他励巻線を設け、更に主発電機の全使
用電圧範囲の中間程度に調整され、主発電機電圧と逆極
性の一定電圧を並列に主電動機の電機子回路に接続し、
更に電機子回路に主発電機の発生電圧による電流に対し
て順方向となるようにダイオードを挿入しているため、
車両の起動時には主発電機の負荷電流による直巻巻線に
より生じる起磁力と共に主発電機電圧と添加電圧の差に
より生じる他励巻線の起磁力が加わり、主電動機の強い
トルクを生起させることができ、主電動機が高速回転す
る時には主電動機の直巻巻線による起磁力が他励巻線に
よる逆向きの起磁力により打消され、界磁率を低くして
トルクを抑えることができ、広い速度範囲での制御が可
能であり、しかも従来のように弱め抵抗を用いないた
め、弱め抵抗に電流を投入するための接触器や電圧検知
回路の存在により弱め抵抗の投入時のトルクショックが
起きることがなく、広い範囲に渡って滑らかな速度制御
が行なえる。
[Effects of the Invention] As described above, according to the present invention, the main motor is provided with a separately-excited winding that works differentially in addition to the series winding, and is further adjusted to an intermediate level of the entire working voltage range of the main generator. The constant voltage of the opposite polarity to the main generator voltage is connected in parallel to the armature circuit of the main motor,
Furthermore, since a diode is inserted in the armature circuit so as to be forward with respect to the current generated by the main generator,
When the vehicle is started, the magnetomotive force generated by the series winding due to the load current of the main generator and the magnetomotive force of the separately excited winding generated by the difference between the main generator voltage and the added voltage are applied, thereby generating a strong torque of the main motor. When the main motor rotates at high speed, the magnetomotive force generated by the series winding of the main motor is canceled by the opposing magnetomotive force generated by the separately excited winding. Since the control in the range is possible and the weakening resistor is not used unlike the past, torque shock occurs when the weakening resistor is turned on due to the presence of a contactor or voltage detection circuit for applying current to the weakening resistor. And smooth speed control over a wide range.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の回路図、第2図は上記実
施例の動作を説明するための等価回路図、第3図及び第
4図は上記実施例の動作特性図であり、第3図(a)は
電圧Vg,Eo−電流Igの特性図、同図(b)は他励界磁電
流Is-Igの特性図、同図(c)は主電動機界磁率FS-Ig特
性図、第4図(a)は牽引力、電流、界磁率−速度特性
図、同図(b)は主発電機出力電圧Vg−負荷電流Igの特
性図、第5図は従来例の回路図、第6図は従来例の主発
電機出力電圧Vg−負荷電流Igの特性図、第7図は従来例
の牽引力、電流、界磁率−速度の特性図、第8図は従来
例の弱め抵抗を投入した時の動作特性を示す説明図、第
9図は従来例における弱め抵抗投入時の過度現象を説明
する動作特性を示す説明図である。 1……主発電機、2……励磁機 3……バッテリ、4……回転整流器 5……回転界磁、6……界磁巻線 7……ロードレギュレータ、8……整流器 9……主電動機、10……直巻巻線 14……ダイオード、15……他励巻線 16……交流補助発電機、17……補助変圧器 18……補助整流器
FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 is an equivalent circuit diagram for explaining the operation of the above embodiment, and FIGS. 3 and 4 are operating characteristic diagrams of the above embodiment. FIG. 3 (a) is a characteristic diagram of the voltage Vg, Eo-current Ig, FIG. 3 (b) is a characteristic diagram of the non-excited field current Is-Ig, and FIG. 3 (c) is a main motor field magnetic susceptibility FS-Ig characteristic. FIG. 4 (a) is a traction force, current, field ratio-speed characteristic diagram, FIG. 4 (b) is a characteristic diagram of main generator output voltage Vg-load current Ig, FIG. 5 is a circuit diagram of a conventional example, FIG. 6 is a characteristic diagram of the main generator output voltage Vg-load current Ig of the conventional example, FIG. 7 is a characteristic diagram of the traction force, current, field ratio-speed of the conventional example, and FIG. FIG. 9 is an explanatory diagram showing the operating characteristics when the switch is turned on, and FIG. 9 is an explanatory diagram showing the operating characteristics for explaining the transient phenomenon when the weaker resistor is turned on in the conventional example. DESCRIPTION OF SYMBOLS 1 ... Main generator, 2 ... Exciter 3 ... Battery 4, ... Rotating rectifier 5 ... Rotating field, 6 ... Field winding 7 ... Load regulator, 8 ... Rectifier 9 ... Main Electric motor, 10 series winding 14 ... diode, 15 ... separately excited winding 16 ... AC auxiliary generator, 17 ... auxiliary transformer 18 ... auxiliary rectifier

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関により駆動される主発電機と、こ
の主発電機の出力電力をほぼ一定に保つ機能を有する励
磁機と、前記主発電機の出力特性に従い、主電動機の回
転数及び回転力を低電圧・大電流から高電圧・小電流の
間で制御する電気車制御装置において、前記主電動機の
直巻巻線と同じ方向に電流が流れる時に直巻巻線の励磁
方向と逆向きに励磁するように他励巻線を設け、この他
励巻線に対して、前記主発電機の出力電圧を接続すると
共に、前記主発電機の全使用電圧範囲の中程に調整さ
れ、主発電機出力電圧と逆極性の一定電圧を与える補助
電源を接続し、前記直巻巻線を含めた前記主電動機の電
機子回路に、前記主発電機の発生電圧による電流に対し
て順方向となるように整流素子を挿入して成る電気車制
御装置。
1. A main generator driven by an internal combustion engine, an exciter having a function of keeping output power of the main generator substantially constant, and a rotational speed and a rotation speed of the main motor according to output characteristics of the main generator. In an electric vehicle control device for controlling a rotating force between a low voltage and a large current to a high voltage and a small current, when an electric current flows in the same direction as the series winding of the main motor, the excitation direction of the series winding is opposite to that of the series winding. A separately excited winding is provided so as to be excited in the direction, and the output voltage of the main generator is connected to the separately excited winding, and adjusted in the middle of the entire working voltage range of the main generator, An auxiliary power supply for providing a constant voltage having a polarity opposite to that of the main generator output voltage is connected, and the armature circuit of the main motor including the series winding is forward-directed with respect to the current generated by the main generator. An electric vehicle control device comprising a rectifying element inserted so that
JP1132660A 1989-05-29 1989-05-29 Electric car control device Expired - Fee Related JP2753043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132660A JP2753043B2 (en) 1989-05-29 1989-05-29 Electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132660A JP2753043B2 (en) 1989-05-29 1989-05-29 Electric car control device

Publications (2)

Publication Number Publication Date
JPH033602A JPH033602A (en) 1991-01-09
JP2753043B2 true JP2753043B2 (en) 1998-05-18

Family

ID=15086519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132660A Expired - Fee Related JP2753043B2 (en) 1989-05-29 1989-05-29 Electric car control device

Country Status (1)

Country Link
JP (1) JP2753043B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243424A (en) * 1985-08-20 1987-02-25 Shin Etsu Chem Co Ltd Production of silsesquioxane emulsion

Also Published As

Publication number Publication date
JPH033602A (en) 1991-01-09

Similar Documents

Publication Publication Date Title
KR100287764B1 (en) Optimal DC Motor / Controller Structure
US7064513B2 (en) Phase angle control for synchronous machine control
US4143280A (en) Control system for a tertiary winding self-excited generator
JP4349418B2 (en) Vehicle power generation control device
US4346335A (en) Speed control of a D.C. electric motor
JPH05236604A (en) Low loss control method of electrically driven vehicle
US4960178A (en) Motor-driven power steering apparatus
US5033565A (en) Motor-driven power steering apparatus
SU1454243A3 (en) Vehicle traction drive
JP2753043B2 (en) Electric car control device
JP3381411B2 (en) Motor generator for vehicles
JP2799033B2 (en) Electric car control device
JP2649291B2 (en) AC generator for vehicles
JP3925760B2 (en) Power generation device for internal combustion engine and vehicle
US5569992A (en) DC shunt (or compound) motor and its related circuit with controllable dynamic characteristics
US5408166A (en) Dynamic current feedback magnetizing type series or compound DC motor-generator control circuit
EP0582417B1 (en) Method and circuit device for DC series or compound excitation type machine
CN216611189U (en) Direct current transmission diesel locomotive power control system
US20230370005A1 (en) Motor and method of controlling the same
SU1207836A1 (en) Electric drive of self-contained vehicle
SU1235818A1 (en) Device for controlling drive of ship winch
RU2377143C1 (en) Vehicle traction drive
JP5045003B2 (en) Motor control device
JPH01144304A (en) Controller for electric motor vehicle
JPS61258633A (en) Power source unit for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees