JPH01144024A - Multiple reflection type surface acoustic wave optical diffraction element - Google Patents

Multiple reflection type surface acoustic wave optical diffraction element

Info

Publication number
JPH01144024A
JPH01144024A JP30297187A JP30297187A JPH01144024A JP H01144024 A JPH01144024 A JP H01144024A JP 30297187 A JP30297187 A JP 30297187A JP 30297187 A JP30297187 A JP 30297187A JP H01144024 A JPH01144024 A JP H01144024A
Authority
JP
Japan
Prior art keywords
light
saw
surface acoustic
acoustic wave
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30297187A
Other languages
Japanese (ja)
Other versions
JP2553367B2 (en
Inventor
Masaya Nanami
雅也 名波
Hiroshi Shimotahira
寛 下田平
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP30297187A priority Critical patent/JP2553367B2/en
Publication of JPH01144024A publication Critical patent/JPH01144024A/en
Application granted granted Critical
Publication of JP2553367B2 publication Critical patent/JP2553367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance deflection efficiency by providing light reflecting layers oppositely on the front and rear faces of a piezo-electric substrate in such a manner that incident light passes >=2 times the surface acoustic wave (SAW) excitation region on the front layer of the substrate and constructing the title element in such a manner that the light is multiple-reflected within the substrate. CONSTITUTION:The reflecting layers 5, 6 for light are respectively provided to the front and rear faces of the piezo-electric substrate 2 and the incident light is guided between these layers and is thereby multiple-reflected, by which the number of interactions of the light and the SAW is increased. The quantity of the + or - primary diffracted light 11 to be used as deflecting light is, therefore, considerably increased. The sufficient quantity of the deflection light is thereby obtd. even if input electric power is decreased and the stable deflection operation is enabled with small driving power. The multiple-reflection type surface acoustic wave optical diffraction element which has the large quantity of the deflection light and is practicable is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の進行方向を超音波を利用して偏向する
光偏向装置に係り、特に、固体表面上を伝搬する表面弾
性波を回折格子として利用し、その格子定数を変化させ
ることで光の回折の方向を調整可能とした多重反射型表
面弾性波光回折素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical deflection device that deflects the traveling direction of light using ultrasonic waves, and in particular, it relates to an optical deflection device that deflects the traveling direction of light using ultrasonic waves. The present invention relates to a multiple reflection type surface acoustic wave optical diffraction element that is used as a grating and can adjust the direction of light diffraction by changing the lattice constant.

〔従来の技術〕[Conventional technology]

光を高速に偏向する従来技術としては、例えば多面鏡を
光速回転する方法1反射鏡を備えた圧電素子を高周波信
号で振動させる方法、表面弾性波(S A W、 5u
rface Acoustic Have )による光
の回折光を利用する方法などがある。このうち、前者2
つの方法は機械的動作を利用して反射鏡の回転や振動に
より光の入射角度を変えることで偏光を行なっており、
その動作速度の上限は現在のところ周期的動作としては
数百kHz程度である。−方、後者のSAWによる方法
は固体表面上に発生させたSAWを正弦波回折格子とし
て利用しており、±1次回折光のみが偏向するという制
限はあるが、格子定数を変えることで光の回折角度、す
なわち偏向角度が制御できる。この格子定数は、SAW
の伝搬速度とSAWを発生させる電極へ人力する高周波
信号とに依存して決定され、入力周波数を変えることで
光の任意位置への偏向や静止が可能になり、さらに最大
偏角を得るに要する動作時間も数μs程度に短くできる
。このようなSAWを応用した光偏向器の一方法として
、例えば同一出願人・同一発明者による発明「表面弾性
波可変回折格子(特願昭第61−73416号)」があ
る。
Conventional techniques for deflecting light at high speed include, for example, a method of rotating a polygon mirror at the speed of light; a method of vibrating a piezoelectric element equipped with a reflecting mirror with a high frequency signal; and a method of using surface acoustic waves (S A W, 5u
There is a method using diffracted light by rface acoustic have. Among these, the former 2
One method uses mechanical motion to polarize light by changing the incident angle of the light by rotating or vibrating a reflecting mirror.
The upper limit of its operating speed is currently about several hundred kHz for periodic operation. - On the other hand, the latter method using SAW uses a SAW generated on the solid surface as a sinusoidal diffraction grating, and although there is a limitation that only the ±1st-order diffracted light is deflected, by changing the grating constant, the light can be The diffraction angle, ie the deflection angle, can be controlled. This lattice constant is SAW
It is determined depending on the propagation speed of the SAW and the high-frequency signal manually applied to the electrode that generates the SAW. By changing the input frequency, it is possible to deflect the light to any position or stop it, and it is also possible to obtain the maximum deflection angle. The operating time can also be shortened to about several μs. One example of a method of an optical deflector using such a SAW is the invention "Surface Acoustic Wave Variable Diffraction Grating (Japanese Patent Application No. 73416/1989)" by the same applicant and inventor.

この発明では、回折効率を増加する一手段として、大き
な高周波電力を入力し、その際、発生した不要な熱を効
率よく外気中へ放散する構造にすることで格子定数の安
定化、つまり偏向角度の安定化を実現した。
In this invention, as a means to increase diffraction efficiency, a large high-frequency power is input, and by creating a structure that efficiently dissipates the unnecessary heat generated at that time into the outside air, the lattice constant is stabilized, that is, the deflection angle is achieved stabilization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、入力する高周波電力には限界があり、交
差指形電極の間に発生する電界が大きくなると圧電性基
板に破壊を生じさせてしまう。
However, there is a limit to the input high-frequency power, and if the electric field generated between the interdigital electrodes becomes large, the piezoelectric substrate will be destroyed.

例えば、SAW素子の基板として、しばしば用いられる
ニオブ酸リチウム結晶の破壊電界は約lOν/μmであ
ることが知られている。このように放熱効率を改善し、
入力電力の増大による回折光量の増大を計っても、使用
する圧電性基板の特性により上限が定まってしまう欠点
があった。
For example, it is known that the breakdown electric field of lithium niobate crystal, which is often used as a substrate for SAW devices, is about 1Oν/μm. In this way, the heat dissipation efficiency is improved,
Even if the amount of diffracted light is increased by increasing the input power, there is a drawback that the upper limit is determined by the characteristics of the piezoelectric substrate used.

また、前記発明(表面弾性波可変回折格子)での光回折
は、ラマンナース回折と呼ばれる効果を利用したもので
、光スィッチ等によく利用されるブラッグ回折と比較し
た場合、回折現象を引き起こす光の入射許容角度を大き
くとれるという長所をもつ一方、光と超音波の相互作用
時間(距離)が短かく、その回折効率はブラッグ回IJ
′r(80%)の数10分の1 (数%)という短所も
合わせもつものである。
Furthermore, the optical diffraction in the above invention (surface acoustic wave tunable diffraction grating) utilizes an effect called Ramanners diffraction, and when compared with Bragg diffraction, which is often used in optical switches, light diffraction that causes a diffraction phenomenon is On the one hand, the interaction time (distance) between light and ultrasonic waves is short, and the diffraction efficiency is close to that of the Bragg angle IJ.
It also has the disadvantage of being only a few tenths (several percent) of 'r (80%).

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では、上記の問題点を解決するため入射
した光を、超音波との相互作用領域に長時間閉じ込める
方式を採った。どの方式では、SAW振幅の伝vIi損
失は、例えば上記のニオブ酸リチウム結晶の場合、 −
0,3dB/cm程度と小さいため、SAW伝殿方向に
長い領域にわたって光の回折を生じさせるに十分なSA
Wが発生していることがわかる。それゆえ、入射した光
が2回以上基板表層のSAWMJJ振領域を通過するよ
うに、圧電性基板の表裏面に向い合せに光反射層を設け
、基板内部で光が多重反射する構造をとり、偏向効率を
高めている。
Therefore, in the present invention, in order to solve the above-mentioned problems, a method is adopted in which the incident light is confined for a long time in the interaction region with the ultrasonic wave. In which scheme, the transmission vIi loss of the SAW amplitude is, for example, for the above-mentioned lithium niobate crystal, -
The SA is as small as about 0.3 dB/cm, which is sufficient to cause light diffraction over a long area in the SAW propagation direction.
It can be seen that W is occurring. Therefore, so that the incident light passes through the SAWMJJ vibration region on the surface layer of the substrate more than once, light reflecting layers are provided on the front and back surfaces of the piezoelectric substrate, and a structure is adopted in which the light is multiple-reflected inside the substrate. Improves deflection efficiency.

〔作用〕[Effect]

第1図に、交差指形電極1に入力する電気信号の周波数
fと圧電性基板2のSAWの伝搬速度、■及びSAWの
空間周期dの関係を示す0図に示すように、交差指形電
極工の電極間隔がdのとき、この電極にインパルス状の
電気信号を加えると圧電性基板上に波長dのSAWが発
生する。
As shown in Fig. 1, which shows the relationship between the frequency f of the electrical signal input to the interdigital electrode 1, the propagation velocity of the SAW of the piezoelectric substrate 2, and the spatial period d of the SAW, the interdigital When the electrode interval of the electrode worker is d, when an impulse-like electric signal is applied to this electrode, a SAW of wavelength d is generated on the piezoelectric substrate.

このSAWは電極を中心として、その左右に速度Vで伝
搬して行く、よって、時刻も。(= d/v)後には再
びSAWの位相と交差指形電極の位置とが、前記インパ
ルス信号を加えた時刻と同じ位置関係になる。ここで、
またインパルス状の電気信号を加えれば、このSAWは
、さらに振幅を増大させて伝搬して行く。よって、周期
La、すなわち周波数fo  (=I/16−=V/d
)のインパルス信号を連続的に交差指形電極に加えると
、SAWは同位相で振幅を増大させられ、強い進行波と
なって圧電性基板2上に放射される。
This SAW propagates to the left and right of the electrode at a speed of V, and therefore the time. (= d/v) later, the phase of the SAW and the position of the interdigital electrodes are again in the same positional relationship as at the time when the impulse signal was applied. here,
Furthermore, if an impulse-like electrical signal is added, this SAW will propagate with further increasing amplitude. Therefore, the period La, that is, the frequency fo (=I/16-=V/d
) is continuously applied to the interdigital electrodes, the amplitude of the SAW is increased in the same phase, and is emitted onto the piezoelectric substrate 2 as a strong traveling wave.

このような状態を共振状態といい、「。を共振周波数と
呼ぶ、また、インパルス状の電気信号の代りに周波数f
0の正弦波信号を使用しても同様の効果があり、通常は
発生し易い正弦波信号が用いられる。電気信号の周波数
がfoより変化して行くと、共振状態が崩れ、SAWの
強度が低下する。現状のSAW素子ではSAWの強度が
一10%となる範囲の周波数帯域幅は、共振周波数f0
の5〜10%程度である。
Such a state is called a resonant state.
A similar effect can be obtained even if a sine wave signal of 0 is used, and a sine wave signal that is easily generated is usually used. As the frequency of the electrical signal changes from fo, the resonance state collapses and the strength of the SAW decreases. In the current SAW element, the frequency bandwidth of the range where the SAW intensity is 110% is the resonant frequency f0
It is about 5 to 10% of that.

第2図は、SAWを位相格子として使用した場合におけ
る光の偏向が行われる様子を示す。
FIG. 2 shows how light is deflected when a SAW is used as a phase grating.

周波数f0の正弦波の電気信号によって圧電性基Fi2
の表面に発生したSAWは、格子定数にあたる空間周期
dを有し、速度Vで矢印の方向に進行する。
A piezoelectric group Fi2 is generated by a sinusoidal electrical signal of frequency f0.
The SAW generated on the surface has a spatial period d corresponding to the lattice constant, and moves at a speed V in the direction of the arrow.

前記圧電性基板2は光に対し透過性を有するものであっ
て、同図左の方向から入射光が、この圧電性基板2を透
過すると、該入射光はSAWによる圧電性基板2の表面
の正弦波状と凹凸と圧電性基板2の表面直下の密度の変
化、すなわち屈折率の変化によって位相変調を受ける。
The piezoelectric substrate 2 is transparent to light, and when incident light from the left direction in the figure passes through the piezoelectric substrate 2, the incident light is transmitted to the surface of the piezoelectric substrate 2 by the SAW. The piezoelectric substrate 2 undergoes phase modulation due to the sinusoidal shape, unevenness, and changes in the density just below the surface of the piezoelectric substrate 2, that is, changes in the refractive index.

この位相変調は、空間周期dの繰返しによる周期的なも
のであるから、これらの光は通常の位相格子を透過した
ものと同じく、レンズ3でレンズの焦点面4に結像させ
ると回折像を生ずる。とこで、入射光が波長λの単色光
であれば、回折像には、格子定数dによって定まる±1
次の回折輝点が生ずる。この回折輝点の発生位置は、前
記焦点面4上の光軸により、距離αだけ離れた位置とな
り、方向はSAWの伝搬方向と等しい、距離αの値はレ
ンズ3の焦点距離をFとすれば a=Fλ/d=foFλ/ v   −−−−−−−−
−−−−(1)で表わされる。ここで、正弦波電気信号
の周波数がr、を中心に±Δf/2変化するものとすれ
ば、焦点面4上での±1次の回折輝点の変位量ΔαはΔ
α=Δ IF  λ/V       ・・・−−−−
・−・・−−−一・・・−・−・ (2)となる、この
式で明らかなように、5AWO伝搬速度が遅(、レンズ
3の焦点距離が長く、光の波長λが長いほど変移量Δα
は大きな値を取る。
This phase modulation is periodic due to the repetition of the spatial period d, so when these lights are focused on the focal plane 4 of the lens by the lens 3, they form a diffraction image, just like those transmitted through a normal phase grating. arise. By the way, if the incident light is monochromatic light with wavelength λ, the diffraction image will have ±1 determined by the lattice constant d.
The following diffraction bright spots are generated. The generation position of this diffraction bright spot is a distance α apart from the optical axis on the focal plane 4, and the direction is the same as the propagation direction of the SAW. a=Fλ/d=foFλ/v −−−−−−−
---It is expressed as (1). Here, if the frequency of the sinusoidal electric signal changes by ±Δf/2 around r, the displacement Δα of the ±1st-order diffraction bright spot on the focal plane 4 is Δ
α=Δ IF λ/V ・・・−−−−
・−・・−−−−−−・−・ (2) As is clear from this equation, the 5AWO propagation speed is slow (, the focal length of lens 3 is long, and the wavelength λ of the light is long) The amount of displacement Δα
takes a large value.

以上、述べた内容は、入射光が1回だけSAW励振領域
を通過する場合においての作用であったが、圧電性基板
内部で光多重反射を行なわせた場合、これは第2図のS
AW素子が多数重ねられた状態と等価であり、そのとき
のそれぞれの圧電性基板から回折する回折光は、圧電性
基板が十分薄い場合には、回折光どうし分離することな
く一つの輝点として偏向するとかできる。
What has been described above is the effect when the incident light passes through the SAW excitation region only once, but when multiple reflections of light occur inside the piezoelectric substrate, this is the effect of the SAW excitation region in Figure 2.
This is equivalent to a state in which many AW elements are stacked one on top of the other, and the diffracted light diffracted from each piezoelectric substrate at that time will not be separated and will form a single bright spot if the piezoelectric substrate is sufficiently thin. It can be deflected.

〔第1の実施例〕 第3図(a) (b)に、本発明に係る多重反射型表面
弾性波光回折素子の構成の一実施例を示す、この実施例
では、圧電性基板2の裏面に第1の光反射層5を、また
表面に第2の光反射層6とSAW発生用の交差指形電極
lを設け、これを熱の不良導 体からなる基板7上に置
き、圧電性基板2の端面にはSAWの反射を防ぎ、吸収
して熱に変換する吸音材8と、これに放熱器9を密着さ
せて放熱効率を良くした構造となっている。断面図には
光の入射方法と多重反射の様子を示した。 ・第3図(
b)に示すように、圧電性基板2の表面上のa点に入射
した光は、第1の光反射層5→第2の光反射層6→第1
の光反射層5の順で数回反射を繰り返したのち、主軸光
IOと±1次回折光11に分離して圧電性基板2の表面
上a°点より出射する。このとき、出射光はa、a“点
および第2の光反射層6で反射されるときに位相変調を
受けることになるが、a、a’点ではSAWによる媒質
の周期的な屈折率変化で光の波面が位相変調を受け、第
1の光反射防止膜ではa、a’点での作用に加えて、反
射層の周期的振幅による位相変調も受けることになり、
結果的に1回透過型の光回折素子より偏向光量がはるか
に増加できることになる。
[First Example] FIGS. 3(a) and 3(b) show an example of the configuration of a multiple reflection type surface acoustic wave optical diffraction element according to the present invention. In this example, the back surface of the piezoelectric substrate 2 is A first light-reflecting layer 5 is provided on the surface, and a second light-reflecting layer 6 and interdigital electrodes 1 for SAW generation are provided on the surface, and these are placed on a substrate 7 made of a poor thermal conductor, and piezoelectric On the end face of the substrate 2, there is a sound absorbing material 8 that prevents reflection of the SAW and absorbs it and converts it into heat, and a heat radiator 9 is brought into close contact with the sound absorbing material 8 to improve heat radiation efficiency. The cross-sectional view shows the method of light incidence and multiple reflections.・Figure 3 (
As shown in b), the light incident on the point a on the surface of the piezoelectric substrate 2 travels from the first light reflective layer 5 to the second light reflective layer 6 to the first
After repeating reflection several times in the order of light reflecting layer 5, the light is separated into main axis light IO and ±1st order diffracted light 11, which are emitted from point a° on the surface of piezoelectric substrate 2. At this time, the emitted light undergoes phase modulation when reflected at points a, a'' and the second light reflection layer 6, but at points a and a', the periodic refractive index change of the medium due to the SAW The wavefront of the light is subjected to phase modulation, and in addition to the effects at points a and a' in the first antireflection film, it is also subjected to phase modulation due to the periodic amplitude of the reflective layer.
As a result, the amount of deflected light can be much increased compared to a single transmission type optical diffraction element.

これらのSAW素子を構成する圧電性基板2や交差指形
電極1.第1の光反射層5.第2の光反射層6には、従
来から使用されている材料、すなわちニオブ酸リチウム
結晶等の圧電性材料と、アルミニウム、金などの電極材
料が使用できる。
The piezoelectric substrate 2 and interdigital electrodes 1 that constitute these SAW elements. First light reflective layer5. The second light-reflecting layer 6 can be made of conventionally used materials, ie, piezoelectric materials such as lithium niobate crystals, and electrode materials such as aluminum and gold.

また、前記交差指形電極の電極幅や交差間隔は数μm・
〜数105m程度と微細であるが、これらの加工はホト
リソグラフィによる微細加工技術で実現することが可能
である。
In addition, the electrode width and intersecting interval of the interdigital electrodes are several μm.
Although the thickness is as small as approximately 105 m, these processes can be realized using photolithographic microfabrication technology.

〔第2の実施例〕 第3図の実施例では、光入射部aは圧電性基板の表面が
直接、空気中に露出している構成であった。しかし、−
a的に圧電性媒質は高屈折率をもち、例えばニオブ酸リ
チウム結晶では波長0.633μmの光に対して、常光
線屈折率n0は2.286、異常光線屈折率n0は2.
2であり、垂直入射時の反射率はn、に対しては約15
%である。
[Second Embodiment] In the embodiment shown in FIG. 3, the light incident part a had a structure in which the surface of the piezoelectric substrate was directly exposed to the air. However, −
Generally speaking, piezoelectric media have a high refractive index; for example, a lithium niobate crystal has an ordinary refractive index n0 of 2.286 and an extraordinary refractive index n0 of 2.286 for light with a wavelength of 0.633 μm.
2, and the reflectance at normal incidence is about 15 for n.
%.

このため、第3図の実施例を装置内へ使用した場合、光
入射部aからの反射光を遮へい板等を用いて遮る必要が
生じる。そこで、光入射部aの領域に1例えば酸化シリ
コンのような5AWO伝搬に影響を与えることが少ない
材料で光反射防止膜を施せば不要反射光の大部分が基板
内部に入射でき、さらに偏向光量を増加させることがで
きる。
Therefore, when the embodiment shown in FIG. 3 is used in an apparatus, it is necessary to block the reflected light from the light incident part a using a shielding plate or the like. Therefore, if an anti-reflection film is applied to the light incident area a using a material such as silicon oxide that has little effect on 5AWO propagation, most of the unnecessary reflected light can enter the inside of the substrate, and the amount of deflected light can also be increased. can be increased.

もちろん光出射部a゛にも光反射防止膜をつけることで
、より一層の偏向光量の増加が期待できる。
Of course, by applying an anti-reflection film to the light emitting portion a', it is possible to expect a further increase in the amount of deflected light.

〔第3の実施例〕 第4図に第3図に示す第1の実施例における回折光量と
SAW周波数の関係の測定結果を示す。
[Third Example] FIG. 4 shows the measurement results of the relationship between the amount of diffracted light and the SAW frequency in the first example shown in FIG. 3.

図において、縦軸が回折光ff1(uW)を、横軸がS
AW周波数(MHz)を示す、光入射角度は、(a)図
が25°、(b)図が30°、(C)図が35°。
In the figure, the vertical axis represents the diffracted light ff1 (uW), and the horizontal axis represents S.
The light incident angle, which indicates the AW frequency (MHz), is 25° in (a), 30° in (b), and 35° in (C).

(d)図が40″である。  。(d) The figure is 40″.

実線は第1の実施例(MRT:Multiple Re
flectionType)の回折光量を示し、点線は
第3図の第1の実施例で第2の反射層6を設けず、第1
の反射層5により1回だけ光を反射させた場合(SRT
:Sing−Ie Reflection Type 
)の回折光量を示す。
The solid line indicates the first embodiment (MRT: Multiple Re
The dotted line indicates the amount of diffracted light of the first embodiment shown in FIG.
When light is reflected only once by the reflective layer 5 (SRT
:Sing-Ie Reflection Type
) shows the amount of diffracted light.

?IRTはSRTに対し各光入射角度で5〜10倍の回
折光量が得られている。しかし、第4図から明らかなよ
うに、MRTでは回折光量の増大するSAW周波数帯域
が狭いので、光を偏向させて空間の広いH域を連続的に
掃引することが困難である(第4図より、回折光量が極
大値をとる周波数が複数回現れるので、それらの周波数
を切換えることにより、空間のg数的な数点へ光を偏向
させることは可能である)。
? IRT provides 5 to 10 times as much diffracted light as SRT at each light incident angle. However, as is clear from Figure 4, in MRT, the SAW frequency band where the amount of diffracted light increases is narrow, so it is difficult to deflect the light and continuously sweep a wide H range in space (Figure 4). Therefore, the frequency at which the amount of diffracted light takes the maximum value appears multiple times, so by switching these frequencies, it is possible to deflect the light to several points in space in terms of g number).

そこで、第3の実施例は、SAWの2次元伝搬を用いて
、広いSAW周波数帯域で高い偏向効率を得ることを目
的とした。ここで、SAWの2次元伝搬とは、SAW周
波数(波長)によりSAW伝殿伝聞方向なることを言う
Therefore, the third embodiment aims to obtain high deflection efficiency in a wide SAW frequency band by using two-dimensional SAW propagation. Here, the two-dimensional propagation of the SAW means that the SAW propagation direction changes depending on the SAW frequency (wavelength).

SAWを2次元伝搬させる方法は、すでに様々なものが
提案されているが、第3の実施例では第5図に示すよう
に曲線状の交差指形電極12を用いる。この交差指形電
極12は、電極間隔が連続的に変化することが特徴であ
り、電極に加えられる電力周波数に依存して電極の一部
が共振する。
Various methods for two-dimensional propagation of SAW have already been proposed, and in the third embodiment, curved interdigital electrodes 12 are used as shown in FIG. This interdigital electrode 12 is characterized in that the electrode interval changes continuously, and a part of the electrode resonates depending on the power frequency applied to the electrode.

したがって、その部分の法線方向に、加えられた周波数
を持ったSAWが伝搬する。
Therefore, the SAW with the added frequency propagates in the normal direction of that part.

さて、MI?Tで回折光量が増大するのは、第1の実施
例でも述べたように、SAWの領域を多数回光が通過す
るごとに回折光が生じ、それらが重ね合わせられるから
である。
Now, MI? The reason why the amount of diffracted light increases at T is that, as described in the first embodiment, diffracted light is generated each time the light passes through the SAW region many times, and these are superimposed.

しかし、この効果が生じるためには、各々の回折光がそ
の位相を揃えて重ね合わせられることが必要で、第4図
に示す第3の実施例で回折光量が極大値をとるSAW周
波数では、この条件が満たされている。
However, in order for this effect to occur, it is necessary that the respective diffracted lights are superimposed with their phases aligned, and at the SAW frequency where the amount of diffracted light takes a maximum value in the third embodiment shown in FIG. This condition is met.

また、つぎに回折光量が極大値をとる周波数との間の光
量が極小値をとる周波数では、各々の回折光が逆位相で
重ね合わせられている。
In addition, at the next frequency where the amount of diffracted light takes a maximum value and the frequency where the amount of light takes a minimum value, the respective diffracted lights are superimposed with opposite phases.

例えば、第1の実施例では回折光量が極小値をとるSA
W周波数でも回折光量を増大させるためには、各々の回
折光が同位相で重ね合わせられるように、回折光が基板
内でたどる光路を、第1の実施例の場合とは変える必要
がある。なぜなら各回折光の間の位相差は、回折光が基
板内でたどる光路長の差により決定されからである。
For example, in the first embodiment, SA where the amount of diffracted light takes a minimum value
In order to increase the amount of diffracted light even at the W frequency, it is necessary to change the optical path that the diffracted light follows within the substrate from that in the first embodiment so that each diffracted light is superimposed in the same phase. This is because the phase difference between each diffracted beam is determined by the difference in optical path length that the diffracted beams follow within the substrate.

回折光の生じる方向は、主軸光の波数ベクトルを/に。The direction in which the diffracted light is generated is the wave number vector of the principal axis light.

、±1次回折光の波数ベクトルを/に、SAWの波数ベ
クトルを/KsAwとして、 /に=/Ko±/Ksヶ、     ・−・−・−・−
・・−・・・・(3)で決定される。
, the wave number vector of ±1st-order diffracted light is /, the wave number vector of SAW is /KsAw, /to = /Ko±/Ks, ・−・−・−・−
・・・-・・・Determined by (3).

したがって、SAWの周波数に応じてSAWの波数ベク
トル、すなわちSAW伝殿伝聞方向上記(3)式で決ま
る方向に生じる各回折光が位相を揃えて重ね合わせられ
るように設定しておけば、広いSAW周波数帯域で高い
偏向効率が得られる。
Therefore, if the wave number vector of the SAW, that is, the SAW direction hearsay direction is set so that each diffracted light generated in the direction determined by the above equation (3) is superimposed with the same phase, a wide SAW High deflection efficiency can be obtained in the frequency band.

なお、本実施例により、偏向効率の広帯域化が図れるこ
との実証例として、第1の実施例で第3図の吸音材8を
塗布しない場合、圧電性基板2の端面から、交差指形電
極1から放射される5AW(これを130と呼ぶ)とは
非平行な方向に伝搬するSA!W(これを+Slと呼ぶ
)が30の反射により生じるが、このS、、S、は異な
る回折輝点に回折光を生じ、2つの回折光の光量は、異
なるSAWの周波数で極大値をとることが観測されてい
る。
In addition, as a demonstration example that the deflection efficiency can be increased over a wide band according to this embodiment, when the sound absorbing material 8 shown in FIG. 3 is not applied in the first embodiment, the interdigitated electrodes are SA! which propagates in a direction non-parallel to the 5AW (call this 130) emitted from 1! W (this is called +Sl) is generated by the reflection of 30, but this S,, S, generates diffracted light at different diffraction bright spots, and the light intensity of the two diffracted lights takes maximum values at different SAW frequencies. It has been observed that

〔発明の効果〕〔Effect of the invention〕

以上、述べたように、本発明では圧電性基板の表裏面に
、それぞれ光の反射層を設け、入射光をこの間に導き多
重反射をさせることで、光とSAWの相互作用回数を増
大させ、この結果、偏向光として使用する±1次回折先
光光量を大幅に増加させることが可能となった。
As described above, in the present invention, light reflecting layers are provided on each of the front and back surfaces of the piezoelectric substrate, and incident light is guided between the layers and subjected to multiple reflections, thereby increasing the number of interactions between light and the SAW. As a result, it has become possible to significantly increase the amount of ±1st-order diffracted light used as polarized light.

このため、入力電力を従来の素子の場合より小さくして
も、同等以上の偏向光量が得られることより、小さな駆
動電力で安定に偏向動作が可能で、かつ、偏向光量の大
きな実用的な多重反射型表面弾性波光回折素子が実現可
能となった。
Therefore, even if the input power is lower than that of conventional elements, the same or higher amount of deflected light can be obtained, making it possible to perform stable deflection operation with small driving power, and to use practical multiplexing with a large amount of deflected light. A reflective surface acoustic wave optical diffraction element has become possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1は電気信号の周波数rと圧電゛性基板のSAW伝搬
速度VおよびSAWの空間周期dの関係を示す、第2図
はSAWを位相格子として使用した場合における光の偏
向が行われる様子を示す、第3図は本発明に係る多重反
射型表面弾性波光回折素子の第1の実施例における構成
を示す、第4図は第3図に示す第1の実施例における回
折光量とSAW周波数の実験結果を示す、第5図は本発
明に係る多重反射型表面弾性波光回折素子の第3の実施
例の構成を示す。 図において、■は交差指形電極、2は圧電性基板、3は
レンズ、4は焦点面、5は第1の光反射層、6は第2の
光反射層、7は基板、8は吸音材、9は放熱器、10は
O次回先光、11は±1次回折光、12は曲線状の交差
指形電極をそれぞれ示す。 特許出願人     アンリッ株式会社代理人  弁理
士  小 池 龍 太 部第  1  図 l・・・交差指型電極 2・・・圧電性基板 d・・・交差指型電極の電極間隔 第4 FREQUENCY(Mllz) (a) FRヒOUヒNCY(Mllz) (b )              −−MIIl、
TIPLESINGl、lミ FREQUENCY(Mllz) (C) (C1)
The first shows the relationship between the frequency r of the electrical signal, the SAW propagation velocity V of the piezoelectric substrate, and the spatial period d of the SAW. Figure 2 shows how light is deflected when the SAW is used as a phase grating. 3 shows the configuration of the first embodiment of the multiple reflection type surface acoustic wave optical diffraction element according to the present invention. FIG. 4 shows the amount of diffracted light and the SAW frequency in the first embodiment shown in FIG. FIG. 5, which shows the experimental results, shows the structure of a third embodiment of the multiple reflection type surface acoustic wave optical diffraction element according to the present invention. In the figure, ■ is an interdigital electrode, 2 is a piezoelectric substrate, 3 is a lens, 4 is a focal plane, 5 is a first light reflective layer, 6 is a second light reflective layer, 7 is a substrate, and 8 is a sound absorbing layer. 9 is a radiator, 10 is an O-order first light, 11 is a ±1st-order diffracted light, and 12 is a curved interdigital electrode. Patent Applicant Anri Co., Ltd. Agent Patent Attorney Ryu Koike No. 1 Figure 1... Interdigital electrode 2... Piezoelectric substrate d... Electrode spacing of interdigital electrode No. 4 FREQUENCY (Mllz) (a) FRhiOUhiNCY(Mllz) (b) --MIIl,
TIPLESINGl,l FREQUENCY(Mllz) (C) (C1)

Claims (1)

【特許請求の範囲】[Claims] 光透過性を有する圧電性基板(2)と;該圧電性基板(
2)の第1の面に備えられた第1の光反射層(5)と;
前記圧電性基板(2)の表面に備えられ、その面に光回
折格子を形成する表面弾性波を発生させる少なくとも1
つの交差指形電極(1)と;前記圧電性基板(2)の第
2の面に備えられ、前記第1の光反射層(5)との間で
光の多重反射空間を形成する第2の光反射層(6)と;
前記交差指形電極(1)で発生し、前記圧電性基板(2
)の表面を伝搬してきた表面弾性波を吸収し、かつ、こ
れを熱に変換する吸音材(8)と;該吸音材(8)に密
接し、該吸音材(8)内に生じた熱を外気に放散するた
めの熱の良導体で成る放熱器(9)とから成る多重反射
型表面弾性波光回折素子。
a piezoelectric substrate (2) having optical transparency;
2) a first light reflecting layer (5) provided on the first surface;
At least one layer is provided on the surface of the piezoelectric substrate (2) and generates a surface acoustic wave forming an optical diffraction grating on the surface.
a second interdigital electrode (1) provided on the second surface of the piezoelectric substrate (2) and forming a multiple light reflection space between the first light reflection layer (5) and the first light reflection layer (5); a light reflecting layer (6);
generated at the interdigital electrode (1) and generated at the piezoelectric substrate (2).
) that absorbs surface acoustic waves propagating on the surface of the sound absorbing material (8) and converts it into heat; A multiple reflection type surface acoustic wave optical diffraction element comprising a radiator (9) made of a good heat conductor for dissipating the heat to the outside air.
JP30297187A 1987-11-30 1987-11-30 Multiple reflection type surface acoustic wave optical diffraction element Expired - Fee Related JP2553367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30297187A JP2553367B2 (en) 1987-11-30 1987-11-30 Multiple reflection type surface acoustic wave optical diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30297187A JP2553367B2 (en) 1987-11-30 1987-11-30 Multiple reflection type surface acoustic wave optical diffraction element

Publications (2)

Publication Number Publication Date
JPH01144024A true JPH01144024A (en) 1989-06-06
JP2553367B2 JP2553367B2 (en) 1996-11-13

Family

ID=17915368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30297187A Expired - Fee Related JP2553367B2 (en) 1987-11-30 1987-11-30 Multiple reflection type surface acoustic wave optical diffraction element

Country Status (1)

Country Link
JP (1) JP2553367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146628A1 (en) * 2007-05-24 2008-12-04 Olympus Corporation Agitating device, and automatic analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146628A1 (en) * 2007-05-24 2008-12-04 Olympus Corporation Agitating device, and automatic analysis device

Also Published As

Publication number Publication date
JP2553367B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US4346965A (en) Light modulator/deflector using acoustic surface waves
EP0015685B1 (en) Acousto-optical modulator
US7894125B2 (en) Acousto-optic devices
US3655261A (en) Deflection of electromagnetic beams from guides by acoustical surface waves
JPH03116028A (en) Optical acoustic element
JPH01144024A (en) Multiple reflection type surface acoustic wave optical diffraction element
JPS63235904A (en) Waveguide type grating element
JPS6148689B2 (en)
JP3633045B2 (en) Wavelength filter
JP2829411B2 (en) Surface acoustic wave high-speed optical deflection element
JPS6154207B2 (en)
JPS58125025A (en) Two-dimensional optical deflector
JPS6210411B2 (en)
JPS6343728B2 (en)
JPH01134432A (en) Two-dimensional variable deflecting and diffracting element
JPS6294831A (en) Light diffracting device utilizing surface acoustic wave
JP2844007B2 (en) Optical switch and method of deflecting monochromatic light beam using the same
JPS622293B2 (en)
JP3533714B2 (en) Acousto-optic device and method of adjusting polarization characteristics thereof
JPS60140325A (en) Surface acoustic wave acoustic optical device
JP2784038B2 (en) Orthogonal polarization type optical frequency shifter
JPS6212489B2 (en)
JPS58125024A (en) Two-dimensional optical deflector
JPS60133432A (en) Thin film type optical deflecting device
JPS6232458B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees