JPH01143916A - Automatic correction system for hall element unbalanced voltage of magnetic rotational angle sensor - Google Patents

Automatic correction system for hall element unbalanced voltage of magnetic rotational angle sensor

Info

Publication number
JPH01143916A
JPH01143916A JP30389787A JP30389787A JPH01143916A JP H01143916 A JPH01143916 A JP H01143916A JP 30389787 A JP30389787 A JP 30389787A JP 30389787 A JP30389787 A JP 30389787A JP H01143916 A JPH01143916 A JP H01143916A
Authority
JP
Japan
Prior art keywords
voltage
hall element
signal
waveform
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30389787A
Other languages
Japanese (ja)
Other versions
JPH065174B2 (en
Inventor
Yoshikazu Tatekawa
竪川 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62303897A priority Critical patent/JPH065174B2/en
Publication of JPH01143916A publication Critical patent/JPH01143916A/en
Publication of JPH065174B2 publication Critical patent/JPH065174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the accuracy of output waveform conversion for an angle of rotation by correcting the Hall element unbalanced voltage and variation in signal reference voltage automatically and using the voltage obtained by removing a sine wave signal component from an amplified signal voltage as a reference power source. CONSTITUTION:The output voltage (sine wave) of the Hall element 12 is amplified by an operational amplifier 13 and then inputted to a waveform converter 14 by DC coupling. The Hall element unbalanced voltage generated by this DC coupling and variation in the signal reference voltage due to the offset voltage of the amplifier 13 are detected and compared with a set DC reference voltage. Then a bias voltage applied to the amplifier 13 is corrected automatically and the reference potential of the output voltage is approximated to the set DC reference voltage. Further, the signal reference voltage obtained by removing the sine signal component from the signal voltage obtained by amplifying the waveform conversion reference voltage of a converter 14 is used as the reference power source. Thus, a phase shift at the time low-speed rotation of AC coupling and the problem that an output waveform setting time is required at the start are removed by the DC coupling between the amplifier 13 and converter 14 and the conversion accuracy of the waveform for the angle of rotation is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多極パーマネントマグネットロータとホール素
子を用いた磁気式回転角度センサにおけるホール素子不
平衡電圧自動補正方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Hall element unbalance voltage automatic correction system in a magnetic rotation angle sensor using a multipolar permanent magnet rotor and a Hall element.

〔従来技術〕[Prior art]

第4図は従来の内燃機関の磁気式回転角度センサのシス
テム構成例を示すブロック図である。同図において、1
1は多数極を有するパーマネントマグネットロータ、1
2はホール素子、13は演算増幅器、14は波形変換器
(コンパレータ)、15は出力部、16は第1の基準電
圧Vreflを発生する基準電圧源である。
FIG. 4 is a block diagram showing an example of a system configuration of a conventional magnetic rotation angle sensor for an internal combustion engine. In the same figure, 1
1 is a permanent magnet rotor having multiple poles, 1
2 is a Hall element, 13 is an operational amplifier, 14 is a waveform converter (comparator), 15 is an output section, and 16 is a reference voltage source that generates the first reference voltage Vrefl.

上記構成の磁気式回転角度センサにおいて、ホール素子
12に対してパーマネントマグネットロータ11による
回転磁界を印加し、ホール素子12からのホール出力を
増幅器13で増幅し、コンデンサCにより直流分をカッ
トして、回転信号分のみを波形変換器14に印加して、
正弦波を方形波に変換して出力部15から出力する。
In the magnetic rotation angle sensor configured as described above, a rotating magnetic field by the permanent magnet rotor 11 is applied to the Hall element 12, the Hall output from the Hall element 12 is amplified by the amplifier 13, and the DC component is cut by the capacitor C. , by applying only the rotation signal to the waveform converter 14,
The sine wave is converted into a square wave and outputted from the output section 15.

基準電圧源16からの基準電圧Vreflは、この回路
を単電源動作(正又は負のいずれか一方の単−極性の電
源で動作)とする場合の基準電位を電g電圧VCC約V
。C/3とするためのバイアス電源で、波形変換器14
の波形比較電圧ともなる。
The reference voltage Vrefl from the reference voltage source 16 is the reference potential when this circuit is operated with a single power supply (operated with a single-polarity power supply, either positive or negative).
. Bias power supply for C/3, waveform converter 14
It also serves as the waveform comparison voltage.

また、波形変換器14の抵抗Rは入力信号に対して直流
基準電圧を与えるためのバイアス抵抗である。
Further, the resistor R of the waveform converter 14 is a bias resistor for applying a DC reference voltage to the input signal.

第5図は上記磁気式回転角度センサ回路の各部の波形を
示す波形図であり、(1)はホール素子12の出力電圧
波形、り2)は高回転時の波形変換器14の入力波形と
出力部15の出力波形、(3)は低回転時の波形変換器
14の入力波形と出力部15の出力波形をそれぞれ示す
FIG. 5 is a waveform diagram showing the waveforms of each part of the magnetic rotation angle sensor circuit, where (1) is the output voltage waveform of the Hall element 12, and 2) is the input waveform of the waveform converter 14 at high rotation. The output waveform of the output section 15, (3) shows the input waveform of the waveform converter 14 and the output waveform of the output section 15 at low rotation, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記回路でパーマネントマグネットロータ
11が低速回転の場合には、時定数で−C−Rを信号周
期(波形変換器14の入力電圧信号の周期)に比較し、
十分に大きくしておかないと第5図(3)に示すように
移相ずれΔtが発生し、クランク軸角度がずれたごとき
状態となるという欠点がある。
However, in the above circuit, when the permanent magnet rotor 11 is rotating at a low speed, -CR is compared with the signal period (period of the input voltage signal of the waveform converter 14) with a time constant,
If it is not made sufficiently large, a phase shift deviation Δt will occur as shown in FIG. 5(3), resulting in a situation where the crankshaft angle is deviated.

また、始動時はコンデンサCの充電時間で=C・Rによ
り、波形変換器140入力信号の基準電位が変動し、出
力パルスの間隔が整列しないので、始動時の角度精度が
要求される場合は、この充電時間τをむやみに大きくす
ることはできないので、上記時定数τを十分大きくしな
ければならないという要望と相反するという欠点があっ
た。
Also, at the time of starting, the reference potential of the input signal of the waveform converter 140 fluctuates due to the charging time of the capacitor C = C R, and the intervals of the output pulses are not aligned, so if angular accuracy at the time of starting is required, Since this charging time τ cannot be increased unnecessarily, there is a drawback that this conflicts with the desire that the time constant τ must be sufficiently large.

本発明は上述の点に鑑みてなされたもので、上記従来の
ホール素子の出力信号を交流結合(C結合)として不平
衡電圧や増幅器のオフセット電圧による信号基準電位の
変動を除去する波形変換方式において、低速回転時の移
相ずれと始動時の出力波形整定時間を必要するという欠
点を除去し、回転角に対する出力波形変換精度の良い磁
気式回転角度センサにおけるホール素子不平衡電圧自動
補正方式を提供することにある。
The present invention has been made in view of the above points, and is a waveform conversion method in which the output signal of the conventional Hall element is AC-coupled (C-coupled) to remove fluctuations in the signal reference potential due to unbalanced voltage and offset voltage of the amplifier. , we have developed a Hall element unbalanced voltage automatic correction method in a magnetic rotation angle sensor that eliminates the drawbacks of phase shift during low-speed rotation and the need for output waveform settling time at startup, and has high accuracy in output waveform conversion with respect to rotation angle. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、多極パーマネント
マグネットロータとホール素子を用いた磁気式回転角度
センサにおいて、ホール素子の出力電圧(正弦波)を演
算増幅器を用いて増幅後、波形変換器に直流結合として
入力し、該直流結合にすることにより発生するホール素
子不平衡電圧と演算増幅器のオフセット電圧による信号
基準電圧の変動を検出して、設定直流基準電圧と比較し
、前記演算増幅器に印加するバイアス電圧を自動補正し
て、その出力電圧の基準電位を設定直流基q電圧に近似
させる回路と、波形変換器の波形変換基準電位を前記増
幅させた信号電圧から正弦波信号分を除去した信号基準
電圧を基準電源とする回路を設けたことを特徴とする。
In order to solve the above problems, the present invention provides a magnetic rotation angle sensor using a multipolar permanent magnet rotor and a Hall element, after amplifying the output voltage (sine wave) of the Hall element using an operational amplifier, is input as DC coupling to the signal reference voltage, and detects the fluctuation of the signal reference voltage due to the Hall element unbalanced voltage generated by the DC coupling and the offset voltage of the operational amplifier, compares it with the set DC reference voltage, and outputs the signal to the operational amplifier. A circuit that automatically corrects the applied bias voltage to approximate the reference potential of the output voltage to the set DC base q voltage, and a waveform conversion reference potential of the waveform converter that removes the sine wave signal from the amplified signal voltage. The present invention is characterized in that a circuit is provided that uses the signal reference voltage obtained as a reference power source.

〔作用〕[Effect]

上記の如く構成することにより、演算増幅器と波形変換
器の結合を直流結合とするから、上記従来の交流結合(
C結合)する方式の欠点である低速回転時の移相ずれと
始動時の出力波形整定時間を必要するという問題が除去
されると共に、直流結合方式で波形変換を行なう場合に
発生するホール素子の不平衡電圧と演算増幅器のオフセ
ット電圧による信号基準電位の変動を自動補正し、且つ
増幅された信号電圧から正弦波信号分を除去した信号基
準電圧とすることにより回転角度に対する出力波形の変
換精度を向上させることができる。
By configuring as described above, the operational amplifier and the waveform converter are coupled to each other by direct current coupling, so that the conventional alternating current coupling (
This eliminates the problems of the phase shift during low-speed rotation and the need for output waveform settling time at startup, which are disadvantages of the C-coupled method, and eliminates the problem of the Hall element that occurs when waveform conversion is performed using the DC coupling method. By automatically correcting fluctuations in the signal reference potential due to unbalanced voltage and operational amplifier offset voltage, and by removing the sine wave signal component from the amplified signal voltage to create a signal reference voltage, the conversion accuracy of the output waveform with respect to the rotation angle is improved. can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の磁気式回転角度センサのシ
ステム構成を示すブロック図、第2図はその各部の波形
図、第3図は第1図のブロック図を具体化した回路図で
ある。
Fig. 1 is a block diagram showing the system configuration of a magnetic rotation angle sensor according to an embodiment of the present invention, Fig. 2 is a waveform diagram of each part thereof, and Fig. 3 is a circuit diagram embodying the block diagram of Fig. 1. It is.

第1図及び第3図おいて、11はパーマネントマグネッ
トロータ、12はホール素子、13は演算増幅器、14
は波形変換器(コンパレータ)、15は出力部、16は
第1の基準電圧vreflを発生する基準電圧源、17
は緩衝増幅器、18は補正増幅器、R、Rs、 R+〜
R0は抵抗、C,C。
1 and 3, 11 is a permanent magnet rotor, 12 is a Hall element, 13 is an operational amplifier, and 14 is a permanent magnet rotor.
15 is a waveform converter (comparator); 15 is an output section; 16 is a reference voltage source that generates the first reference voltage vrefl; 17
is a buffer amplifier, 18 is a correction amplifier, R, Rs, R+~
R0 is resistance, C, C.

はコンデンサ、Q、は出力トランジスタである。is a capacitor, and Q is an output transistor.

第2図において、(1)はホール素子12の出力電圧波
形、(2)は演算増幅器13出力、即ち波形変換器14
の入力電圧波形、(3)は各部の基準電圧、即ち第1〜
第4の基準電圧Vrefl〜3の電圧レベノ呟(4)は
波形変換器14の出力波形をそれぞれ示す。
In FIG. 2, (1) is the output voltage waveform of the Hall element 12, and (2) is the output of the operational amplifier 13, that is, the waveform converter 14.
The input voltage waveform of (3) is the reference voltage of each part, that is, the first to
Voltage level values (4) of the fourth reference voltage Vrefl~3 indicate the output waveforms of the waveform converter 14, respectively.

第1図及び第3図の磁気式回転角度センサの動作を説明
するのに先立ち、先ず第6図に基づいてホール素子12
の不平衡電圧が増幅段出力で発生する原因を説明する。
Before explaining the operation of the magnetic rotation angle sensor shown in FIGS. 1 and 3, first, based on FIG.
The reason why an unbalanced voltage occurs at the output of the amplifier stage will be explained.

ホール素子12はその原理から各辺の抵抗値が等しいブ
リッジ抵抗と考えられ、第6図に示すような回路では、
出力端子間の直流電位と回転磁界による交番信号電圧を
分離して等価回路化すると第7図に示すようになる。
Based on its principle, the Hall element 12 can be considered as a bridge resistor with equal resistance values on each side, and in the circuit shown in FIG.
When the direct current potential between the output terminals and the alternating signal voltage due to the rotating magnetic field are separated and converted into an equivalent circuit, the result is shown in FIG.

ここで抵抗R,−R,,R,−R,とし、演算増幅器1
3の利得をA1とすると、 AI −R1/ R1−RA / R。
Here, the resistances are R, -R, ,R, -R, and the operational amplifier 1
If the gain of 3 is A1, then AI-R1/R1-RA/R.

であるから、演算増幅器13の出力電圧V。A4は、 VOAI ”−A1・e olHsinθ+Vref 
1+ ((1+AI)−(V、−V−) )     
 −・・−(1)ここで、−At・e、□sinθは交
番信号電圧項、Vreftは直流基準電位項、((1+
A1)−(V、−V−))はホール素子12の不平衡電
圧増幅分項、(Vや−V−)はホール素子12の不平衡
電圧項である。また、V、、V−は、それぞれ演算増幅
器13の十入力端子の電圧、−入力端子の電圧である。
Therefore, the output voltage V of the operational amplifier 13. A4 is VOAI''-A1・eolHsinθ+Vref
1+ ((1+AI)-(V,-V-))
−・・−(1) Here, −At・e, □sinθ is the alternating signal voltage term, Vreft is the DC reference potential term, ((1+
A1)-(V, -V-)) is an unbalanced voltage amplification component term of the Hall element 12, and (V or -V-) is an unbalanced voltage term of the Hall element 12. Further, V, and V- are the voltage at the ten input terminal and the voltage at the - input terminal of the operational amplifier 13, respectively.

上記(1)式において、(V、−V−)−±Vuとする
と、 VOAI =−AI’ e out!3inθ+(Vr
efl+(±Vu)+(Al・±Vu))      
       ・・・・(2)となる。ここで−A1・
e、□sinθは交番電圧項、(Vrefl+(土V 
u ) + (A1・±Vu))は直流基準電位項とな
り、この直流基準電位の項が交番電圧の項の基準電位と
なり、ホール素子12の不平衡電圧Vuにより変動する
事になる。第8図はその波形を示す波形図であり、同図
(1)は(2)式の直流基準電位変動分が−Vuの時、
同図(2)は(2)式の直流基準電位変動分が+Vuの
時をそれぞれ示す。
In the above equation (1), if (V, -V-) -±Vu, VOAI = -AI' e out! 3inθ+(Vr
efl+(±Vu)+(Al・±Vu))
...(2). Here -A1・
e, □sinθ is the alternating voltage term, (Vrefl+(SatV
u ) + (A1·±Vu)) becomes a DC reference potential term, and this DC reference potential term serves as a reference potential for the alternating voltage term, which varies depending on the unbalanced voltage Vu of the Hall element 12. FIG. 8 is a waveform diagram showing the waveform, and (1) in the same figure shows that when the DC reference potential fluctuation in equation (2) is -Vu,
(2) in the same figure shows the case where the DC reference potential variation in equation (2) is +Vu.

次に、本発明の実施例である第1図の磁気式回転角度セ
ンサの動作を説明する。演算増幅器13に与える直流電
位は補正増幅器18の出力電圧VOA t = v r
ef3 (第3の基準電圧)となっているから、演算増
幅器13の出力電圧V。AIは上記(2)式と同様に VOAI =−A1・e oH!1sinθ+(Vre
f3+(±■u)+(A1・±Vu))       
     ・・・・(3)となる。ここでA1・e o
M、1sinθは交番電圧項、(Vref3+ (±V
 u )+(Al・±Vu))は直流基準電位項である
Next, the operation of the magnetic rotation angle sensor shown in FIG. 1, which is an embodiment of the present invention, will be explained. The DC potential applied to the operational amplifier 13 is the output voltage of the correction amplifier 18 VOA t = v r
Since it is ef3 (third reference voltage), the output voltage V of the operational amplifier 13. AI is similar to equation (2) above, VOAI = -A1・e oH! 1 sin θ+(Vre
f3+(±■u)+(A1・±Vu))
...(3). Here A1・e o
M, 1 sin θ is the alternating voltage term, (Vref3+ (±V
u)+(Al·±Vu)) is a DC reference potential term.

一方、緩衝増幅器17の入力信号■゛。1は演算増幅器
13の出力電圧V。AIから抵抗R8とコンデンサC8
からなる信号フィルタによって交番信号電圧成分がほぼ
除去された直流電圧であり、その出力をVref2(第
2の基準電圧)とすれば、Vref2は(3)式の直流
電圧項(Vref3+ (±V u )+(Al・±V
u))であるので、 Vref2= Vref3+(±Vu)+(At−±V
u)       −・<4)となる。
On the other hand, the input signal of the buffer amplifier 17 is ■゛. 1 is the output voltage V of the operational amplifier 13. From AI to resistor R8 and capacitor C8
It is a DC voltage from which the alternating signal voltage component is almost removed by a signal filter consisting of )+(Al・±V
u)), so Vref2=Vref3+(±Vu)+(At-±V
u) −・<4).

また、補正増幅器1Bは、直流基準電圧を第1の基準電
圧Vreflとする反転増幅器として動作するから、抵
抗RI3=R14とするとその利得A2は、A2= R
Is/ R14である。補正増幅器18の出力電圧V。
Furthermore, since the correction amplifier 1B operates as an inverting amplifier that uses the DC reference voltage as the first reference voltage Vrefl, if the resistor RI3=R14, its gain A2 is A2=R
Is/R14. Output voltage V of correction amplifier 18.

A!は voA!=−A2・(■。−V−)+Vrefl=Vr
ef3    ・・・・(5)となる。なお、V、、V
−は、それぞれ補正増幅器18の十入力端子の電圧、−
入力端子の電圧である。ここで、(vや一■−)=±V
dを補正電圧とすると、この補正電圧±Vdは、 ±vd=vref1−■ref2・・・・(6)となり
、上記り5)式と<6)式とから、補正増幅器18の出
力である第3の基準電圧Vref3は、Vref3−−
A2・(+Vd)+Vrefl       ・・・・
(7)ここで−A2・(±Vd)は直流基準電圧項であ
る。
A! is voA! =-A2・(■.-V-)+Vrefl=Vr
ef3...(5). In addition, V,,V
- are the voltages at the ten input terminals of the correction amplifier 18, -
This is the voltage at the input terminal. Here, (v and -) = ±V
If d is the correction voltage, this correction voltage ±Vd is ±vd=vref1−■ref2 (6), and from the above equations 5) and <6), it is the output of the correction amplifier 18. The third reference voltage Vref3 is Vref3--
A2・(+Vd)+Vrefl...
(7) Here, -A2·(±Vd) is a DC reference voltage term.

上記(7)を式(3)式に代入し、 VoA+=−A1・e o)1wsinθ+(−(A2
・(±Vd)+Vrefl )+(±Vu)+(AI・
±Vu)) =−Al −e o、、sinθ+Vrefl+(±V
u)+(AI ・±Vu)−(A2・±Vd)    
      ・・・・(8)(8)式においてA1・e
 onasinθは交番信号電圧項、Vrefl+(±
Vu)は直流基準電圧項、(AI−±Vu)−(A2・
±Vd)は補正項である。上記(8)式において、補正
項(At・±Vu) −(A2・±Vd)が零となれば
、直流基準電圧項Vrefl+(±Vu)の変動は、ホ
ール素子12の不平衡電圧分のみとなり、本発明の目的
が達せられる。
Substituting the above (7) into the equation (3), VoA+=-A1・e o)1wsinθ+(-(A2
・(±Vd)+Vrefl)+(±Vu)+(AI・
±Vu)) =-Al-e o,, sinθ+Vrefl+(±V
u)+(AI・±Vu)−(A2・±Vd)
...(8) In formula (8), A1・e
onasinθ is the alternating signal voltage term, Vrefl+(±
Vu) is the DC reference voltage term, (AI-±Vu)-(A2・
±Vd) is a correction term. In the above equation (8), if the correction term (At·±Vu) −(A2·±Vd) becomes zero, the fluctuation in the DC reference voltage term Vrefl+(±Vu) is only due to the unbalanced voltage of the Hall element 12. Therefore, the object of the present invention can be achieved.

次に補正項(A1・±Vu)−(A2−±Vd)が零と
なる事について説明する。
Next, the fact that the correction term (A1·±Vu)−(A2−±Vd) becomes zero will be explained.

上記(6)式のV d = Vrefl −Vref2
に(4)式を代入すると、 Vd= Vrefl−(Vref3+(±Vu)+(A
t−±Vu) )・(6)’(6)′式により、 Vref3= Vrefl−(±Vu)−(At−±V
u)となるから、り7)式により、 −A2−(±Vd)+Vrefl=Vrefl−(±V
u)−(Al−±Vu)−A2・(f Vd)=−(±
Vu)−(Al ・±Vu)ここで演算増幅器13の利
得A1と補正増幅器18の利得A2を等しくすれば、 −AI ・(±Vd)=−(士Vu)−(At±Vu)
±Vd= (−(fVu)−(A1・±Vu) ) /
−At−(±Vu)/A1+(±Vu)) Φ±Vu             ・・・・(9)よ
って、上記(8)式の補正項(AI・±Vu)−(A2
・±Vd)は AI・(±Vu)−(A2・±Vd)−Al・(±Vu
)−(Al ・±Vu)±0 となり、本発明は達成される。
V d in the above equation (6) = Vrefl −Vref2
Substituting equation (4) into , Vd=Vrefl-(Vref3+(±Vu)+(A
t-±Vu))・(6)'(6)' By formula, Vref3= Vrefl-(±Vu)-(At-±V
u), so by equation 7), -A2-(±Vd)+Vrefl=Vrefl-(±V
u)-(Al-±Vu)-A2・(f Vd)=-(±
Vu) - (Al ・±Vu) Here, if the gain A1 of the operational amplifier 13 and the gain A2 of the correction amplifier 18 are made equal, -AI ・(±Vd) = -(Vu) - (At±Vu)
±Vd= (-(fVu)-(A1・±Vu)) /
-At-(±Vu)/A1+(±Vu)) Φ±Vu...(9) Therefore, the correction term (AI・±Vu)-(A2) in the above equation (8)
・±Vd) is AI・(±Vu)−(A2・±Vd)−Al・(±Vu
)−(Al·±Vu)±0, and the present invention is achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ホール素子の出力
を増幅した後、直流結合方式では波形変換を行なう場合
に発生するホール素子不平衡電圧と増幅器のオフセット
電圧による信号基準電位の変動を自動補正し、且つ増幅
された信号電圧から正弦波信号分を除去した信号基準電
圧を波形変換器の基準電源とすることにより、回転角に
対する出力波形変換精度が向上するという優れた効果が
得られる。また、単電源動作演算増幅器で構成した回路
であり、コストの低減がはかれ、車載用クランク角セン
サとしての応用の他に回転軸を持つ全ての機器の回転角
センサとして応用することができるという優れた効果が
得られる。
As explained above, according to the present invention, after amplifying the output of the Hall element, fluctuations in the signal reference potential due to the Hall element unbalanced voltage and the offset voltage of the amplifier, which occur when performing waveform conversion in the DC coupling method, are automatically corrected. By using the signal reference voltage obtained by removing the sine wave signal from the corrected and amplified signal voltage as the reference power source of the waveform converter, an excellent effect of improving the output waveform conversion accuracy with respect to the rotation angle can be obtained. In addition, the circuit is composed of a single-power-operated operational amplifier, which reduces costs and can be used not only as an on-vehicle crank angle sensor, but also as a rotation angle sensor for all devices that have a rotating shaft. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気式回転角度センサにおけるホ
ール素子不平衡電圧自動補正回路を示すブロック図、第
2図は第1図のホール素子不平衡電圧自動補正回路の動
作を説明するための各部の電圧波形図、第3図は第1図
のホール素子不平衡電圧自動補正回路を具体化した回路
図、第4図は従来の内燃機関の磁気式回転角度センサの
システム構成例を示すブロック図、第5図は第4図の磁
気式回転角度センサ動作を説明するための各部の電圧波
形図、第6図は第4図のホール素子12と演算増幅器1
3の回路図、第7図は第6図の等価回−シ第8図は第7
図の各部の波形図である。 図中、11・・・・パーマネントマグネットロータ、1
2・・・・ホール素子、13・・・・演算増幅器、14
・・・・波形変換器、15・・・・出力部、16・・・
・基準電圧源、17・・・・緩衝増幅器、18・・・・
補正増幅器。 本111月I:係5基&λ人律両乞ンブI:り・すろネ
ール系4づF壬頂1四ヒi自むイ冷tll冷7゛0プフ
uO第1図 /l・ l?−マλントマフ゛ネン)O−フ72に、−
ル[+ /3°涜工創椙 /4゛5創at橡茎 /7’  affイ4−dl! /6 補正)11 うヘ ヘ               )
FIG. 1 is a block diagram showing a Hall element unbalanced voltage automatic correction circuit in a magnetic rotation angle sensor according to the present invention, and FIG. 2 is a block diagram showing the operation of the Hall element unbalanced voltage automatic correction circuit of FIG. 1. Voltage waveform diagrams of various parts, Figure 3 is a circuit diagram embodying the Hall element unbalanced voltage automatic correction circuit of Figure 1, Figure 4 is a block diagram showing an example of the system configuration of a conventional magnetic rotation angle sensor for an internal combustion engine. Figure 5 is a voltage waveform diagram of each part to explain the operation of the magnetic rotation angle sensor in Figure 4, and Figure 6 is a diagram of the Hall element 12 and operational amplifier 1 in Figure 4.
3, and Figure 7 is the equivalent circuit of Figure 6. Figure 8 is the equivalent circuit of Figure 7.
It is a waveform chart of each part of a figure. In the figure, 11...Permanent magnet rotor, 1
2... Hall element, 13... operational amplifier, 14
... Waveform converter, 15... Output section, 16...
・Reference voltage source, 17...Buffer amplifier, 18...
correction amplifier. Book 11 November I: 5 group & λ human law both beggar I: ri・suronail system 4zuF jincho 14hi i own cold tll cold 7゛0pfu uO Figure 1/l・l? -Manual management) O-fu 72,-
LE [+ /3° sacrilege / 4゛5 sore at rhizome / 7' affi4-dl! /6 correction) 11 hehehe)

Claims (1)

【特許請求の範囲】 複数以上の極を持ったパーマネントマグネットロータと
ホール素子を具備する磁気式回転角度センサにおいて、 前記ホール素子の出力電圧を演算増幅器で直流増幅する
際に発生するホール素子不平衡電圧による基準電圧の変
動を検出して設定直流電圧と比較し、前記演算増幅器の
バイアス電圧を自動補正し、その出力基準電位に保つ回
路を設け、前記増幅された信号電圧から正弦波信号分を
除去した信号基準電圧を波形変換器の基準電源とする回
路とを設けたことを特徴とする磁気式回転角度センサに
おけるホール素子不平衡電圧自動補正方式。
[Claims] In a magnetic rotation angle sensor that includes a permanent magnet rotor with a plurality of poles or more and a Hall element, Hall element imbalance occurs when the output voltage of the Hall element is DC amplified by an operational amplifier. A circuit is provided to detect fluctuations in the reference voltage due to voltage and compare it with a set DC voltage, automatically correct the bias voltage of the operational amplifier, and maintain the output reference potential, and extract the sine wave signal from the amplified signal voltage. 1. A Hall element unbalanced voltage automatic correction system in a magnetic rotation angle sensor, comprising a circuit that uses the removed signal reference voltage as a reference power source for a waveform converter.
JP62303897A 1987-11-30 1987-11-30 Hall element unbalance voltage automatic correction method in magnetic type rotation angle sensor Expired - Lifetime JPH065174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303897A JPH065174B2 (en) 1987-11-30 1987-11-30 Hall element unbalance voltage automatic correction method in magnetic type rotation angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303897A JPH065174B2 (en) 1987-11-30 1987-11-30 Hall element unbalance voltage automatic correction method in magnetic type rotation angle sensor

Publications (2)

Publication Number Publication Date
JPH01143916A true JPH01143916A (en) 1989-06-06
JPH065174B2 JPH065174B2 (en) 1994-01-19

Family

ID=17926580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303897A Expired - Lifetime JPH065174B2 (en) 1987-11-30 1987-11-30 Hall element unbalance voltage automatic correction method in magnetic type rotation angle sensor

Country Status (1)

Country Link
JP (1) JPH065174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19701262C2 (en) * 1996-01-17 2001-09-27 Allegro Microsystems Inc Method for recognizing the approach of passing magnetic articles
JP2018013120A (en) * 2016-07-07 2018-01-25 弘 牧田 Engine ignition signal generation device with hall element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968601A (en) * 1982-10-14 1984-04-18 Nippon Denso Co Ltd Rotation angle detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968601A (en) * 1982-10-14 1984-04-18 Nippon Denso Co Ltd Rotation angle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19701262C2 (en) * 1996-01-17 2001-09-27 Allegro Microsystems Inc Method for recognizing the approach of passing magnetic articles
JP2018013120A (en) * 2016-07-07 2018-01-25 弘 牧田 Engine ignition signal generation device with hall element

Also Published As

Publication number Publication date
JPH065174B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP3414893B2 (en) Rotational position detector
HU206571B (en) Converter circuit for converting sinusoidal ac voltage signal superimposed on dc offset voltage into square-wave voltage
EP2674725B1 (en) Rotation angle detecting device
JPS58105625A (en) Multiplexed analog-to-digital converter
JPH01143916A (en) Automatic correction system for hall element unbalanced voltage of magnetic rotational angle sensor
JPH05505074A (en) signal conditioning circuit
JPH0138485Y2 (en)
JP3408238B2 (en) Resolver / digital converter and conversion method
JP4355254B2 (en) Knocking detection device for internal combustion engine
JP2938472B2 (en) Rotation angle detector
JPH0622166Y2 (en) Resolver type position detector
JPH078770U (en) Differential coil type rotation detector
RU2093842C1 (en) Ac-to-dc measuring transducer (design forms)
JPS6349723Y2 (en)
JPS62129718A (en) Temperature compensated resolver type clinometer
SU565204A1 (en) Device for measuring torsional moment on rolling shafts
JPS6213436Y2 (en)
JPH07946Y2 (en) AC voltmeter
JPH09222433A (en) Revolution speed detection device for dc motor with brush
JPH07104178B2 (en) Rotation angle detector
JPH0441530B2 (en)
JPS6035271A (en) Rotational speed measuring apparatus
JPS60130215A (en) Highly stable switch circuit using hall element
JP2004239689A (en) Deviation angle detecting apparatus
JPH0311987A (en) Detection method of rotating position of motor