JPH01142525A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH01142525A
JPH01142525A JP29951387A JP29951387A JPH01142525A JP H01142525 A JPH01142525 A JP H01142525A JP 29951387 A JP29951387 A JP 29951387A JP 29951387 A JP29951387 A JP 29951387A JP H01142525 A JPH01142525 A JP H01142525A
Authority
JP
Japan
Prior art keywords
magnet
optical
optical axis
optical isolator
magnetic fields
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29951387A
Other languages
Japanese (ja)
Other versions
JP2565945B2 (en
Inventor
Junji Saito
斎藤 準二
Takahiko Tamaki
孝彦 玉城
Kuniro Tsushima
対馬 国郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Japan Broadcasting Corp
Original Assignee
Mitsubishi Kasei Corp
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62299513A priority Critical patent/JP2565945B2/en
Publication of JPH01142525A publication Critical patent/JPH01142525A/en
Application granted granted Critical
Publication of JP2565945B2 publication Critical patent/JP2565945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable the shortening of an optical path length, the easy adjustment of an optical axis and the miniaturization of an optical system including a coupling lens by constituting an optical isolator in such a manner that magnetic fields can be impressed simultaneously to two pieces of Faraday rotors by a piece of magnet magnetized radially in a radial direction. CONSTITUTION:The magnetic field in a backward direction is impressed along the optical axis direction to the Faraday rotor 4 and the magnetic field in a forward direction is impressed along the optical axis direction to the Faraday rotor 5 by the magnet 6. The magnetic fields to be impressed to the Faraday rotors 4 and 5 are preferably respectively the max. magnetic fields of the magnetic field in the forward and backward directions along the optical axis direction. The impression of such magnetic fields is executed by a piece of the cylindrical magnet or the cylindrical magnet formed by combining the plural magnets and the max. magnetic fields formed by the magnet exist preferably at two points in the axial direction. The small-sized high-performance optical isolator which is extremely small in size, is simple in the optical axis adjustment and has the performance equal to the performance obtainable by using two pieces of the conventional optical isolators connected in series is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信や光応用製品等に使用する光アイソレ
ータに関する。詳しくは、ラジアル(半径)方向に着磁
した円筒状磁石あるいはそれと同等な磁界分布を示す磁
石を用いて2個のファラデー回転子に同時に磁場を印加
することによって、小型化が達成でき且つ高い消光比を
得ることができる。取シ扱いの簡単な2段一体型光アイ
ソレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical isolator used in optical communications, optical application products, and the like. Specifically, miniaturization and high extinction can be achieved by simultaneously applying a magnetic field to two Faraday rotators using a cylindrical magnet magnetized in the radial direction or a magnet with an equivalent magnetic field distribution. You can get the ratio. The present invention relates to a two-stage integrated optical isolator that is easy to handle.

〔従来の技術〕[Conventional technology]

第q図は従来の2段一体型光アイソレータを示す概略説
明図である。図中、11コ、3は偏光子、ダおよびSは
7アラデ一回転子、6は磁石、7は光の進行方向(光軸
方向)、ざは磁石の印加磁場(磁力線)を示す。
FIG. q is a schematic explanatory diagram showing a conventional two-stage integrated optical isolator. In the figure, 11 and 3 are polarizers, Da and S are 7 Alade rotators, 6 is a magnet, 7 is the traveling direction of light (optical axis direction), and 3 is the applied magnetic field (magnetic force lines) of the magnet.

従来の光アイソレータは偏光子と、光の偏光方向が該偏
光子に対してaS度になるように調整した検光子との間
に、ファラデー回転角が173度であるファラデー回転
子を置いた構成になっている。このような光アイソレー
タの特性は使用する偏光やファラデー回転子に依存する
ことが多く、順方向挿入損失は/ dB以下、消光比は
3O−IIOdB程度であシ、II OdB以上の消光
比を1個の光アイソレータで得るのは非常に困難であり
た。そこで2個の光アイソレータを直列に接続して使用
することが考えられている(例えば、特開昭t/ −/
1I72.111号)。
A conventional optical isolator has a configuration in which a Faraday rotator with a Faraday rotation angle of 173 degrees is placed between a polarizer and an analyzer adjusted so that the polarization direction of light is aS degree with respect to the polarizer. It has become. The characteristics of such optical isolators often depend on the polarization and Faraday rotator used; the forward insertion loss is /dB or less, the extinction ratio is about 3O-IIOdB, and the extinction ratio of IIOdB or more is 1 It was extremely difficult to obtain a single optical isolator. Therefore, it has been considered to use two optical isolators connected in series (for example, JP-A-Sho t/-/
1I72.111).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、2個の光アイソレータを直列に接続して
使用すると、当然のことながら光路長が一倍になシ、半
導体レーザーの光を光ファイバー等に効率良く結合する
ことが困難になるばかシか、光結合回路が大型になシ、
前段と後段の光アイソレータの偏光方向も合わせなけれ
ばならないという欠点があった。また、従来の2段一体
型光アイソレータは基本的にはコ個の光アイソレータ、
即ち2個の磁石、2個のファラデー回転子、3個あるい
はダ個の偏光子から構成されていて、コ個の光アイソレ
ータを直列に接続して使用したのと同じように光結合回
路が大型になシ、且つ光ファイバー等への結合効率が低
くなるという問題点は解決できなかった。
However, if two optical isolators are connected in series, the optical path length will of course be doubled, making it difficult to efficiently couple the semiconductor laser light to an optical fiber, etc. The optical coupling circuit is not large,
The disadvantage is that the polarization directions of the optical isolators in the front and rear stages must also be matched. In addition, the conventional two-stage integrated optical isolator basically consists of
In other words, it is composed of two magnets, two Faraday rotators, and three or two polarizers, and the optical coupling circuit is large in size, just like using a number of optical isolators connected in series. However, the problem of low coupling efficiency to optical fibers and the like could not be solved.

また、従来の方式はファラデー回転子を、組み込む磁石
の内径よシ小さく加工しなければいけないという制約と
取シつけ部品を使用してファラデー回転子を固定するた
め有効光ビーム径が小さくなるという欠点があシ、これ
を解決するために磁石の内径と外径を大きくする方法が
取られており、光アイソレータの大型化の要因になって
いた。
In addition, the conventional method has the disadvantage that the Faraday rotator must be machined to be smaller than the inner diameter of the magnet to be incorporated, and that the effective light beam diameter is small because the Faraday rotator is fixed using mounting parts. Unfortunately, in order to solve this problem, the magnet's inner and outer diameters were increased, which led to the increase in the size of the optical isolator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意検討した結果、−個の光アイソレータ
を一体化した構造であるにもかかわらず非常に小型で光
軸調整が簡単でアシ、且つ従来の光アイツレーP−−個
直列に接続して使用したものと同等の性能を有する小型
高性能光アイソレータを見出し本発明に到達した。
As a result of intensive studies, the inventors of the present invention found that although it has a structure in which - optical isolators are integrated, it is very small, the optical axis adjustment is easy, and the conventional optical isolator P is connected in series. The present invention was achieved by discovering a compact, high-performance optical isolator that has performance equivalent to that used in the conventional optical isolator.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、本発明の一段一体型光アイソレータの一例を
示す概略説明図である。図中、11コ、3は偏光子であ
シ、lとコ、1と3の各偏光子の間の偏光方向はそれぞ
れダ3度になるように調整されている。ダと5はファラ
デー回転子であシ、光の偏光面をそれぞれlIs度回転
させるものである。6はラジアル(半径)方向に着磁し
た円筒状磁石、りは光軸方向(光の進行方向)、ざは印
加磁場(磁力線)を示す。
FIG. 1 is a schematic explanatory diagram showing an example of the single-stage integrated optical isolator of the present invention. In the figure, 11 and 3 are polarizers, and the polarization directions between the polarizers 1 and 3 and 1 and 3 are adjusted to be 3 degrees. 5 and 5 are Faraday rotators, which respectively rotate the plane of polarization of light by lIs degrees. Reference numeral 6 indicates a cylindrical magnet magnetized in the radial direction, ri indicates the optical axis direction (direction in which light travels), and za indicates the applied magnetic field (lines of magnetic force).

ファラデー回転子ダには光軸方向に沿って逆方向の磁場
が、ファラデー回転子jには光軸方向に沿って順方向の
磁場が磁石6よシ印加される。ファラデー回転子ダ及び
5に印加される磁場は、光軸方向に沿った頭方向および
逆方向の磁場のそれぞれ最大磁場であることが好ましい
A magnetic field in the opposite direction along the optical axis direction is applied to the Faraday rotator DA, and a magnetic field in the forward direction along the optical axis direction is applied to the Faraday rotator j by the magnet 6. The magnetic fields applied to the Faraday rotators 5 and 5 are preferably the maximum magnetic fields in the head direction and the opposite direction along the optical axis direction, respectively.

このような磁場の印加は、1個の円筒状磁石や複数の磁
石を組み合わせた筒状の磁石によりて実現でき、磁石の
形成する最大磁場が軸方向にコか所あることが好ましい
。このような磁石は希土焼結体磁石あるいはプラスチッ
クマグネットを使用して、光軸を中心として線対称に磁
化させればよく、例えば、第3図に示したような磁石が
使用できる。また、磁石の最大磁場を大きくすることに
よシ飽和磁場の大きいファラデー回転子材料も使用でき
るのでファラデー回転子材料の選択幅を広くすることが
可能となるが、磁石の寸法を大きくすることなく最大磁
場を大きくするためにこれらの磁石の外側に鉄等の強磁
性体を置くこともできる。
Application of such a magnetic field can be realized by using a single cylindrical magnet or a cylindrical magnet that is a combination of a plurality of magnets, and it is preferable that the maximum magnetic field formed by the magnet is located at several places in the axial direction. As such a magnet, a rare earth sintered magnet or a plastic magnet may be used, and the magnet may be magnetized line-symmetrically about the optical axis. For example, a magnet as shown in FIG. 3 can be used. In addition, by increasing the maximum magnetic field of the magnet, Faraday rotator materials with a large saturation magnetic field can be used, making it possible to widen the selection range of Faraday rotator materials, but without increasing the magnet dimensions. A ferromagnetic material such as iron can also be placed outside these magnets to increase the maximum magnetic field.

ファラデー回転子材料としては光吸収が小さく、ファラ
デー回転角(7アラデー効果による偏光面の回転する角
度)が大きいものが望ましく、このような材料としては
ビスマスによ多置換した磁性ガーネット(分子式はR3
−xFes−yMy012; Rは単体あるいは複数個
のYを含む希土類イオン、又はAI、Gaを示す)が好
適で、従来のYIG(分子式はY3Fe5012)を使
用した一段一体型光アイソレータよシ更に小型化が可能
になる。ファラデー回転子に磁場が印加されるこことに
よシフアラデー回転子を通過する光の偏光方向は4tS
度回転する。偏光の回転方向はファラデー回転子ダと5
のファラデー回転係数の正、負によって変わシ、ファラ
デー回転係数が正である物質を7アラデ一回転子として
使用すれば、光の進行方向と印加磁場の方向が同方向の
時、光の偏光方向は右ネジを締める方向に回転する。即
ち、互いに偏光方向が73度になるように調整した偏光
子lと2、偏光子コと3は、使用する7アラデ一回転子
によりて回転する偏光方向と同方向にI11度回転させ
て置けばよい。
As a Faraday rotator material, it is desirable to have a material with low light absorption and a large Faraday rotation angle (the angle at which the plane of polarization rotates due to the 7 Alladay effect). Examples of such materials include magnetic garnet with multiple substitutions of bismuth (the molecular formula is R3).
-xFes-yMy012; R is a rare earth ion containing a single or multiple Y, or AI or Ga) is suitable, and is more compact than the conventional single-stage integrated optical isolator using YIG (molecular formula: Y3Fe5012). becomes possible. When a magnetic field is applied to the Faraday rotator, the polarization direction of the light passing through the Faraday rotator is 4tS.
Rotate degrees. The direction of rotation of polarized light is the Faraday rotator
This changes depending on whether the Faraday rotation coefficient is positive or negative.If a material with a positive Faraday rotation coefficient is used as a 7Arad rotator, when the direction of travel of the light and the direction of the applied magnetic field are the same, the polarization direction of the light will change. rotates in the direction to tighten the right-hand screw. In other words, polarizers 1 and 2 and polarizers 3 and 3, which have been adjusted so that their polarization directions are 73 degrees, are rotated by 11 degrees in the same direction as the polarization direction rotated by the 7-Alade rotator used. Bye.

また、第1図に示す偏光子のかわシに複屈折偏光板等を
使用し、入力側に偏光依存性のない光アイソレータにす
ると従来の光アイソレータよシ更に小型化が可能になる
Furthermore, if a birefringent polarizing plate or the like is used in place of the polarizer shown in FIG. 1, and an optical isolator with no polarization dependence is created on the input side, it becomes possible to further reduce the size of the optical isolator compared to the conventional optical isolator.

〔実施例〕〔Example〕

以下に本発明を実施例を用いて更に詳細に説明するが、
本発明はその要旨を越えない限シ、実施例によシ限定さ
れるものではない。
The present invention will be explained in more detail below using examples.
The present invention is not limited to the examples unless it exceeds the gist thereof.

実施例1 第一図(a)に示した内径Q、j■、外径7m、長さダ
四の形状で、光軸方向に第コ回動に示した磁場をもつラ
ジアル方向に着磁した磁石を使用し、ファラデー回転子
として200μm厚みのact3−xB 1xFe5−
y Gay 012及び3W角の偏光子を使用し、第1
図に示した構成で組み立てたコ段一体型光アイソレータ
は外径twsz長さ/、21111の寸法であシ、従来
のYIGを使用したコ段−体型光アイソレータ(外径1
gII+1、長さ2.3+w)と比べて長さで約1/2
、体積比でx/g、sとなり、小型化が達成された。
Example 1 It had the shape of the inner diameter Q, j■, the outer diameter 7 m, and the length D4 shown in Fig. 1 (a), and was magnetized in the radial direction with the magnetic field shown in the C-th rotation in the optical axis direction. act3-xB 1xFe5- with a thickness of 200 μm as a Faraday rotator using a magnet.
y Gay 012 and a 3W angle polarizer, the first
The one-stage integrated optical isolator assembled with the configuration shown in the figure has the dimensions of outer diameter twsz length/, 21111, and has a dimension of 21111.
Approximately 1/2 the length compared to gII+1, length 2.3+w)
, the volume ratio was x/g, s, and miniaturization was achieved.

〔発明の効果〕〔Effect of the invention〕

本発明による一段一体型光アイソレータはラジアル方向
に放射状に着磁した1個の磁石でファラデー回転子コ個
に同時に磁場を印加できるので、従来の光アイツレータ
コ個を直列に接続して使用したものや従来の2段一体型
光アイソレータよシ光路長を短くすることができ、光軸
調整が簡単になシ、結合レンズを含めた光学系を小型化
することができる。
The single-stage optical isolator according to the present invention can simultaneously apply a magnetic field to two Faraday rotators using one magnet magnetized radially in the radial direction. The optical path length can be made shorter than that of the conventional two-stage integrated optical isolator, the optical axis can be easily adjusted, and the optical system including the coupling lens can be made smaller.

また、半導体レーザの発振モードの安定化をはかり、且
つ波長シフトを少なくするために半導体レーザや光アイ
ソレータの温度を一定にコントロールすることがあるが
、それに使用する恒温槽などを小型軽量化することがで
きる。更に、本発明の光アイソレータを組み立てる場合
、ファラデー回転子を磁石の外側に取りつけるだけで良
いから、従来よりよく知られている磁石の中にファラデ
ー回転子を組み込む方式より簡単になり製造が容易にな
る。
In addition, in order to stabilize the oscillation mode of a semiconductor laser and reduce wavelength shift, the temperature of the semiconductor laser and optical isolator may be controlled to a constant level, but it is necessary to reduce the size and weight of the thermostat used for this purpose. Can be done. Furthermore, when assembling the optical isolator of the present invention, it is only necessary to attach the Faraday rotator to the outside of the magnet, making it simpler and easier to manufacture than the conventional method of incorporating the Faraday rotator into the magnet. Become.

なお、本発明の光アイソレータを2段以上組み合せるこ
とにより、さらに高い消光比を持つ光アイソレータを構
成することができる。
Note that by combining two or more stages of optical isolators of the present invention, an optical isolator with an even higher extinction ratio can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2段一体型光アイソレータの一実施例
を示す概略説明図、第2図は第1図の光アイソレータに
使用するラジアル方向に着磁した円筒状の磁石の斜視図
l1la)とその磁石の磁場の強さの光軸方向の距離依
存性を示す図(b)、第3図は本発明の光アイソレータ
に使用し得る磁石の例を示す斜視図、第9図は従来のコ
段−体型光アイソレータを示す概略説明図である。 図中、/、コ、3は偏光子、ダ、5はファラデー回転子
、6は磁石、7は光の進行方向(光軸方向)、gは磁石
の印加磁場、9は磁化方向を示す。
Fig. 1 is a schematic explanatory diagram showing an embodiment of the two-stage integrated optical isolator of the present invention, and Fig. 2 is a perspective view of a cylindrical magnet magnetized in the radial direction used in the optical isolator of Fig. 1. ) and the distance dependence of the magnetic field strength of the magnet in the optical axis direction, FIG. 3 is a perspective view showing an example of a magnet that can be used in the optical isolator of the present invention, and FIG. 9 is a conventional magnet. FIG. 2 is a schematic explanatory diagram showing a C-stage optical isolator. In the figure, /, co, 3 are polarizers, da, 5 are Faraday rotators, 6 are magnets, 7 is the traveling direction of light (optical axis direction), g is the applied magnetic field of the magnet, and 9 is the magnetization direction.

Claims (5)

【特許請求の範囲】[Claims] (1)筒状磁石、ファラデー回転子および偏光子を含む
光アイソレータにおいて、該磁石が光軸方向に沿って順
方向および逆方向の磁場を形成し、該磁場が2組のファ
ラデー回転子に印加されていることを特徴とする光アイ
ソレータ。
(1) In an optical isolator that includes a cylindrical magnet, a Faraday rotator, and a polarizer, the magnet forms forward and reverse magnetic fields along the optical axis direction, and the magnetic fields are applied to two sets of Faraday rotators. An optical isolator characterized by:
(2)磁石が、軸方向に2か所の最大磁場を形成する磁
石である特許請求の範囲第1項記載の光アイソレータ。
(2) The optical isolator according to claim 1, wherein the magnet is a magnet that forms two maximum magnetic fields in the axial direction.
(3)磁石が、光軸を中心とする線対称の磁化方向を有
する磁石である特許請求の範囲第1項記載の光アイソレ
ータ。
(3) The optical isolator according to claim 1, wherein the magnet has a magnetization direction that is line-symmetrical about the optical axis.
(4)磁石が、ラジアル方向に着磁された磁石である特
許請求の範囲第1項記載の光アイソレータ。
(4) The optical isolator according to claim 1, wherein the magnet is a magnet magnetized in a radial direction.
(5)ファラデー回転子がビスマスにより置換された磁
性ガーネットである特許請求の範囲第1項記載の光アイ
ソレータ。
(5) The optical isolator according to claim 1, wherein the Faraday rotator is a magnetic garnet substituted with bismuth.
JP62299513A 1987-11-27 1987-11-27 Optical isolator Expired - Lifetime JP2565945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299513A JP2565945B2 (en) 1987-11-27 1987-11-27 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299513A JP2565945B2 (en) 1987-11-27 1987-11-27 Optical isolator

Publications (2)

Publication Number Publication Date
JPH01142525A true JPH01142525A (en) 1989-06-05
JP2565945B2 JP2565945B2 (en) 1996-12-18

Family

ID=17873559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299513A Expired - Lifetime JP2565945B2 (en) 1987-11-27 1987-11-27 Optical isolator

Country Status (1)

Country Link
JP (1) JP2565945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0415444A2 (en) * 1989-08-31 1991-03-06 Seiko Instruments Inc. Optical isolator
WO2002014939A1 (en) * 2000-08-11 2002-02-21 Fdk Corporation Farady rotation device and optical device comprising it
US6758721B2 (en) 2000-01-07 2004-07-06 Tdk Corporation Apparatus and method for lapping magnetic heads
CN114779404A (en) * 2022-04-26 2022-07-22 武汉光迅科技股份有限公司 DMUX device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133017U (en) * 1984-07-30 1986-02-28 日立電線株式会社 optical isolator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810551A (en) * 1981-07-09 1983-01-21 Asahi Chem Ind Co Ltd Preparation of unsaturated nitrile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133017U (en) * 1984-07-30 1986-02-28 日立電線株式会社 optical isolator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0415444A2 (en) * 1989-08-31 1991-03-06 Seiko Instruments Inc. Optical isolator
EP0415444A3 (en) * 1989-08-31 1991-10-16 Seiko Instruments Inc. Optical isolator
US6758721B2 (en) 2000-01-07 2004-07-06 Tdk Corporation Apparatus and method for lapping magnetic heads
WO2002014939A1 (en) * 2000-08-11 2002-02-21 Fdk Corporation Farady rotation device and optical device comprising it
US6876480B2 (en) 2000-08-11 2005-04-05 Fdk Corporation Farady rotation device and optical device comprising it
US7006273B2 (en) 2000-08-11 2006-02-28 Fdk Corporation Faraday rotation device and optical device using same
CN114779404A (en) * 2022-04-26 2022-07-22 武汉光迅科技股份有限公司 DMUX device
CN114779404B (en) * 2022-04-26 2023-12-01 武汉光迅科技股份有限公司 DMUX device

Also Published As

Publication number Publication date
JP2565945B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US7898720B2 (en) Faraday rotator
US5528415A (en) Compact enhanced performance optical isolator using a faraday rotator
CA2011829A1 (en) Quasi-achromatic optical isolators and circulators using prisms with total internal fresnel reflection
US6876480B2 (en) Farady rotation device and optical device comprising it
JPH01142525A (en) Optical isolator
JP2007248779A (en) Optical isolator
CN101872077A (en) Optoisolator for use in fiber-optic communication
JP3376529B2 (en) Optical isolator
JPH0432816A (en) Light isolator
JPH0637382Y2 (en) Optical isolator
JPH0387814A (en) Optical isolator
JP3936451B2 (en) Optical attenuator module
JP2002148578A (en) Faraday rotation device and optical device which uses the same
JP2001117060A (en) Optical switch
JPH04264516A (en) Optical isolator
JP2535159Y2 (en) Optical isolator
JPS6136725A (en) Optical isolator and its production
JPH04264515A (en) Optical isolator
JPH04247423A (en) Optical isolator
JPH03135514A (en) Optical isolator
JP2004062006A (en) Optical isolator
JPH02240621A (en) Optical isolator
JP2003241141A (en) Nonreciprocal optical device
JP2005107021A (en) Magnetooptical optical component
JPH01261616A (en) Optical isolator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12