JPH01261616A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH01261616A
JPH01261616A JP9083788A JP9083788A JPH01261616A JP H01261616 A JPH01261616 A JP H01261616A JP 9083788 A JP9083788 A JP 9083788A JP 9083788 A JP9083788 A JP 9083788A JP H01261616 A JPH01261616 A JP H01261616A
Authority
JP
Japan
Prior art keywords
holders
isolator
polarizer
analyzer
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9083788A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
良博 今野
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP9083788A priority Critical patent/JPH01261616A/en
Publication of JPH01261616A publication Critical patent/JPH01261616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the difficulty in adjustment of an optical isolator and, at the same time, to reduce the size of the isolator further by forming holders for fixing a pair of polarizing elements of a magnetic substance. CONSTITUTION:A pair of holders 3 respectively provided with holes suitable for the outer shapes of a polarizer 1 and analyzer 2 which are polarizing elements so that the polarizer 1 and analyzer 2 can be put in the holes are formed of a magnetic substance and the polarizer 1 and analyzer 2 are put in and fixed to the holes. Then the polarizing elements 1 and 2 are respectively fixed to both sides of a permanent magnet 4 after the magnet 4 is magnetized and a Farady rotator 5 is inserted into the central part of the magnet 4. The holders are attracted by the magnet 4 and remain attracted unless external force is applied. Therefore, necessity of tentatively setting the constituents of this isolator in the course of optical axis alignment and 45 deg. adjustment is eliminated and, moreover, since the holders 3 maintain their attracted states after their positions are adjusted, the holders 3 can be fixed permanently by means of a resin bonding or metallic fusion. Thus the assemblage and adjustment of the optical isolator become easier and the whole volume of the isolator can be minimized. In addition, the angle of the optical axis can be adjusted easily.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光通信、光計測等に用いられ、特に半導体レー
ザを光源とする応用分野において、半導体レーザ発振の
誤動作を誘起する光回路における光デバイスである、反
射戻り光を遮断する機能を有する光アイソレータの構造
に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is used in optical communication, optical measurement, etc., and is particularly applicable to applications where a semiconductor laser is used as a light source. The present invention relates to the structure of an optical isolator, which is a device, and has a function of blocking reflected return light.

[従来の技術] 近年の半導体レーザ、光ファイバ、受光素子等の著しい
技術発展により、数Qbit/Secの高密度光伝送が
可能となり今後の飛躍的発展が期待されている。−右手
導体レーザの光システムが高密度化するのに伴い、光回
路内から半導体レーザに帰還する反射戻り光が原因とな
るレーザ発振の誤動作が重要な課題となってきた。この
問題の解決策としてすでにマイクロ波通信等で利用され
ているアイソレータと同様な機能を有する光アイソレー
タを光回路中に挿入し、反射戻り光を遮断する方法が提
案され、一部市販されるに至っている。
[Prior Art] Recent remarkable technological developments in semiconductor lasers, optical fibers, light receiving elements, etc. have made it possible to perform high-density optical transmission of several Qbits/Sec, and are expected to make rapid progress in the future. -As optical systems for right-handed conductor lasers become more dense, malfunctions in laser oscillation caused by reflected light returning from the optical circuit to the semiconductor laser have become an important issue. As a solution to this problem, a method has been proposed in which an optical isolator with a function similar to the isolators used in microwave communications etc. is inserted into the optical circuit to block the reflected return light, and some are now commercially available. It has been reached.

[発明が解決しようとする課題] これまで提案された光アイソレータは大きく分けて、フ
ァラデー回転子としてファラデーガラスを用いた方式と
、Y[GもしくはBi置換LPEガーネットを用いた方
式があり、光アイソレータとして構成したときの全体の
大きさは、−殻内にファラデーガラス>YIQ>Bi置
換LPEガーネットの順になる。それぞれ用途1分野、
性能により使い分けられている。しかし今後の多機利用
を考慮すると、デバイスの小型化。
[Problem to be solved by the invention] The optical isolators that have been proposed so far can be roughly divided into two types: one uses Faraday glass as a Faraday rotator, and the other uses Y[G or Bi-substituted LPE garnet. When constructed as follows, the overall size is in the following order: - Faraday glass in the shell > YIQ > Bi-substituted LPE garnet. One field of use each,
They are used depending on their performance. However, considering the future use of multiple devices, devices will need to be made smaller.

恒産性、低価格性の面からBi冒換LPE方法により形
成される)?ラブ−回転子を用いる方式が有利とされて
いる。一方偏光子、検光子等の偏光素子は偏光ビームス
プリッタ(PBS)。
(Is it formed by the Bi-converted LPE method in terms of productivity and low cost?) A method using a love-rotor is considered advantageous. On the other hand, polarizing elements such as polarizers and analyzers are polarizing beam splitters (PBS).

方解石から製造される各種プリズムや、ルチル(TtO
e)等の複屈折結晶が利用され、またファラデー回転効
果を与える永久磁石は全体を小形化する必要性から希土
類磁石が用いられている。
Various prisms made from calcite, rutile (TtO)
Birefringent crystals such as e) are used, and rare earth magnets are used as the permanent magnets that give the Faraday rotation effect due to the need to downsize the entire structure.

光アイソレータの性能は順方向に対しては透過損失が可
能な限り少ないことで、逆方向に対しては戻り光の遮断
能力が高いことである。実際に光アイソレータを組立て
る場合、上記性能的要求を解決するには各素子の厳格な
光軸調整や、偏光子、ファラデー回転子、検光子の互い
に45°の偏光面を精度よく角度調整することが必要で
あり、従来提案されたような光アイソレータの構成では
光軸調整、角度調整が煩雑でかつ微調整が困難であった
。−力調整容易性を設計の主体とすると逆に全体が大き
く、小形化することが容易でなくなるという相反する問
題を抱えていた。
The performance of an optical isolator is to have as little transmission loss as possible in the forward direction, and to have a high ability to block returning light in the reverse direction. When actually assembling an optical isolator, in order to solve the above performance requirements, it is necessary to strictly adjust the optical axis of each element, and precisely adjust the polarization planes of the polarizer, Faraday rotator, and analyzer at 45 degrees to each other. In the optical isolator configurations proposed in the past, optical axis adjustment and angle adjustment are complicated, and fine adjustment is difficult. - If the ease of force adjustment was the main focus of the design, the entire device would become large and it would be difficult to downsize it, which is a contradictory problem.

本発明はこの点を鑑みて、第一の目的として前述のよう
な従来の光アイソレータの調整能を解消するとともに一
層の小形化を実現し、第二の目的としてより低価格で量
産容易な光アイソレータを提供するものである。
In view of this, the first objective of the present invention is to eliminate the adjustment ability of the conventional optical isolator as described above and realize further miniaturization, and the second objective is to provide an optical isolator that is cheaper and easier to mass produce. It provides an isolator.

[課題を解決するための手段] 本発明の主たる構成は、偏光子、ファラデー回転子、検
光子及びファラデー回転子を磁気的に飽和させるための
永久磁石からなる光アイソレータにおいて、一対の偏光
素子を固定するホルダーを磁性体で形成することである
。すなわち第1図に示すように偏光素子である偏光子1
゜検光子2がそれぞれ挿入、接着できるように、偏光素
子の外形にあった孔を中央に設けた一対のホルダー3を
磁性体で形成し、偏光子1.検光子2を挿入固定する。
[Means for Solving the Problems] The main structure of the present invention is to provide an optical isolator including a polarizer, a Faraday rotator, an analyzer, and a permanent magnet for magnetically saturating the Faraday rotator. The fixing holder is made of a magnetic material. That is, as shown in FIG. 1, a polarizer 1 which is a polarizing element
゜A pair of holders 3 are made of a magnetic material and have a hole in the center that matches the outer shape of the polarizing element so that the analyzers 2 can be inserted and bonded to each other. Insert and fix analyzer 2.

次に永久磁石4を着磁し、中央部にファラデー回転子5
を挿入した後、それぞれの偏光素子1.2を永久磁石4
の両面に固定する。このときホルダー3は磁性体である
ので永久磁石4に吸着され、外部から力を作用させない
限りその状態を維持する。したがって光軸合わせ、45
°調整する過程で構成部品を仮止めする必要がなく、し
かも−度調整すればホルダー3が吸着した状態を維持し
たままで樹脂接着や金属溶着により恒久的な固定ができ
る。
Next, the permanent magnet 4 is magnetized, and the Faraday rotator 5 is placed in the center.
After inserting each polarizing element 1.2 into a permanent magnet 4
Fix it on both sides. At this time, since the holder 3 is a magnetic material, it is attracted to the permanent magnet 4 and maintains that state unless an external force is applied. Therefore, optical axis alignment, 45
There is no need to temporarily fix the component parts during the adjustment process, and moreover, once the holder 3 is adjusted, it can be permanently fixed by resin adhesion or metal welding while maintaining the adsorbed state of the holder 3.

このとき45°の回転調整中に光軸変位がないように、
第2図に示すように永久磁石4の中心軸をホルダー3の
中心軸に一致するように磁性体ホルダー3のファラデー
回転子側端面に段差部りを形成し、その突出部分が上記
永久磁石内周部分に嵌合するように構成することが好ま
しい。
At this time, so that there is no optical axis displacement during the 45° rotation adjustment,
As shown in FIG. 2, a stepped portion is formed on the end surface of the magnetic material holder 3 on the Faraday rotor side so that the central axis of the permanent magnet 4 coincides with the central axis of the holder 3, and the protruding portion is placed inside the permanent magnet. Preferably, it is configured to fit into the circumferential portion.

段差が大きいと磁性体ホルダ一部分が永久磁石内部に入
り過ぎ、磁束分布を乱すためファラデー回転子の磁気的
飽和状態が全面にわたって保持されていることが設計上
の目安となる。さらにホルダ一部分の外径が永久磁石の
外径より大きい場合、外周部分で磁気回路を形成し、中
心経路部分から復帰する磁束量が減少し、ファラデー素
子を磁気的に飽和させるに必要な磁束を確保できなくな
る。そこで外部の漏洩弁を償うため永久磁石の体積を大
きく設計しなければならない。これらの現象を考慮する
ときホルダーの外径が永久磁石外径と同一もしくは小さ
く(第3図)設計されるべきであり、このようなホルダ
ーの場合磁束の外周部分からの漏洩は低減化され、復帰
磁束を内周側空間へ集中させ、それだけ永久磁石の体積
を縮小することが可能となり、光アイソレータ全体とし
て大幅に小形化できることになる。
If the step is large, a portion of the magnetic holder will enter the permanent magnet too much and disturb the magnetic flux distribution, so the design standard is to maintain the magnetic saturation state of the Faraday rotor over the entire surface. Furthermore, if the outer diameter of a part of the holder is larger than the outer diameter of the permanent magnet, a magnetic circuit is formed at the outer circumference, and the amount of magnetic flux returning from the center path decreases, reducing the amount of magnetic flux necessary to magnetically saturate the Faraday element. It will not be possible to secure it. Therefore, the volume of the permanent magnet must be designed to be large to compensate for the external leakage valve. When considering these phenomena, the outside diameter of the holder should be designed to be the same as or smaller than the outside diameter of the permanent magnet (Fig. 3). In such a holder, the leakage of magnetic flux from the outer circumference is reduced, By concentrating the return magnetic flux into the inner peripheral space, it becomes possible to reduce the volume of the permanent magnet accordingly, and the optical isolator as a whole can be significantly downsized.

[実施例] 本実施例で使用した各部品を第1表に示す。[Example] Table 1 shows each part used in this example.

以上1〜5の部品を第4図に示す構造に組立て、45°
調整のための回転調節ができるように、ホルダー3の入
出射面側斜面部分に刻みを入れた。
Assemble the parts 1 to 5 above into the structure shown in Figure 4, and
A notch is provided on the sloped surface of the holder 3 on the entrance/exit surface side so that the rotation can be adjusted for adjustment.

矢印の方向から光を入射し、挿入損失が最小の位置にな
るようホルダー3を回転調整した。このとき1.3μの
波長における消光比−36dB、挿入損失0.9dBの
アイソレーション特性が得られた。
Light was incident from the direction of the arrow, and the holder 3 was rotated and adjusted so that the insertion loss was at the minimum position. At this time, isolation characteristics of an extinction ratio of -36 dB and an insertion loss of 0.9 dB at a wavelength of 1.3 μ were obtained.

[発明の効果] 本発明により偏光素子ホルダーが永久磁石に吸着してい
るため、角度調整は光線を透過させホルダーを回転しな
がら光透過強度の最大に合せるだけでよく、組立て調整
が極めて容易となり、光アイソレータの全体積は最小限
に設計できかつ光軸角度調整が容易なことから、多大な
量産効果が期待でき、低価格な光アイソレータの市場供
給が可能となった。
[Effects of the Invention] Since the polarizing element holder is attracted to the permanent magnet according to the present invention, the angle adjustment can be made by simply transmitting the light beam and rotating the holder to match the maximum light transmission intensity, making assembly and adjustment extremely easy. Since the total volume of the optical isolator can be designed to a minimum and the optical axis angle can be easily adjusted, a great mass production effect can be expected, and it has become possible to supply the market with low-cost optical isolators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は本発明の実施例の断
面図。 1:偏光子       2:検光子 3:ホルダー      4:永久磁石5:ファラデー
回転子 特許出願人 並木精密宝石株式会社 【 第1図 第3図 光 第2図 第4v!J
1, 2, 3, and 4 are cross-sectional views of embodiments of the present invention. 1: Polarizer 2: Analyzer 3: Holder 4: Permanent magnet 5: Faraday rotator Patent applicant Namiki Precision Jewelry Co., Ltd. [Figure 1 Figure 3 Light Figure 2 Figure 4v! J

Claims (3)

【特許請求の範囲】[Claims] (1)偏光子、ファラデー回転子、検光子及びファラデ
ー回転子を磁気飽和させるための永久磁石から構成され
る光アイソレータにおいて、偏光子及び検光子を内装、
固定する一対のホルダーを磁性体で形成することを特徴
とした光アイソレータ。
(1) In an optical isolator consisting of a polarizer, a Faraday rotator, an analyzer, and a permanent magnet for magnetically saturating the Faraday rotator, the polarizer and analyzer are installed inside,
An optical isolator characterized by a pair of fixed holders made of a magnetic material.
(2)磁性体ホルダーのファラデー回転子側端面に段差
部を形成し、その突出部分が上記永久磁石内周部分に嵌
合される構造からなる請求項(1)記載の光アイソレー
タ。
(2) The optical isolator according to claim (1), wherein a stepped portion is formed on the Faraday rotor side end surface of the magnetic material holder, and the protruding portion thereof is fitted into the inner peripheral portion of the permanent magnet.
(3)磁性体ホルダーの外径が永久磁石外径と同一もし
くは小さく形成した請求項(1)又は(2)記載の光ア
イソレータ。
(3) The optical isolator according to claim 1 or 2, wherein the outer diameter of the magnetic holder is the same as or smaller than the outer diameter of the permanent magnet.
JP9083788A 1988-04-13 1988-04-13 Optical isolator Pending JPH01261616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9083788A JPH01261616A (en) 1988-04-13 1988-04-13 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083788A JPH01261616A (en) 1988-04-13 1988-04-13 Optical isolator

Publications (1)

Publication Number Publication Date
JPH01261616A true JPH01261616A (en) 1989-10-18

Family

ID=14009698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083788A Pending JPH01261616A (en) 1988-04-13 1988-04-13 Optical isolator

Country Status (1)

Country Link
JP (1) JPH01261616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003741A (en) * 2015-06-09 2017-01-05 セイコーエプソン株式会社 Optical device and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193118A (en) * 1985-02-22 1986-08-27 Fujitsu Ltd Laser module with optical isolator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193118A (en) * 1985-02-22 1986-08-27 Fujitsu Ltd Laser module with optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003741A (en) * 2015-06-09 2017-01-05 セイコーエプソン株式会社 Optical device and image display device

Similar Documents

Publication Publication Date Title
KR20010077884A (en) Optical isolator comprising a faraday rotator
US5757538A (en) Optical isolator
JPH10133146A (en) Capillary type optical isolator
JPH01261616A (en) Optical isolator
JPS5828561B2 (en) optical isolator
JP2565945B2 (en) Optical isolator
EP0364968B1 (en) Optical isolator
JP3290474B2 (en) Optical isolator for semiconductor laser array
JP3075435B2 (en) Optical isolator
JPH10227996A (en) Optical isolator
JP3936451B2 (en) Optical attenuator module
JP3534891B2 (en) Manufacturing method of optical isolator
JPH03135514A (en) Optical isolator
JPH0432816A (en) Light isolator
JPH04233510A (en) Optical isolator
JPH04247423A (en) Optical isolator
JP2002341290A (en) Optical isolator, optical connector equipped with the same, and laser light source unit
JPH04264515A (en) Optical isolator
JPH02240621A (en) Optical isolator
JP2001013379A (en) Optical module
JPH1020253A (en) Optical isolator
JP2004062006A (en) Optical isolator
JPH0248635A (en) Optical isolator
JPS634214A (en) Optical isolator
JP2535159Y2 (en) Optical isolator