JPH01142496A - Nuclear reactor vessel - Google Patents

Nuclear reactor vessel

Info

Publication number
JPH01142496A
JPH01142496A JP62300234A JP30023487A JPH01142496A JP H01142496 A JPH01142496 A JP H01142496A JP 62300234 A JP62300234 A JP 62300234A JP 30023487 A JP30023487 A JP 30023487A JP H01142496 A JPH01142496 A JP H01142496A
Authority
JP
Japan
Prior art keywords
reactor vessel
vessel
reactor
nuclear reactor
buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300234A
Other languages
Japanese (ja)
Inventor
Takuro Suzuki
卓郎 鈴木
Mutsuo Konno
金野 睦夫
Noriyuki Terakado
寺門 典之
Katsuhisa Sekine
勝久 関根
Toshiaki Ikeuchi
池内 壽昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62300234A priority Critical patent/JPH01142496A/en
Publication of JPH01142496A publication Critical patent/JPH01142496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent possible buckling with the application of a shearing force on a vessel shell, by providing a skew rib on a cylinder of a fast breeder tank type nuclear reactor vessel to enhance rigidity of the vessel. CONSTITUTION:One circle of a skew V-shaped rid 17 is arranged on the circumference of a shell section of a fast breeder tank type nuclear reactor vessel 1 to reinforce the container 1 aslant. When an earth quake occurs to apply a horizontal seismic load, the nuclear reactor vessel 1 vibrates at the lower part thereof with the upper part thereof 1 fixed as the nuclear reactor vessel 1 is supported with a support of a roof slab 3. In such a case, a possible shear buckling can be prevented with the skew rib 17 arranged against a force generated aslant to the shell of the vessel 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速増殖炉(以下FBRと略す)の原子炉容
器に係り、特に、地震時に原子炉全体に作用するせん断
力により発生する原子炉容器の耐座屈強度を増すのに好
適な原子炉の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR), and in particular, the present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR), and in particular, the present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR). The present invention relates to a nuclear reactor structure suitable for increasing the buckling strength of a reactor vessel.

〔従来の技術〕[Conventional technology]

従来の構造について、スーパーフェニックスを例にとり
、第3図を用いて説明する。
The conventional structure will be explained using FIG. 3, taking the Super Phoenix as an example.

原子炉容器1は、板厚が50m+、直径20m程度の薄
肉容器原子炉−次冷却材11及び炉内構造物を内包し、
ルーフスラブ構造3より直接溶接により吊り下げられて
いる。主要器内は、水平隔壁14により冷却材が上部の
ホットプレナムと下部のコールドプレナムに分けられ、
炉心4は容器1の底の鎖部に設置する炉心支持構造物5
により支持されている。
The reactor vessel 1 is a thin-walled vessel with a plate thickness of 50 m+ and a diameter of about 20 m, and contains the sub-reactor coolant 11 and reactor internals,
It is suspended from the roof slab structure 3 by direct welding. Inside the main vessel, the coolant is divided into an upper hot plenum and a lower cold plenum by a horizontal partition wall 14.
The core 4 has a core support structure 5 installed in the chain at the bottom of the vessel 1.
Supported by

ルーフスラブ強度部材は、軽量で、かつ、高剛性を確保
するためマルチセルボックスビーム構造で構成され、容
器1及び熱交換器8、ポンプ等の機器を塔載し、最外周
でルーフスラブ3の支持部によりペデスタルに設置しで
ある。ルーフスラブは軽量であるが剛性が大きいため、
地震に対しても十分な強度を持っている。
The roof slab strength member is constructed of a multi-cell box beam structure to ensure lightweight and high rigidity, and carries the container 1, heat exchanger 8, pump and other equipment, and supports the roof slab 3 at the outermost periphery. Depending on the section, it is installed on the pedestal. Roof slabs are lightweight but have high rigidity, so
It has sufficient strength to withstand earthquakes.

炉心4は、十数枚の半径方向リブで構成された炉心支持
構造物5で支持されている。この各々のリブの内周部は
、中性子連へい体を収納する円筒容器に溶接で接続°さ
れ、外周部は容器鎖部に設置されるスカート構造13に
溶接で接続される。
The core 4 is supported by a core support structure 5 made up of more than ten radial ribs. The inner periphery of each rib is connected by welding to a cylindrical container housing the neutron shield, and the outer periphery is welded to a skirt structure 13 installed on the container chain.

次に地震の場合について述べる。水平地震時には、原子
炉容器1及び原子炉容器内部の炉心4など原子炉容器全
体に荷重が作用する。これに対して、原子炉容器1はル
ーフスラブ3の支持部で支持されることにより、原子炉
容器の上部が固定されて下部が振動する形となる。この
ため、原子炉容器上部にある炉心上機構6、熱交換器8
、及び、循環ポンプに作用する荷重は支持部に近いため
に、原子炉容器をあまり振動させないが、原子炉容器内
部の炉心4及び冷却水等に作用する荷重や原子炉容器本
体に作用する荷重は支持点から離れているために原子炉
容器を大きく振動させる。原子炉容器1は、この荷重に
耐えられるだけの剛性が必要とされる。
Next, we will discuss the case of an earthquake. At the time of a horizontal earthquake, a load acts on the entire reactor vessel, including the reactor vessel 1 and the reactor core 4 inside the reactor vessel. On the other hand, the reactor vessel 1 is supported by the supporting portion of the roof slab 3, so that the upper part of the reactor vessel is fixed and the lower part vibrates. For this reason, the above-core mechanism 6 and heat exchanger 8 located at the top of the reactor vessel
, and the load acting on the circulation pump is close to the support part, so it does not cause the reactor vessel to vibrate much, but the load acting on the reactor core 4 and cooling water inside the reactor vessel, and the load acting on the reactor vessel body. Because it is far from the support point, it causes the reactor vessel to vibrate greatly. The reactor vessel 1 is required to have enough rigidity to withstand this load.

一方、原子炉容器1には高温の冷却材11によって、熱
応力が発生するので、これを小さくするために板厚を小
さくすることも要求され、結果的に薄肉の構造となって
いる。
On the other hand, since thermal stress is generated in the reactor vessel 1 by the high-temperature coolant 11, it is also required to reduce the plate thickness in order to reduce this stress, resulting in a thin structure.

図中、16は垂直隔壁。In the figure, 16 is a vertical partition wall.

〔発明が解決しようとする問題点〕 上記従来構造は、水平地震時に、容器1の胴部が大きな
せん断力を受ける上に原子炉容器1が薄くなっているた
めに、せん断座屈が発生し易くなっている。また、容器
1の胴体には補強となるものが無いので結果的に容器胴
体1の剛性が小さく、せん断座屈に対する強度が低くな
っている。
[Problems to be Solved by the Invention] In the above conventional structure, shear buckling occurs during a horizontal earthquake because the body of the vessel 1 receives a large shear force and the reactor vessel 1 is thin. It's getting easier. Further, since there is no reinforcement in the body of the container 1, the rigidity of the body 1 is low as a result, and the strength against shear buckling is low.

第2図に原子炉容器のせん断座屈をあられした図を示す
。原子炉容器に矢印A方向にせん断荷重が作用した場合
、容器の円筒部には矢印Bの方向に膜力が働き、容器に
は図に示すように、いくつかの座屈波が生じる。これを
せん断座屈と呼んでいる。
Figure 2 shows a diagram showing shear buckling of the reactor vessel. When a shear load is applied to the reactor vessel in the direction of arrow A, a membrane force acts on the cylindrical portion of the vessel in the direction of arrow B, and several buckling waves are generated in the vessel as shown in the figure. This is called shear buckling.

本発明の目的は、容器胴体1に加わるせん断力に対して
、熱応力の増加する容器板厚増加の方法を取らずに容器
の剛性を上げてせん断座屈に対する強度を上げることに
ある。
An object of the present invention is to increase the rigidity of the container against shear buckling by increasing the rigidity of the container against the shear force applied to the container body 1 without increasing the thickness of the container, which increases thermal stress.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、タンク型FBRの原子炉構造において、
容器の胴部に斜めにリブを設けることによって達成され
る。
The above purpose is to
This is achieved by providing diagonal ribs on the body of the container.

〔作用〕[Effect]

本発明の原子炉構造において水平方向に地震が作用した
場合、原子炉容器の上部の構造物、容器内部の構造物、
及び、容器本体等、原子炉容器全体に荷重が作用し、原
子炉容器1がルーフスラブ3の支持部で支持されること
により、原子炉容器1の上部が固定されて下部が容器内
部、及び、容器本体の荷重を受けて振動する。この時の
座屈はせん断座屈となり、容器胴体に斜めの座屈波が生
じる。よって、容器胴体に斜めにリブを溶接し、座屈波
の発生を抑えることにより、原子炉容器の耐座屈強度を
向上させる。
When an earthquake acts in the horizontal direction on the reactor structure of the present invention, the structures above the reactor vessel, the structures inside the vessel,
Then, a load acts on the entire reactor vessel, such as the vessel body, and the reactor vessel 1 is supported by the supporting part of the roof slab 3, so that the upper part of the reactor vessel 1 is fixed and the lower part is inside the vessel, and , vibrates under the load of the container body. The buckling at this time becomes shear buckling, and oblique buckling waves are generated in the container body. Therefore, by diagonally welding ribs to the vessel body to suppress the generation of buckling waves, the buckling strength of the reactor vessel is improved.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。第1
図は原子炉本体の縦断面図である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a longitudinal cross-sectional view of the reactor main body.

図において、1は原子炉容器、2は安全容器、3は原子
炉容器蓋、4は炉心、6は炉心上部機構、7は制御棒駆
動機構、8は熱交換器、9は循環ポンプ、10は配管、
12は原子炉建屋、17はリブである。
In the figure, 1 is a reactor vessel, 2 is a safety vessel, 3 is a reactor vessel lid, 4 is a reactor core, 6 is a core upper mechanism, 7 is a control rod drive mechanism, 8 is a heat exchanger, 9 is a circulation pump, 10 is piping,
12 is a reactor building, and 17 is a rib.

原子炉容器1と原子炉容器1の外側に設けられた安全容
器2は原子炉容器蓋3に取り付けられている。原子炉容
器1内には炉心4が設けられ炉心4は炉心支持構造(図
示せず)を介し、原子炉容器1に取り付けられている。
A reactor vessel 1 and a safety vessel 2 provided outside the reactor vessel 1 are attached to a reactor vessel lid 3. A reactor core 4 is provided within the reactor vessel 1, and the reactor core 4 is attached to the reactor vessel 1 via a core support structure (not shown).

また、原子炉容器蓋3を貫通して炉心上部機構6が設け
られており、炉心上部機構6には制御棒駆動機構7が設
けられている。制御棒駆動機構7によって制御棒(図示
せず)が炉心4内に対し、挿入、引き抜きが行われ出力
が制御されるようになっている。
Further, a core upper mechanism 6 is provided passing through the reactor vessel lid 3, and a control rod drive mechanism 7 is provided in the core upper mechanism 6. A control rod drive mechanism 7 inserts and withdraws a control rod (not shown) into the reactor core 4, thereby controlling the output.

また、原子炉容器蓋3を貫通して熱交換器8と循環ポン
プ9が設けられており、熱交換器8の上部には熱を原子
炉容器1の外に導く配管10が設けられ、配管10には
原子炉建屋12側と熱交換器8側との間がフレキシブル
構造(図示せず)に接続されており、互いに独立に動く
ことができるようになっている。また、炉心4と炉心支
持構造5は冷却材(図示せず)中に浸漬され、熱交換器
8、循環ポンプ9及び炉心上部機構6は下部を冷却材中
に浸漬されている。炉心4内で核分裂によって生じた熱
により加熱された冷却材は炉心4の上面から原子炉容器
1の中を上部に流れ、熱交換器8内に流入し熱交換して
いる。そして、熱交換により低温となった冷却材は熱交
換器8の下部から原子炉容器1内の下部に流出し循環ポ
ンプ9によって炉心4の下部に送られる。
Further, a heat exchanger 8 and a circulation pump 9 are provided penetrating the reactor vessel lid 3, and a pipe 10 is provided above the heat exchanger 8 to guide heat to the outside of the reactor vessel 1. 10 has a flexible structure (not shown) connected between the reactor building 12 side and the heat exchanger 8 side so that they can move independently of each other. Further, the core 4 and the core support structure 5 are immersed in a coolant (not shown), and the lower portions of the heat exchanger 8, circulation pump 9, and core upper mechanism 6 are immersed in the coolant. The coolant heated by the heat generated by nuclear fission in the reactor core 4 flows from the upper surface of the reactor core 4 upwards in the reactor vessel 1, and flows into the heat exchanger 8 for heat exchange. The coolant whose temperature has become low due to the heat exchange flows out from the lower part of the heat exchanger 8 to the lower part of the reactor vessel 1 and is sent to the lower part of the reactor core 4 by the circulation pump 9.

容器1の胴部には、斜めのV形状のリブ17が円周上に
一周設けられており、これにより容器1は斜め方向に補
強がなされている。
A diagonal V-shaped rib 17 is provided around the circumference of the body of the container 1, thereby reinforcing the container 1 in the diagonal direction.

第2図に、リブ17の詳細図を示す。このようにリブ1
7が設けられているので、容器の斜め方向の力に対して
剛な補強となっている。
FIG. 2 shows a detailed view of the rib 17. Like this rib 1
7 provides rigid reinforcement against forces in the diagonal direction of the container.

本発明はこのように構成されているので、以下に示す作
用がある。
Since the present invention is configured as described above, it has the following effects.

すなわち、地震が発生し、本原子炉構造に水平方向地震
荷重が作用した場合、原子炉容器上部の構造物、容器内
部の構造物及び容器本体等、原子炉容器全体に荷重が作
用し、原子炉容器1がルーフスラブ3の支持部で支持さ
れることにより、原子炉容器1の上部が固定されて下部
が容器内部、及び、容器本体の荷重を受けて振動する。
In other words, when an earthquake occurs and a horizontal seismic load acts on the reactor structure, the load acts on the entire reactor vessel, including the structure on the top of the reactor vessel, the structure inside the vessel, and the vessel itself, causing nuclear damage. Since the reactor vessel 1 is supported by the supporting portion of the roof slab 3, the upper part of the reactor vessel 1 is fixed, and the lower part vibrates under the load of the inside of the vessel and the vessel body.

この際、容器の周部に斜め方向に力が生じるのに対して
、斜めのリブを円周上に一周設けるので、斜め方向の剛
性を大きくすることができ、これによって、せん断座屈
が生じるのを防ぐことができる。
At this time, a force is generated in a diagonal direction around the periphery of the container, but since diagonal ribs are provided all around the circumference, the rigidity in the diagonal direction can be increased, which causes shear buckling. can be prevented.

このように、リブを容器のせん断座屈に対して有効な形
で設けているので、地震に対して高い安全性をもたせる
ことができる。
In this way, since the ribs are provided in a form that is effective against shear buckling of the container, high safety against earthquakes can be provided.

従って、本発明によれば、地震時に発生するせん断力に
対して、容器の剛性が大きくなっているのでせん断座屈
の発生を防ぐことができる。
Therefore, according to the present invention, the rigidity of the container is increased against the shear force generated during an earthquake, so that shear buckling can be prevented from occurring.

また、原子炉容器1は高温の冷却材によって生じる熱応
力を少なくするために、板厚を薄くする必要があるが、
胴部に設けるリブによって有効に補強されるので、現在
の板厚よりも薄くしても座屈に対して強度を確保できる
ので、材料費の低減を図ることができる。
In addition, the reactor vessel 1 needs to be made thinner in order to reduce the thermal stress caused by the high-temperature coolant.
Since it is effectively reinforced by the ribs provided on the body, it is possible to ensure strength against buckling even if the thickness of the plate is thinner than the current thickness, so material costs can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、容器の剛性が高まり、座屈を発生しに
くくすることができる。
According to the present invention, the rigidity of the container can be increased and buckling can be made less likely to occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原子炉構造の正面図、第2
図は本発明によるリブの斜視図、第3図は従来の原子炉
構造の縦断面図、第4図は原子炉容器のせん断座屈を表
わす斜視図である。 1・・・原子炉容器、2・・・安全容器、3・・・原子
炉容器蓋、4・・・炉心、5・・・炉心支持構造、6・
・・炉心上部機構、7・・・制御棒駆動機構、8・・・
熱交換器。 菖 I の 下 2 口 冨 Je!]
Figure 1 is a front view of a nuclear reactor structure according to an embodiment of the present invention;
3 is a perspective view of a rib according to the present invention, FIG. 3 is a longitudinal sectional view of a conventional nuclear reactor structure, and FIG. 4 is a perspective view showing shear buckling of a reactor vessel. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 2... Safety vessel, 3... Reactor vessel lid, 4... Reactor core, 5... Core support structure, 6...
... Core upper mechanism, 7... Control rod drive mechanism, 8...
Heat exchanger. Under Iris I 2 Kuchifu Je! ]

Claims (1)

【特許請求の範囲】 1、炉心および一次冷却系機器を含む高速増殖炉タンク
型の原子炉容器において、 前記原子炉容器の円筒部に斜めのリブを設けたことを特
徴とする原子炉容器。
[Scope of Claims] 1. A fast breeder reactor tank-type nuclear reactor vessel including a reactor core and primary cooling system equipment, characterized in that a diagonal rib is provided on a cylindrical portion of the reactor vessel.
JP62300234A 1987-11-30 1987-11-30 Nuclear reactor vessel Pending JPH01142496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300234A JPH01142496A (en) 1987-11-30 1987-11-30 Nuclear reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300234A JPH01142496A (en) 1987-11-30 1987-11-30 Nuclear reactor vessel

Publications (1)

Publication Number Publication Date
JPH01142496A true JPH01142496A (en) 1989-06-05

Family

ID=17882326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300234A Pending JPH01142496A (en) 1987-11-30 1987-11-30 Nuclear reactor vessel

Country Status (1)

Country Link
JP (1) JPH01142496A (en)

Similar Documents

Publication Publication Date Title
US4175005A (en) Component nuclear containment structure
US20030169839A1 (en) Prefabricated in-core instrumentation chase
FI74830C (en) Nuclear reactor, whose core is shielded with a construction of rods and transverse plates.
US4302296A (en) Apparatus for insulating hot sodium in pool-type nuclear reactors
SU1036256A3 (en) Support arrangement for supplying heat carrier circulation system
JPH01142496A (en) Nuclear reactor vessel
US4681731A (en) Nuclear reactor construction with bottom supported reactor vessel
US3775250A (en) Device for suspending and supporting a reactor pressure vessel in a nuclear power plant
US4198271A (en) Liquid metal cooled nuclear reactor constructions
US3769161A (en) Reactor vessel supporting device
JPH01109298A (en) Nuclear reactor vessel
JP3222597B2 (en) Concrete structures in the containment vessel
US3127046A (en) Pressure vessels
US4294661A (en) Liquid metal cooled fast breeder nuclear reactor constructions
JPH0314151B2 (en)
JPS6330785A (en) Reactor pressure-vessel support structure
JPH09236684A (en) Double steel sheet reactor container
US6563900B2 (en) Ring plate around openings in reinforced concrete containment vessel
JP2667856B2 (en) Boiling water reactor
JPH0325193Y2 (en)
JPS6346392B2 (en)
JPS5963590A (en) Tank type fast breeder
JPH0362234B2 (en)
JPH0367599B2 (en)
JPS62182696A (en) Roof slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040723

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060704

A521 Written amendment

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02