JPH01143196A - Ignition method for high-frequency plasma reaction device using metal specimen and gas blowout part - Google Patents

Ignition method for high-frequency plasma reaction device using metal specimen and gas blowout part

Info

Publication number
JPH01143196A
JPH01143196A JP62299028A JP29902887A JPH01143196A JP H01143196 A JPH01143196 A JP H01143196A JP 62299028 A JP62299028 A JP 62299028A JP 29902887 A JP29902887 A JP 29902887A JP H01143196 A JPH01143196 A JP H01143196A
Authority
JP
Japan
Prior art keywords
metal
gas
blowout part
ignition
plasma flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62299028A
Other languages
Japanese (ja)
Other versions
JPH0693396B2 (en
Inventor
Shiro Imai
今井 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP62299028A priority Critical patent/JPH0693396B2/en
Publication of JPH01143196A publication Critical patent/JPH01143196A/en
Publication of JPH0693396B2 publication Critical patent/JPH0693396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To enable the easy generation of a plasma flame by making a blowout part of metal, isolating the blowout part from a double silica pipe for applying a high-frequency magnetic field from the outside, applying the output voltage of an impulse waveform power source to the metal blowout part and generating a glow discharge in a furnace via ignition gases. CONSTITUTION:A gas blowout part 1 of metal is isolated from a double silica pipe for applying externally a high frequency magnetic field with an insulator 17, and while ignition gases are being filled from the blowout part 1, an output high voltage impulse wave such as from a Tesla coil 18 is applied thereto. Then, a faint glow discharge takes place in gases toward a high-frequency coil 5, thereby generating a fire source and letting a plasma flame 6 grow due to the applied high frequency magnetic field. According to the aforesaid construction, it is possible to generate a stable plasma flame of sufficient strength.

Description

【発明の詳細な説明】 イ、発明の目的 〔産業上の利用分野〕 本発明は、反応試料噴出部をプラズマφフレーム中に挿
入した高周波プラズマ反応装置の点火方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to an ignition method for a high-frequency plasma reactor in which a reaction sample jetting part is inserted into a plasma φ flame.

〔従来の技術〕[Conventional technology]

通常の高周波プラズマ反応装置においては、試 ′料お
よびガス噴出部を石英ガラス等の絶縁物で製作すること
が多いので、その外部にテスラコイル等を配置し、外部
より衝撃高周波電圧を印加することによって、無電極点
火を行ない、純度の高い反応生成物が得られている(例
 特開昭82−88700号・特願昭81−30588
2号等)。
In ordinary high-frequency plasma reactors, the sample and gas ejection part are often made of an insulating material such as quartz glass. , electrodeless ignition is performed to obtain highly pure reaction products (e.g., JP-A-82-88700, Patent Application JP-A-81-30588).
No. 2, etc.).

然るに、周囲にガスの回転層流を生じさせた反応試料噴
出部をプラズマeフレーム中に挿入することによって効
率良く反応生成物を作成する特願昭131−20227
7号等のように、ガスおよび試料噴出部の構造を微細精
密に製作する必要のある場合には、これらを金属で構成
することが多い、この場合には、外部にテスラコイルを
配置しても、金属で遮蔽されるために、内部に衝撃波電
圧を与えられず、この方法では点火できない、従って従
来は、減圧点火法か接地棒点火法などが採用された。
However, Japanese Patent Application No. 131-20227 proposes to efficiently create a reaction product by inserting a reaction sample jetting part that generates a rotating laminar flow of gas around it into a plasma e-frame.
When the structure of the gas and sample ejection parts needs to be manufactured with fine precision, such as No. 7, these are often constructed of metal. Since it is shielded by metal, a shock wave voltage cannot be applied to the inside, and ignition cannot be done using this method.Therefore, in the past, methods such as reduced pressure ignition or ground rod ignition were used.

前者の場合はプラズマを発生させる炉内部を0.57O
RR程度に減圧し、外部より高周波″M、磁界を印加し
て、高周波グロー放電を発生させ、その掻除々に高周波
電力を増大させながら、キャリヤガスを流し、常圧プラ
ズマに移行させている。
In the former case, the temperature inside the furnace that generates plasma is 0.57O.
The pressure is reduced to about RR, and a high frequency "M" and a magnetic field are applied from the outside to generate a high frequency glow discharge, and while the high frequency power is gradually increased, a carrier gas is caused to flow and transition to normal pressure plasma.

また、接地棒点火方式は、炉内部に接地棒を入れ、外部
より高周波電磁界を加えると、接地棒先端よりコロナ放
電が発生し、プラズマ点火が行われる。
In addition, in the ground rod ignition method, when a ground rod is placed inside the furnace and a high-frequency electromagnetic field is applied from the outside, corona discharge is generated from the tip of the ground rod and plasma ignition is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

減圧点火方式の欠点は、まずグロー放電の状態から常圧
プラズマに移行させる際の高周波電力の増大速度とキャ
リヤガスの流入量増加速度の調整が微妙でむずかしいこ
とと、実験用の小形炉でさえも2分以上と長時間を要す
ることである。またこの場合減圧にも時間が掛り、点火
失敗も多く、再点火作業のために減圧から始める必要が
あって、ガスの使用量も無視できない。
The disadvantage of the reduced pressure ignition method is that it is delicate and difficult to adjust the rate of increase in the high frequency power and the rate of increase in the amount of carrier gas when transitioning from the glow discharge state to normal pressure plasma, and even in small experimental reactors. It also takes a long time, more than 2 minutes. Further, in this case, it takes time to reduce the pressure, there are many ignition failures, it is necessary to start from a reduced pressure for re-ignition work, and the amount of gas used cannot be ignored.

また接地棒点火方式では、放電によって接地棒の先端が
溶融するために、生成物に不純物が含まれてしまう、ま
たプラズマ点火後に接地棒をプラズマ炎の外部へ取り出
す構造が複雑な機構を必要とする。
In addition, with the ground rod ignition method, the tip of the ground rod melts due to the discharge, resulting in impurities being included in the product, and a complicated mechanism is required to take the ground rod out of the plasma flame after plasma ignition. do.

従って、特願昭81−202277号の如く、試料およ
びガスの噴出部を金属材料で作り、工業的に不純物混入
のない生成物を効率良く生成させるためには、減圧法や
接地棒法によらないプラズマ点火法が必要になってくる
Therefore, as in Japanese Patent Application No. 81-202277, in order to make the sample and the gas ejection part from metal materials and to efficiently produce products without contaminating impurities industrially, it is necessary to use the depressurization method or the ground rod method. A new plasma ignition method will be required.

本発明はこの目的に添う点火法である。The present invention is an ignition method for this purpose.

口、発明の構成 〔問題点を解決するための手段〕 本発明は、反応試料およびガス噴出部lを使用する高周
波プラズマ反応装置において、金属製とした該噴出部1
と、外部より高周波電磁場を印加する二重石英管2とを
絶縁物17で絶縁し、衝撃波形電源18の出力電圧を該
金属噴出部1に印加して1点火用ガスを通して炉内にグ
ロー放電を生じさせ、高周波電磁場によるプラズマ反応
を惹起させる金属製の試料およびガス噴出部を使用する
高周波プラズマ反応装置の点火方法である。
Summary: Structure of the Invention [Means for Solving Problems] The present invention provides a high-frequency plasma reaction apparatus that uses a reaction sample and a gas jetting section 1, in which the jetting section 1 is made of metal.
and a double quartz tube 2 to which a high-frequency electromagnetic field is applied from the outside are insulated with an insulator 17, and the output voltage of a shock waveform power source 18 is applied to the metal ejection part 1 to cause a glow discharge in the furnace through an ignition gas. This is an ignition method for a high-frequency plasma reactor that uses a metal sample and a gas jetting part to cause a plasma reaction by a high-frequency electromagnetic field.

〔作 用〕[For production]

噴出部1から点火用ガスを注入し乍ら二重石英管2と絶
縁された金属製噴出部1にテスラコイル18などの出力
高電圧衝撃波を印加すると、ガス内部で、高周波コイル
5に向って微弱なグロー放電が起り、これが種火となっ
て、高周波電磁場によってプラズマ炎6を成長する。こ
こで、反応試料を含む作動ガスを噴出部1に注入すれば
不純物を含まないプラズマ反応処理ができる。
When ignition gas is injected from the ejection part 1 and a high voltage shock wave output from a Tesla coil 18 is applied to the metal ejection part 1 insulated from the double quartz tube 2, a weak shock wave is generated inside the gas toward the high frequency coil 5. A glow discharge occurs, and this serves as a pilot flame to grow a plasma flame 6 by means of a high-frequency electromagnetic field. Here, if a working gas containing a reaction sample is injected into the ejection part 1, plasma reaction processing that does not contain impurities can be performed.

〔実施例〕〔Example〕

図は特願昭81−202277号発明に本発明を実施し
た例を示すものである0図中1は反応試料噴出部で、こ
の周囲は二重石英管2で囲まれており、石英管内部は注
入口14から出口15に流れる水3で冷却される6発生
するプラズマ・フレーム6が石英管壁に接触するのを防
ぐため、冷却ガスを注入ロアから入れ、噴出口16から
噴出させて回転層流8を石英管内に生じさせている。
The figure shows an example of implementing the present invention according to the invention of Japanese Patent Application No. 81-202277. In the figure, 1 is a reaction sample spouting part, which is surrounded by a double quartz tube 2, and inside the quartz tube. is cooled by water 3 flowing from the inlet 14 to the outlet 15 6 In order to prevent the generated plasma flame 6 from contacting the quartz tube wall, cooling gas is introduced from the injection lower and spouted from the outlet 16 to rotate. A laminar flow 8 is generated within the quartz tube.

反応試料噴出部1は、反応部の上面13より深く挿入さ
れており、必要に応じて、その挿入深さは調整可能にな
っている。そして試料の飛散を防ぐために、噴出部1の
外周を、注入口9から入るガスの回転層流10で包んで
おり、噴出部lの冷却のためには、注入口11から、冷
却水を入れ、二重構造の内部を通って、出口12に流し
ている。
The reaction sample spouting section 1 is inserted deeper than the upper surface 13 of the reaction section, and the insertion depth can be adjusted as necessary. In order to prevent the sample from scattering, the outer periphery of the jetting part 1 is surrounded by a rotating laminar flow 10 of gas that enters from the injection port 9. In order to cool the jetting part 1, cooling water is introduced from the injection port 11. , through the interior of the double structure to the outlet 12.

このようにガス噴出部は、複雑で回転層流8および10
を強く発生させるために各冷却ガスの噴出口の噴出角度
および個数が精密に作られるから、噴出郡全体は金属で
作られている。そのため、二重石英管2と絶縁する必要
と、構造上の問題とから、絶縁板17を介して二重石英
管に取り付けられている。ti撃波電源のテスラコイル
18の出力電圧は、金属製の噴出部に印加される。
In this way, the gas ejection part is complicated and the rotating laminar flow 8 and 10
In order to generate a strong amount of gas, the ejection angle and number of each cooling gas ejection port are precisely made, so the entire ejection group is made of metal. Therefore, due to the need for insulation from the double quartz tube 2 and structural problems, it is attached to the double quartz tube via an insulating plate 17. The output voltage of the Tesla coil 18 of the TI bombardment power source is applied to the metal ejection part.

点火の際には、まず石英管外周の高周波コイル5に高周
波電流を流し弱い高周波電磁場を印加している状態で、
アルゴンなどの点火用ガスを反応試料噴出部1の注入口
4から注入し、テスラコイルから衝撃波高電圧を金属製
噴出部に印加する。
When igniting, first, a high-frequency current is passed through the high-frequency coil 5 on the outer periphery of the quartz tube, and a weak high-frequency electromagnetic field is applied.
Ignition gas such as argon is injected from the injection port 4 of the reaction sample jetting part 1, and a shock wave high voltage is applied to the metal jetting part from the Tesla coil.

この時、高周波コイルに向って、ガス中に弱いグロー放
電が起り、引き続き、弱いプラズマ炎に変化する。
At this time, a weak glow discharge occurs in the gas toward the high-frequency coil, which subsequently transforms into a weak plasma flame.

ここで注入ロアおよび9から、回転層流を生じさせる点
火用の同種のガスを注入し、流量を増加しつつ、高周波
電流も徐々に増大し、安定で十分な強度を持つプラズマ
炎を発生させる。
Here, the same type of gas for ignition is injected from the injection lower and 9 to generate a rotating laminar flow, and while increasing the flow rate, the high frequency current is also gradually increased to generate a stable and sufficiently strong plasma flame. .

プラズマ炎が安定になったところで、注入口4から注入
するガスを、反応試料を含んだガスに置換する。このと
き、このガスが点火用と異なる場合には、同時に回転層
流を生じさせるガスも同種のものに置換する。
When the plasma flame becomes stable, the gas injected from the injection port 4 is replaced with a gas containing the reaction sample. At this time, if this gas is different from that used for ignition, the gas that generates the rotating laminar flow is also replaced with the same type of gas at the same time.

ハ、発明の効果 本発明の点火方法は、常圧のままでプラズマ炎を生成さ
せるために、減圧点火法の如く、炉内を減圧する必要が
なく、グロー放電状態からプラズマ炎発生への処置が容
易であり、減圧点火法の欠点が除去できる。また接地棒
点火法の如く、生成物に不純物の混入することがなく、
金属製ガス噴出部を使用する特願昭81−202277
号などの点火方法としては最適であり、先行発明の特色
を十分に発揮させることができた。
C. Effects of the Invention The ignition method of the present invention generates a plasma flame under normal pressure, so unlike the reduced pressure ignition method, there is no need to reduce the pressure inside the furnace, and it is possible to change the plasma flame generation from a glow discharge state. is easy, and the drawbacks of the reduced pressure ignition method can be eliminated. In addition, unlike the ground rod ignition method, there is no contamination of the product with impurities.
Patent application 1981-202277 using a metal gas ejection part
This is the most suitable method for igniting cars such as No. 1, and the features of the prior invention can be fully demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す縦断面図である。 ■は反応試料噴出部、2は二重石英管、3は石英管冷却
用水、4はガスおよび反応試料注入口、5は高周波コイ
ル、6はプラズマ炎、7は石英管壁冷却ガス注入口、8
はこれによる回転層流、9は反応試料の噴出部冷却用ガ
ス注入口、1oはこれによる回転層流、11と14は冷
却水注入口、12と15は同取出口、13は反応部上面
、16は回転層8を生じるガス噴出口、17は絶縁板、
18は衝撃波形電源。
The figure is a longitudinal sectional view showing an embodiment of the present invention. (2) is a reaction sample ejection part, 2 is a double quartz tube, 3 is quartz tube cooling water, 4 is a gas and reaction sample inlet, 5 is a high frequency coil, 6 is a plasma flame, 7 is a quartz tube wall cooling gas inlet, 8
9 is the rotating laminar flow caused by this, 9 is the gas inlet for cooling the reaction sample jetting part, 1o is the rotating laminar flow caused by this, 11 and 14 are the cooling water inlets, 12 and 15 are the same outlet, 13 is the top surface of the reaction part , 16 is a gas outlet for generating the rotating layer 8, 17 is an insulating plate,
18 is a shock waveform power source.

Claims (1)

【特許請求の範囲】 1、反応試料およびガス噴出部を使用する高周波プラズ
マ反応装置において、 該噴出部を金属製とし、これと外部より高周波電磁場を
印加する二重石英管とを絶縁し、衝撃波形電源の出力電
圧を該金属噴出部に印加して、点火用ガスを通して炉内
にグロー放電を生じさせ、高周波電磁場によるプラズマ
反応を惹起させる金属製の試料およびガス噴出部を使用
する高周波プラズマ反応装置の点火方法。
[Claims] 1. In a high-frequency plasma reactor using a reaction sample and a gas jetting part, the jetting part is made of metal, and a double quartz tube to which a high-frequency electromagnetic field is applied from the outside is insulated; A high-frequency plasma reaction using a metal sample and a gas spout, in which the output voltage of a waveform power supply is applied to the metal spout to cause a glow discharge in the furnace through ignition gas, thereby inducing a plasma reaction due to a high-frequency electromagnetic field. How to ignite the device.
JP62299028A 1987-11-27 1987-11-27 Ignition method of high frequency plasma reactor Expired - Fee Related JPH0693396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299028A JPH0693396B2 (en) 1987-11-27 1987-11-27 Ignition method of high frequency plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299028A JPH0693396B2 (en) 1987-11-27 1987-11-27 Ignition method of high frequency plasma reactor

Publications (2)

Publication Number Publication Date
JPH01143196A true JPH01143196A (en) 1989-06-05
JPH0693396B2 JPH0693396B2 (en) 1994-11-16

Family

ID=17867281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299028A Expired - Fee Related JPH0693396B2 (en) 1987-11-27 1987-11-27 Ignition method of high frequency plasma reactor

Country Status (1)

Country Link
JP (1) JPH0693396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034605A1 (en) * 2010-09-15 2012-03-22 J-Plasma Gmbh Torch
CN111921472A (en) * 2016-01-05 2020-11-13 螺旋株式会社 Decomposition processing device, vehicle with decomposition processing device mounted thereon, and decomposition processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034605A1 (en) * 2010-09-15 2012-03-22 J-Plasma Gmbh Torch
CN111921472A (en) * 2016-01-05 2020-11-13 螺旋株式会社 Decomposition processing device, vehicle with decomposition processing device mounted thereon, and decomposition processing method

Also Published As

Publication number Publication date
JPH0693396B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US5233155A (en) Elimination of strike-over in rf plasma guns
Korolev et al. Low-current “gliding arc” in an air flow
US5369336A (en) Plasma generating device
US3009783A (en) Production of carbon black
US4394162A (en) Treatment of matter in low temperature plasmas
US3851136A (en) Process and equipment for the treatment of a material by means of an arc discharge plasma
JPH0219471A (en) Method for forming membrane
JP2013120686A (en) Plasma processing device and plasma processing method
MY133687A (en) Method and apparatus for producing a single crystal
Hedger et al. Preliminary observations on the use of the induction-coupled plasma torch for the preparation of spherical powder
US3407281A (en) Plasma producing apparatus
JPH01143196A (en) Ignition method for high-frequency plasma reaction device using metal specimen and gas blowout part
DE10104614A1 (en) Plasma system and method for producing a functional coating
US2970895A (en) Process for crystalline growth employing collimated electrical energy
US20170077840A1 (en) Method for producing thermal and electrical energy and device for implementing said method
GB706036A (en) Process and device for the production of nuclear reactions
JP2779000B2 (en) Induction plasma generator
Kirdyashkin et al. Acoustic emission during self-propagating high-temperature synthesis
JPH0367496A (en) Induction plasma generation device
US3324027A (en) Apparatus for performing chemical and other processes under the action of gas ions
Stepanyan et al. Hydrodynamic effects induced by nanosecond repetitive pulsed discharges
RU2738744C1 (en) Method of producing heat and electric energy and device for its implementation
JPH067671A (en) Method for extracting transformed material by induction plasma spraying
Oberste Berghaus Substrate bias assisted RF thermal plasma diamond deposition
Brandenburg et al. Microwave Production of Steady State Large Volume Air Plasmas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees